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Abstract

Program transformation is an appealing technique which allows to improve run-time effi-
ciency, space-consumption, and more generally to optimize a given program. Essentially,
it consists of a sequence of syntactic program manipulations which preserves some kind of
semantic equivalence. Unfolding is one of the basic operations which is used by most pro-
gram transformation systems and which consists in the replacement of a procedure call by
its definition. While there is a large body of literature on transformation and unfolding of
sequential programs, very few papers have addressed this issue for concurrent languages.

This paper defines an unfolding system for CHR programs. We define an unfolding rule,
show its correctness and discuss some conditions which can be used to delete an unfolded
rule while preserving the program meaning. We also prove that, under some suitable
conditions, confluence and termination are preserved by the above transformation.
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1 Introduction

Constraint Handling Rules (CHR) (Frühwirth 1998; Frühwirth and Abdennadher 2003;

Frühwirth 2009) is a concurrent, committed-choice language which was initially de-

signed for writing constraint solvers and which is nowadays a general purpose lan-

guage. A CHR program is a (finite) set of guarded rules, which allow to transform

multisets of atomic formulas (constraints) into simpler ones.

There exists a very large body of literature on CHR, ranging from theoretical

aspects to implementations and applications. However, only few papers, notably

(Frühwirth and Holzbaur 2003; Frühwirth 2005; Sneyers et al. 2005; Tacchella et al. 2007;

Tacchella 2008; Sarna-Starosta and Schrijvers 2009), consider source to source trans-

formation of CHR programs. This is not surprising, since program transformation

is in general very difficult for (logic) concurrent languages and in case of CHR it

is even more complicated, as we discuss later. Nevertheless, the study of this tech-

nique for concurrent languages and for CHR in particular, is important as it could

lead to significant improvements in the run-time efficiency and space-consumption

of programs.

Essentially, a source to source transformation consists of a sequence of syntactic

program manipulations which preserves some kind of semantics. A basic manip-

ulation is unfolding, which consists in the replacement of a procedure call by its

definition. While this operation can be performed rather easily for sequential lan-

guages, and indeed in the field of logic programming it was first investigated by

Tamaki and Sato more than twenty years ago (Tamaki and Sato 1984), when con-

sidering logic concurrent languages it becomes quite difficult to define reasonable

conditions which ensure its correctness.

In this paper, we first define an unfolding rule for CHR programs and show that it

preserves the semantics of the program in terms of qualified answers (Frühwirth 1998).

Next, we provide a syntactic condition which allows one to replace in a program a

rule by its unfolded version while preserving qualified answers. This condition pre-

serves also termination, provided that one considers normal derivations. We also

show that a more restricted condition ensures that confluence is preserved. Finally,

we give a weaker condition for replacing a rule by its unfolded version: This condi-

tion allows to preserve the qualified answers for a specific class of programs (those

which are normally terminating and confluent).

Even though the idea of the unfolding is straightforward, its technical devel-

opment is complicated by the presence of guards, multiple heads, and matching

substitution, as previously mentioned. In particular, it is not obvious to identify

conditions which allow to replace the original rule by its unfolded version. More-

over, a further reason of complication comes from the fact that we consider as ref-

erence semantics the one defined in (Duck et al. 2004) and called ωt, which avoids

trivial non-termination by using a “token store” (or history). The token store idea

was originally introduced by (Abdennadher 1997) but the shape of these tokens is

different from that of those used in (Duck et al. 2004). Due to the presence of this

token store, in order to define correctly the unfolding we have to slightly modify

the syntax of CHR programs by adding to each rule a local token store. The re-
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sulting programs are called annotated and we define their semantics by providing

a (slightly) modified version of the semantics ωt, which is proven to preserve the

qualified answers.

