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Abstract

The probability distribution of a Markov chain is viewed as the information state of an additive optimization problem.
This optimization problem is then generalized to a product form whose information state gives rise to a generalized notion of
probability distribution for Markov chains. The evolution and the asymptotic behavior of this generalized or “risk-sensitive”
probability distribution is studied in this paper and a conjecture is proposed regarding the asymptotic periodicity of risk-
sensitive probability and proved in the two-dimensional case. The relation between a set of simultaneous non-linear and the
set of periodic attractors is analyzed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the probability distribution of
an ergodic Markov chain is asymptotically stationary,
independent of the initial probability distribution, and
that the stationary distribution is the solution to a fixed-
point problem (Shiryayev, 1984). This probability
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distribution can be viewed as the information state
for an estimation problem arising from the maximum
A posterior probability estimator (MAP) estimation
of the Markov chain for which no observation is
available.

Risk-sensitive filters[1–5,12,13]take into account
the “higher-order” moments of the estimation error.
Roughly speaking, this follows from the analytic prop-
erty of the exponential ex = ∑∞

k=0x
k/k! so that if�

stands for the sum of the error functions over some
interval of time then

E[exp(��)] = E[1 + �� + (�)2(�)2/2 + · · ·].
Thus, at the expense of the mean error cost, the higher-
order moments are included in the minimization of
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the expected cost, reducing the “risk” of large devia-
tions and increasing our “confidence” in the estimator.
The parameter�>0 controls the extent to which the
higher-order moments are included. In particular, the
first-order approximation,� → 0, E[exp(��)]�1 +
�E�, indicates that the original minimization of the
sum criterion or the risk-neutral problem is recovered
as the small risk limit of the exponential criterion.

Another point of view is that the exponential
function has the unique algebraic property of con-
verting the sum into a product. In this paper, we
show that a notion of probability for Markov chains
follows from this point of view which due to its
connection to risk-sensitive filters, will be termed
“risk-sensitive probability (RS-probability)”. We
consider an estimation problem of the states of a
Markov chain in which the cost has a product struc-
ture. We assume no observation is available and
that the initial probability distribution is known. We
will define the RS-probability of a Markov chain
as an information state for this estimation problem
whose evolution is governed by a non-linear op-
erator. The asymptotic behavior of RS-probability
appears to be periodic. Asymptotic periodicity
has been reported to emerge from random perturba-
tions of dynamical systems governed byconstrictive
Markov integral operators[6,7]. In our case, the
Markov operator is given by a matrix; the perturbation
has a simple non-linear structure and the attractors
can be explicitly calculated.

In Section 2, we view the probability distribution
of a Markov chain as the information state of an addi-
tive optimization problem. RS-probability for Markov
chains are introduced in Section 3. We show that its
evolution is governed by an operator (denoted byF �)
which can be viewed as a generalization of the usual
linear Markov operator. The asymptotic behavior of
this operator is studied in Section 3 and a conjecture
is proposed. Under mild conditions, it appears that
RS-probability is asymptotically periodic. This peri-
odic behavior is governed by a set of simultaneous
quadratic equations.

2. Probability as an information state

In [9,10] we studied the exponential (risk-sensitive)
criterion for the estimation of hidden Markov

models (HMMs) and introduced risk-sensitive filter
banks.

The probability distribution of a Markov chain,
knowing only initial distribution, determines the most
“likely state” in the sense of MAP. In the context of
HMM, the problem can be viewed as that of “pure
prediction”, i.e., an HMM whose states are entirely
hidden.

Define a HMM as a five-tuple〈X,Y,X,A,Q〉;
hereA is the transition matrix,Y = {1,2, . . . , NY} is
the set of observations andX = {1,2, . . . , NX} is the
finite set of (internal) states as well as the set of es-
timates or decisions. In addition, we have thatQ :=
[qx,y] is theNX × NY state/observation matrix, i.e.,
qx,y is the probability of observingywhen the state is
x. We consider the following information pattern. At
decision epocht, the system is in the (unobservable)
stateXt = i and the corresponding observationYt is
gathered, such that

P(Yt = j |Xt = i) = qi,j . (1)

The estimatorsVt are functions of observations
(Y0, . . . , Yt ) and are chosen according to some spec-
ified criterion. Consider a sequence of finite dimen-
sional random variablesXt and the corresponding
observationsYt defined on the common probabil-
ity space(�,M,P). Let X̂t be a Borel measurable
function of the filtration generated by observations
up to Yt denoted byYt . The MAP is defined recur-
sively; given X̂0, . . . , X̂t−1, X̂t is chosen such that
the following sum is minimized:

E

[
t∑

i=0

�(Xi, X̂i)

]
, (2)

where

�(u, v) =
{

0 if u = v,

1 otherwise.

The usual definition of MAP as the argument with
the greatest probability given the observation follows
from the above[8]. The solution is well known; we
need to define recursively aninformation state

�t+1 = NY · Q(Yt+1)A
T · �t , (3)

whereQ(y) := diag(qi,y), A
T denotes the transpose

of the matrixA. �0 is set equal toNY · Q(Y0)p0,
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wherep0 is the initial distribution of the state and is
assumed to be known. Note that (3) is not normalized.

When no observation is available, it is easy to see
thatNY ·Q(Yt )=I , whereI is the identity matrix. Thus,
the information state for the prediction case evolves
according to�t+1 = AT · �t which when normalized
is simply the probability distribution of the chain.

This “prediction” optimization problem for a mul-
tiplicative cost will be considered next.

3. RS-probability for Markov chains

With the notation of the previous section, given
X̂0, . . . , X̂t−1, defineX̂t recursively as the estimator
which minimizes the exponential (risk-sensitive) cost

E

[
exp

{
�

t∑
i=0

�(Xi, X̂i)

}]
, (4)

where� is a strictly positive (risk-sensitive) parameter.
As discussed in the introduction, the exponen-

tial criterion allows for the inclusion of higher-
order moments of the cost and the approximation
E[exp(��)]�1 + �E� shows that for small values
of �, the additive cost criterion is recovered. The
structure of� allows for the following simplification
of (4):

E

[
t∏

i=0

�∗(Xi, X̂i)

]
, (5)

�∗(u, v) =
{

1 if u = v,

r = e� otherwise.

Define aninformation state

��
t+1 = NY · Q(Yt+1)D

T(X̂t ) · ��
t , (6)

whereQ(y) := diag(qi,y), A
T denotes the transpose

of the matrixA and the matrixD is defined by

[D(v)]i,j := ai,j exp(��(i, v)). (7)

��
0 is set equal toNY ·Q(Y0)p0, wherep0 is the initial

distribution of the state and is assumed to be known.
The proof of the following theorem can be found
in [9].

Theorem 1. The optimization problem(4) is solved
recursively by

X̂t (�) = i if �i ��j , ∀j �= i,

where� = (�1, . . . ,�NX ) is the value the information
state(6) takes at time t.

We next obtain a simplex preserving operatorF �

by assuming that no observation is available and that
the initial probability distribution is given. In the risk-
neutral context, this operator is simplyAT which
governs the evolution of probability distribution; as
the risk-sensitive cost is a generalization of the risk-
neutral one, one might expect that this new oper-
ator which governs the evolution of “risk-sensitive
probability” to be a generalization ofAT. Setting
NY · Q(Yt ) equal to the identity matrixI corresponds
to the case when no observation is available. It can
be shown that the information state is independent of
scaling, i.e., if� is an information state so is�� for ev-
ery �>0 and replacing it one with the other does not
change the resulting estimate of the state. Associate
with eachi ∈ X, a unit vector inRN

X whoseith com-
ponent is 1. Denote the “risk-sensitive probability”Ut

as the normalized information state (6) when no ob-
servation is available. The proof of the following the-
orem can be found in[9].