The remainder of this paper is organized as follows. Section 2 introduces the CHR

syntax while the operational semantics ωt (Duck et al. 2004) and the modified one

ω′
t are given in Section 3. Section 4 defines the unfolding rule (without replacement)

and proves its correctness. Section 5 discuss the problems related to the replacement

of a rule by its unfolded version and provides a correctness condition for such a

replacement. In this section, we also prove that (normal) termination and confluence

are preserved by the replacement which satisfies this condition. A further, weaker,

condition ensuring the correctness of replacement for (normally) terminating and

confluent programs is given in Section 6. Finally, Section 7 concludes by discussing

some related works. Some of the proofs are deferred to the Appendix in order to

improve the readability of the paper.

A preliminary version of this paper appeared in (Tacchella et al. 2007), some

results were contained in the thesis (Tacchella 2008).

2 Preliminaries

In this section, we introduce the syntax of CHR and some notations and definitions

we will need in the paper. For our purpose, a constraint is simply defined as an atom

p(t1, . . . , tn), where p is some predicate symbol of arity n ≥ 0 and (t1, . . . , tn) is an

n-tuple of terms. A term is (inductively) defined as a variable X , or as f(t1, . . . , tn),

where f is a function symbol of arity n ≥ 0 and t1, . . . , tn are terms. T is the set

of all terms.

We use the following notation: let A be any syntactic object and let V be a set of

variables. ∃V A denotes the existential closure of A w.r.t. the variables in V , while

∃−V A denotes the existential closure of A with the exception of the variables in V

which remain unquantified. Fv(A) denotes the free variables appearing in A.

We use “,” rather than ∧ to denote conjunction and we will often consider a

conjunction of atomic constraints as a multiset of atomic constraints. We use ++

for sequence concatenation, ǫ for empty sequence, \ for set difference operator and

⊎ for multiset union. We shall sometimes treat multisets as sequences (or vice

versa), in which case we nondeterministically choose an order for the objects in

the multiset. We use the notation p(s1, . . . , sn) = p(t1, . . . , tn) as a shorthand for

the (conjunction of) constraints s1 = t1, . . . , sn = tn. Similarly if S ≡ s1, . . . , sn
and T ≡ t1, . . . , tn are sequences of equal length then S = T is a shorthand for

s1 = t1, . . . , sn = tn.

A substitution is a mapping ϑ : V → T such that the set dom(ϑ) = {X | ϑ(X) 6=

X} (domain of ϑ) is finite; ε is the empty substitution: dom(ε) = ∅.

The composition ϑσ of the substitutions ϑ and σ is defined as the functional

composition. A substitution ϑ is idempotent if ϑϑ = ϑ. A renaming is a (nonidem-

potent) substitution ρ for which there exists the inverse ρ−1 such that ρρ−1 = ρ−1ρ

=ε.
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We restrict our attention to idempotent substitutions, unless explicitly stated

otherwise.

Constraints can be divided into either user-defined (or CHR) constraints or built-

in constraints on some constraint domain D. The built-in constraints are handled

by an existing solver and we assume given a (first order) theory CT which describes

their meaning. We assume also that the built-in constraints contain the predicate

= which is described, as usual, by the Clark Equality Theory (Lloyd 1984) and the

values true and false with their obvious meaning.

We use c, d to denote built-in constraints, h, k, f, s, p, q to denote CHR con-

straints, and a, b, g to denote both built-in and user-defined constraints (we will

call these generically constraints). The capital versions will be used to denote mul-

tisets (or sequences) of constraints.

2.1 CHR syntax

As shown by the following definition (Frühwirth 1998), a CHR program consists of

a set of rules which can be divided into three types: simplification, propagation, and

simpagation rules. The first kind of rules is used to rewrite CHR constraints into

simpler ones, while second kind allows to add new redundant constraints which may

cause further simplification. Simpagation rules allow to represent both simplification

and propagation rules.

Definition 1 (CHR Syntax)

A CHR program is a finite set of CHR rules. There are three kinds of CHR rules:

A simplification rule has the form:

r@H ⇔ C |B

A propagation rule has the form:

r@H ⇒ C |B

A simpagation rule has the form:

r@H1 \H2 ⇔ C |B,

where r is a unique identifier of a rule, H , H1 and H2 are sequences of user-

defined constraints, with H and H1 ++ H2 different from the empty sequence, C

is a possibly empty conjunction of built-in constraints, and B is a possibly empty

sequence of (built-in and user-defined) constraints. H (or H1 \H2) is called head,

C is called guard and B is called body of the rule.