Theorem 2. Let NY · Q(Yt ) = I , then the estimator
which minimizes(5) is given by

X̂t = arg max[i∈SX ]〈Ut, ei〉,

whereUt evolves according to

Ut+1 = AT · H {diag(exp(�〈earg max
i

U i
t
, ej 〉)) · Ut }

:= F �(Ut ), (8)

andH(X) = X/
∑

i (Xi) andU0 = p0.

The operatorF � can be viewed as a non-linear gen-
eralization of the linear operatorAT. It is apparent
that this operator plays the same role in the context of
risk-sensitive estimation as the operatorAT does in
the risk-neutral case. Thus, one might expect that the
risk-sensitive properties of the exponential criterion be
reflected in the action ofF �.

First, observe that both operators are simplex pre-
serving andF � → AT as � → 0. It is well known
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that under primitivity of the matrixA, the dynamical
system defined by

pn+1 = ATpn, (9)

for every choice of the initial probability distribution
p0, converges top∗ which satisfiesATp∗ = p∗ [11].

Definition. A cycle of RS-probability (CRP) is a finite
set of probabilities{v1, . . . , vm} such thatF �(vi) =
vi+1 with F �(vm) = v1; m is called the period of the
CRP.

We pose the following conjecture:

Conjecture. Let the stochastic matrixA be primi-
tive. Then, for every choice of the initial probability
distributionp0, the dynamical system

Ut+1 = F �(Ut ) (10)

is asymptotically periodic, i.e., Ut approaches a CRP
as t → ∞ satisfying the equations

F �(v1) = v2, F �(v2) = v3, . . . , F �(vm) = v1. (11)

The conditionF �(v1)=v2, F �(v2)=v3, . . . , F �(vm)

= v1 can be considered a generalization of the equa-
tion ATp∗ = p∗. It is not difficult to show that in
general, the equations are quadratic. Note that we do
not exclude the casem = 1; the CRP only has one
element and thusF � is asymptotically stationary.

In the appendix, we give sufficient conditions under
which the conjecture holds in two dimensions with a
CRP which is independent of the initial point.

Next, we report a number of other properties ofF �.

Property 1 (Dependence of the asymptotic behavior
on the initial condition). The asymptotic behavior of
F � may depend on the initial conditions. That is, de-
pending on the initial condition a different CRP may
emerge. LetA be given by

A =
[

0.2 0.8
0.6 0.4

]
, e� = 100. (12)

Let the initial condition be given by(u1, u2). There are
two different CRPs depending on the initial conditions

F �(u) = u =
[

0.594
0.405

]
if u1�u2, (13)

F �(v) = v =
[

0.214
0.785

]
if u2 >u1. (14)

When is the asymptotic behavior independent of the
initial condition? We believe this depends on the rela-
tion between the diagonal and off-diagonal elements
of A. For example, consider the matrix

A =
[

0.6 0.4
0.25 0.75

]
, e� = 10. (15)

The CRP, for every initial condition, has two elements

CRP : (v1, v2), F �(v1) = v2, F �(v2) = v1. (16)

v1 =
[

0.283
0.716

]
, v2 =

[
0.534
0.465

]
. (17)

It appears that when the diagonal elements “dominate”
the off-diagonal elements, the asymptotic behavior is
independent of the initial condition. We have carried
out a thorough investigation for 6×6 stochastic matri-
ces and lower dimensions, but we suspect the property
holds in higher dimensions. But, below we describe
some special cases.

Property 2 (Dependence of the period on�). Our
simulations show that for small values of� the pe-
riod is 1, i.e., F � is asymptotically stationary. As
� increases periodic behavior may emerge; based
on simulation of the examples we have studied, the
period tends to increase with increasing� but then
decrease for large values. So, the most complex be-
havior occurs for the mid-range values of�. Consider

A =
[

0.8 0.2
0.4 0.6

]
, (18)

and letm be the period. Our simulations show that
the periodm of the CRPs depends on the choice of
�; our simulations results in the pairs (e� , m ):(2.1,1)
(2.7,1) (2.9,1) (3,1) (3.01,7) (3.1,5) (3.3,4) (3.9,3)
(10,2) (21,2). We can see that even in two dimensions,
the behavior ofF � is complex.

When does the periodic behavior emerge? The
fixed-point problem provides the answer. If the fixed-
point problemF �(u) = u does not have a solution
satisfying 0�u�1, the asymptotic behavior can-
not be stationary. For two dimensions, the equation



V.R. Ramezani, S.I. Marcus / Systems & Control Letters 54 (2005) 493–502 497

1 2 3 4 5 6 7 8 9 10 11
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

u

r

Fig. 1. The emergence of periodicity.

F �(u)=u=(u1, u2)
T is easy to write. Assumeu1 >u2

(for the caseu2 >u1, we transpose 1 and 2).

A =
[
a11 a12
a21 a22

]
, (19)

and recall thatu1 + u2 = 1. This yields

(e� − 1)u2
1 + u1(a11 − e�a21 − e�)

+ a21e
� = 0, u1�u2, (20)

(e� − 1)u2
2 + u2(a22 − e�a12 − e�)

+ a12e
� = 0, u2 >u1. (21)

First, note that when� = 0, we have

u1(a12 + a21) = a21 (22)

which is linear and is the fixed-point problemAT(u)=
u. For the above example, the roots of the equation
resulting from the assumptionu2 >u1 are greater than
one for all ranges of e� >1. Thus, stationarity requires
that a solution to

(e� − 1)u2
1 + u1(0.8 − e�0.4 − e�)

+ 0.4e� = 0, u2 <u1, (23)

exist. One solution turns out to be greater than 1. The
other solution is plotted vs.r = e� in Fig. 1. The con-
dition u2 <u1 fails for e� >3. Thus for e� >3 no sta-
tionary solution can exist. If the conjecture is correct,
the periodic behavior must emerge, which is exactly
what we observed above. Based on the examples we

have studied, this is a general property ofF � in two
dimensions when diagonal elements “dominate”.

Let a11>a12 anda22>a21. Also, assume without
loss of generality, thata11>a22. For the stationary
solution to exist as we showed above, (20) must have
a solution. Let� = a11 − e�a21 − e�. For small values
of �, the probability solution of (20) (0�u1�1) turns
out to be

−� −
√

�2 − 4a21e�(e� − 1)

2(e� − 1)
, (24)

and asu2 <u1 implies 1
2 <u1, we must have

−� −
√

�2 − 4a21e�(e� − 1)

2(e� − 1)
>

1

2
,

which after some simple algebra implies

e� <
2a11 − 1

1 − 2a21
. (25)

If we plug ina11=0.8 anda21=0.4, we get e� <3. If
the conjecture is true, periods must appear for e� >3.
At e�=(2a11−1)/(1−2a21), we getu1=u2= 1

2 which
can be shown to be an acceptable stationary solution;
hence(2a11− 1)/(1− 2a21) is a sharp threshold. Our
computations have been consistent with this result. For
the casea11<a22, we obtain

e� <
2a22 − 1

1 − 2a12
. (26)

Writing aii = 1
2 + � andaji = 1

2 − �, both results can
be written as

e� <
�
�
. (27)

Eq. (27) is a measure of sensitivity to risk.
Periodicity seems persistent; once the periodic so-

lutions emerge, increasing e� does not seem to bring
back the stationary behavior. In two dimensions for
large values of e�, an interesting classification is pos-
sible. Given that the conjecture holds, an obvious suf-
ficient condition for periodicity would be for the roots
of (20) and (21) to be complex:

(a11 − e�a21 − e�)2 − 4(e� − 1)a21e
� <0, (28)

(a22 − e�a12 − e�)2 − 4(e� − 1)a12e
� <0. (29)
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But, further inspection shows for sufficiently large val-
ues of e�, the inequalities give

e2�(1 − a21)
2 <0, (30)

e2�(1 − a12)
2 <0, (31)

which are clearly false and so real roots exist. Other
relations can be exploited to show that these roots are
unacceptable and hence demonstrate the existence of
periodic attractors as we will show next. Consider the
case where e�?aij ,0<aij <1. Then, the fixed-point
problem (20) can be written as

e�u2
1 − e�(1 + a21)u1 + a21e

� = 0, (32)

u2
1 − u1(1 + a21) + a21 = (u1 − 1)(u1 − a21). (33)

The solutions turn out to be(1,0) and (a21, a22).
(1,0) can be ruled out by the assumption 0<aij <1.
The assumptionu1 <u2, (21), leads by transposition
to solutions(1,0) and(a11, a12). Thus, if we assume
a11>a12 and a22>a21, both solutions can be ruled
out; for large values of e� the fixed-point value prob-
lem with period one (the stationary case) does not have
a solution and the period must be two or more.

If we assumea21>a22 and a12>a11 then both
(a21, a22) and(a11, a12) are acceptable solutions. This
was the case in (13) and (14); our computations show
that there are in fact two stationary solutions close
to (a21, a22) and (a12, a11) depending on the initial
conditions. Likewise, we can use the simultaneous
quadratic equations to classify all the attractors in two
dimensions which emerge with increasing e�. For the

Probability

Cost

additive

multiplicative

linear

non-linear

evolution Asym.

asym.

asym.

stationarity

periodicity

attractors

F v1=v2, F v2=v3.... F vm=v1
RS-Probability

Independent of initial conditions

Dependent on initial conditions

γ γ

A p=p
T

γ

Fig. 3. ComparingF � andAT.

aii ij

aii > aij i=j

aii 

< a

< aij ajj  > aji

i=j

i=j

period attractors

1                            2

 2                            2

 1                            1

Fig. 2. The classification in two dimensions.

matrix A given by (18), we see that this behavior is
already emergent at about e� = 10. Fig. 2 shows the
classification. It is possible to write down these equa-
tions in higher dimensions as simultaneous quadratic
equations parameterized by e�. Classifying the solu-
tions of these equations is an interesting open problem.

4. Conclusions

The risk-sensitive estimation of HMMs gives rise to
a notion of probability for Markov chains arising from
a non-linear generalization of the linear operatorAT,
whereA is a row-stochastic primitive matrix. This
operator, denoted byF � in this paper, has a number of
properties summarized in the table above. There is an
interesting relation between the asymptotic behavior
of F � and a set of simultaneous non-linear equations
parameterized by e� determining the periodic solutions
(Fig. 3). We have studied the two-dimensional case in
this paper and provided analytic and numerical results.
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We have posed a series of open problems which are
the subject of our further research.
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Appendix

We say a functionf (x) defined onD ⊂ Rn is
asymptotically periodicat p0 with periodr if there is
a setR(p0) = {x0, . . . , xr−1}, xi �= xj if i �= j and
such that, for any�>0,

|f m(p0) − x[m]|< � for m�N(�),

where[m] is the remainder of divisionm/r, x[m] ∈
R(p0) and whenR(p0) has only one element, we say
that the function isasymptotically stationary. If all
points in R(p0) belong to the simplex we refer to
R(p0), as a cycle of RS-probability or a CRP.

We say that a functionf (x) defined onD is asymp-
totically periodic if it is asymptotically periodic at ev-
ery point ofD. Finallya uniquely asymptotically peri-
odic functiononD is an asymptotically periodic func-
tion such thatR(x) for ∀x ∈ D is unique up to a
permutation.

Recall that RS-probability is the normalized infor-
mation state and thus in the two-dimensional case be-
longs to the 1-simplex while the unnormalized infor-
mation state takes its values in the first quadrant of
R2. Also recall that the information state has the scale
independence property, i.e, all points on a radial line
through the origin (excluding the origin) produce the
same estimate of the state when considered as the
value of the information state. Thus, we can go back
and forth between the first quadrant ofR2 and the 1-
simplex without difficulty. In the proof of the theorem
certain linear operators acting on the information state
are extended to all ofR2 for mathematical simplicity.
Throughout the proof, a “cone” is the area that lies
between two radial lines through the origin always re-
stricted to the first quadrant and unless stated other-
wise, it includes the two radial lines. The cone defined
by x = 0 andy will be denoted by LC and the cone
defined by theY-axis andx = y by UC.

F � in (8) is non-linear and is not continuous on the
simplex but fortunately it is piecewise continuous and
in two dimensions it can be written as

F �(W) =



ATH

([
1 0
0 e�

])
W, W1�W2,

ATH

([
e� 0
0 1

])
W, otherwise.

We will define

E1 := AT
[

1 0
0 e�

]
, E2 := AT

[
e� 0
0 1

]
andE := E2E1.

The properties ofE will be of importance as we shall
see.

Note thatAT is stochastic and thusATH(X) =
H(ATX). We will use this property throughout.

Theorem A.1. Suppose the transition probability ma-
trix A is given by

AT =
[

1 − � �
� 1 − �

]
(34)

with 0< �<1/2 and0< �< 1
2. Then, for sufficiently

large �, F � is uniquely asymptotically periodic with
period2.

Proof. The proof will be given in two parts. We first
show that for sufficiently large values of�, there is an
invariant “oscillating cone ”(OC) in which the infor-
mation state under the action ofF � alternates between
OC1=OC∩LC and OC2=OC∩UC, i.e., ifF �(x)=y

andx belongs to OC1, theny is in OC2 and vise versa.
We then prove that starting from any point in OC,F �

restricted to OC is uniquely asymptotically periodic.

In the second part, we show that if the information
state starts from any point outside OC, we will end up
in OC.

In order to carry out the first part of the proof,
we need to understand the asymptotic behavior of the
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following linear operator. Its significance will become
clear shortly.

E =
[

1 − � �
� 1 − �

] [
e� 0
0 1

]

×
[

1 − � �
� 1 − �

] [
1 0
0 e�

]
. (35)

We will show that for sufficiently large values of�, E
has two real positive unequal eigenvalues, say	1 > 	2.
The corresponding eigenvectorsV1 andV2 lie in the
first and the fourth quadrant, respectively.

The characteristic polynomial ofE is given by

p(	) = 	2 − [��e2� + e�(1 − �)2 + e�(1 − �)2

+ ��]	 + e2�(1 − � − �)2.

We denoteb = [��e2� + e�(1− �)2 + e�(1− �)2 + ��]
andc = e2�(1 − � − �)2.

The eigenvalues are given by	i = 1
2(b ± (b2 −

4c)1/2), where	1 is the root with the positive sign in
place of± and	2 is the root with the negative sign.
As A is primitive, we have��>0 andb2 is of order
e4� while c is of order e2�. It follows that for large
enough�, the roots are real. We havec=	1	2 >0 and
b = 	1 + 	2 >0. Thus both roots are positive.

The first-order square root binomial expansion for
(1+ z)1/2 = (1+ z/2 + o(z)) (o(z) indicates second-
order term and higher terms) holds for|z|<1. After a
few simple steps we can write

	i = 1/2[b ± b(1 − 4c/2b2 + o(4c/b2))].
We have, for sufficiently large values of�,

	1 = b − c/b + b/2 · o(4c/b2)> 	2

= c/b − b/2 · o(4c/b2).

We next show that the eigenvector corresponding to
	1 lies in the first quadrant (or equivalently, the third)
while the eigenvector corresponding to	2 lies in the
fourth (or equivalently, the second).

Observe thatE preserves the first quadrant. More-
over, it is apparent from (35) thatE is the product of
two diagonal matrices and a stochastic primitive ma-
trix appearing twice. Multiplication byAT guarantees
that the resulting vector has positive components. As
e� >1, the diagonal matrices increase the sum of the
components, one by multiplying the first component

by e� and the other by multiplying the second compo-
nent by e� while AT, being stochastic, preserves the
sum of the components. Hence, the sum of the com-
ponents of all vectors in the first quadrant can be made
arbitrarily large under the action ofE by choosing�
large. This meansV2, the eigenvector corresponding
to 	2, cannot lie in the first quadrant because of the
following contradiction:

SupposeV2 lies in the first quadrant.

EV 2 = 	2V2 = c

	1
V2=

e2�(1− �− �)2

��e2� + e�(1− �)2 + e�(1− �)2+��− c
b

+ b
2o( 4c

b2 )
V2

and as� → ∞,

	2 → (1 − � − �)2

��
. (36)

On the other hand, the sum of the components ofEV 2
can be shown to be(e�(1− �) + �)V 1

2 + (�e2� + (1−
�)e�)V 2

2 and so we must have

[(e�(1 − �) + �) − 	2]V 1
2

+ [(�e2� + (1 − �)e�) − 	2]V 2
2 = 0.

Clearly if V2 belongs to the first quadrant, one of its
components must be strictly positive and the other
non-negative. But, (36) implies that we can choose�
large enough so that[(e�(1 − �) + �) − 	2]>0 and
[(�e2�+(1−�)e�)−	2]>0 and thus the above equality
cannot hold, a contradiction.

To show thatV1 must lie in the first quadrant, ob-
serve that any vectorW can be written as

W = �1V1 + �2V2,

and

EtW = �1	
t
1V1 + �2	

t
2V2

= 	t
1(�1V1 + �2(	2/	1)

tV2). (37)

As t → ∞, (	2/	1)
t → 0. Now assumeW is in the

first quadrant. Since we showed thatV2 does not be-
long to the first quadrant,EtW will approach a posi-
tive multiple of the “dominant eigenvector”V1. ButE
preserves the first quadrant and thusEtW can never
exit the first quadrant. Thus,V1 must lie in the first
quadrant. Later on, we will use (37) to show the exis-
tence and the uniqueness of the periodic orbit.
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We are now in position to carry out the first part
of the proof. First, we show the existence of the “os-
cillating cone” OC and using properties ofE shown
above, prove the unique asymptotic periodicity ofF �.
We consider the lower cone LC first; the situation for
UC is similar.

The normalization functionH(·) in (8) restricts the
information state to the simplex, but recall that the in-
formation state has the scale independence property
and thus we can drop the normalizationH(·) in (8)
and still obtain an information state. To recover the
normalized quantity, we can applyH(·) at any desired
time step and recover the normalized information state
(RS-probability). In what follows, we denote the op-
erator without normalization functionH(·) with script
notationF� defined as

F�(W) =



AT

[
1 0
0 e�

]
W, W ∈ LC,

AT
[

e� 0
0 1

]
W, W ∈ UC.

We would like to show the existence of a cone inside
LC which is mapped to UC under the action ofF�.
On LC,F� = E1. This means that forW ∈ LC

E1W =
[
(1 − �)W1 + �e�W2
�W1 + (1 − �)e�W2

]
.

If (1 − �)W1 + �e�W2 < �W1 + (1 − �)e�W2, thenW
is mapped to UC. This can be written as

(1 − 2�)W1 <e�(1 − 2�)W2.

Because�<1/2, we can divide both side by(1− 2�)
without changing the direction of the inequality.

(1 − 2�)
(1 − 2�)e�W1 <W2,

but 1−2�>0 and thus(1−2�)/(1−2�)e� has positive
sign and we can choose e� large enough so that(1 −
2�)/(1−2�)e� <1. Thus, we have a line with the slope
(1−2�)/(1−2�)e� and the linex =y defining a cone
OC1 in LC which is mapped to UC whereF�=E2. A
similar calculation shows that e� can be chosen large
enough so that ifW ∈ OC1,EW = E2E1W ∈ OC1.
It follows that starting from every point in OC1, the
action ofF� is defined by alternating multiplications
of E1 andE2, starting withE1 and ending withE2

if t is even and withE1 if t is odd. We have that, if
W ∈ OC1,

(F�)t (W) =
{
E2E1 . . . , E2E1W, t even,
E1E2E1 . . . , E2E1W, t odd,

pairingE1 andE2, we obtainE1E2 =E, the operator
whose asymptotic properties we studied earlier. We
can write

(F�)t (W) =
{
EtW, t even,
E1E

t−1W, t odd.

By (37), for sufficiently large values of�, EtW ap-
proaches a multiple of the dominant eigenvector ofE;
for even values ast → ∞
(F �)t (W) = H((F�)t (W)) → H(V1)

= V1∑
V i

1

:= p∗.

For odd values oft, the same limit is given by
H(E1p

∗) := p∗. We have established the unique
asymptotic periodicity ofF � on OC1 with period 2
andR = {p∗, p∗}.

Furthermore,

F �p∗ = ATH

([
1 0
0 e�

]
p∗

)

= H

(
AT

[
1 0
0 e�

]
p∗

)
= H(E1p

∗) = p∗.

Noting thatE = E1E2, we can similarly show that
F �(p∗) = p∗.

There remains to carry out the same process in the
UC cone and identify the cone OC2 for whichF � is
asymptotically periodic. To show unique asymptotic
periodicity ofF � on OC=OC1∪OC2, we must show
that the periodic limit for OC2 is the same, up to a
permutation, asR.

It can be shown either by direct calculation or a
symmetry argument that such a cone exists and is de-
fined by the linex=y and the line e�(1−2�)/(1−2�).
This time, e� appearing in the numerator allows us to
choose the slope so that this line lies in UC defining
the cone OC2 which is mapped to LC by the action
of F �. The periodic orbit will be given by a setR′ :=
{q∗, q∗}. We will show thatR′ must be a permutation
of R.



502 V.R. Ramezani, S.I. Marcus / Systems & Control Letters 54 (2005) 493–502

Matrices of full rank map cones to cones and one
can check thatE1 andE2 have full rank because of the
assumption�<1/2, �<1/2. It is easy to show that
F � maps OC2 into OC1. The line with slope e�(1 −
2�)/(1−2�) is, by construction, mapped tox =y and
it is easy to verify that for sufficiently large values
of � any line in UC with a slope less than e�(1 −
2�)/(1 − 2�) is mapped to a line with a slope greater
than�e� + (1− �)/(1− �)e� + � which is easily seen
to lie inside OC1. Thus, the image of points in OC2 is
a subset of OC1. We have already studied the action
of F � for initial points belonging to OC1 and saw that
they are carried asymptotically toR = {p∗, p∗} (for
even values oft to p∗ and for odd values top∗).

Consider the action of(F �)t starting from OC2; af-
ter one step, we end up in OC1 and thet−1 remaining
steps can be considered as initiated from OC1. Ift is
even,t − 1 is odd and vice versa. Thus, the periodic
orbit R′ must be given by{p∗, p∗}, a permutation of
R as desired.

To extend the unique asymptotic periodicity ofF �

to the entire first quadrant, it is sufficient to show that
points not belonging to OC= OC1 ∪ OC2 will be
mapped into OC, under the action ofF �. As mentioned
before, matrices of full rank preserve cones. InR2, a
matrix M maps a line with the slopes to a line with
the slope

m21 + m22s

m11 + m12s
.

This defines a functions → f (s) that can be shown
to be an increasing function if

m22m11>m12m21.

This condition when considered for the linear mapE1
translates to

(1 − �)(1 − �)> ��,

which holds since�<1/2 and�<1/2.
y = 0 is the lower boundary of the cone NC and if

y = 0 is mapped to OC1, then any line with a slope
greater than zero is mapped to a line with a slope
greater than the image ofy=0 underE1 by the above
result. For this to hold, we must have

�
1 − �

>
(1 − 2�)

(1 − 2�)e� .

Since�>0 (A is primitive), we can choose� large
enough so that the above inequality holds. We can
similarly show that the non-oscillating cone in UC is
mapped to OC2 for sufficiently large values of�. This
completes the proof of the theorem.�
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