A simpagation rule can simulate both simplification and propagation rule by

considering, respectively, either H1 or H2 empty. In the following, we will consider

in the formal treatment only simpagation rules.
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2.2 CHR Annotated syntax

When considering unfolding we need to consider a slightly different syntax, where

rule identifiers are not necessarily unique, each atom in the body is associated with

an identifier, that is unique in the rule, and where each rule is associated with

a local token store T . More precisely, we define an identified CHR constraint (or

identified atom) h#i as a CHR constraint h associated with an integer i which

allows to distinguish different copies of the same constraint.

Moreover, let us define a token as an object of the form r@i1, . . . , il, where r is

the name of a rule and i1, . . . , il is a sequence of distinct identifiers. A token store

(or history) is a set of tokens.

Definition 2 (CHR Annotated syntax)

An annotated rule has then the form:

r@H1 \H2 ⇔ C |B;T

where r is an identifier, H1 and H2 are sequences of user-defined constraints with

H1 ++ H2 different from the empty sequence, C is a possibly empty conjunction

of built-in constraints, B is a possibly empty sequence of built-in and identified

CHR constraints such that different (occurrences of) CHR constraints have different

identifiers, and T is a token store. H1 \H2 is called head, C is called guard, B is

called body and T is called local token store of the annotated rule. An annotated

CHR program is a finite set of annotated CHR rules.

We will also use the following two functions: chr(h#i)=def h and the overloaded

function id(h#i)=def i, (and id(r@i1, . . . , il) =def {i1, . . . , il}), extended to sets

and sequences of identified CHR constraints (or tokens) in the obvious way. An

(identified) CHR goal is a multi-set of both (identified) user-defined and built-in

constraints. Goals is the set of all (possibly identified) goals.

Intuitively, identifiers are used to distinguish different occurrences of the same

atom in a rule or in a goal. The identified atoms can be obtained by using a suitable

function which associates a (unique) integer to each atom. More precisely, let B

be a goal which contains m CHR-constraints. We assume that the function I(B)

identifies each CHR constraint in B by associating to it a unique integer in [1,m]

according to the lexicographic order.

The token store allows one to memorize some tokens, where each token describes

which propagation rule has been used for reducing which identified atoms. As we

discuss in the next section, the use of this information was originally proposed

in (Abdennadher 1997) and then further elaborated in the semantics defined in

(Duck et al. 2004) in order to avoid trivial non-termination arising from the re-

peated application of the same propagation rule to the same constraints. Here, we

simply incorporate this information in the syntax, since we will need to manipulate

it in our unfolding rule.

Given a CHR program P , by using the function I(B) and an initially empty local

token store we can construct its annotated version as the next definition explains.

Definition 3
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Let P be a CHR program. Then its annotated version is defined as follows:

Ann(P ) = { r@H1 \H2 ⇔ C | I(B); ∅ such that

r@H1 \H2 ⇔ C |B ∈ P }.

Notation

In the following examples, given a (possibly annotated) rule

r@H1 \H2 ⇔ C |B(;T ),

we write it as

r@H2 ⇔ C |B(;T ),

if H1 is empty and we write it as

r@H1 ⇒ C |B(;T ),

if H2 is empty. That is, we maintain also the notation previously introduced for

simplification and propagation rules. Moreover, if C = true, then true | is omitted

and if in an annotated rule the token store is empty we simply omit it. Sometimes,

in order to simplify the notation, if in an annotated program P there are no anno-

tated propagation rules, then we write P by using the standard syntax.

Finally, we will use cl, cl′, . . . to denote (possibly annotated) rules and clr, cl
′
r, . . .

to denote (possibly annotated) rules with identifier r.

Example 1

The following CHR program, given a forest of finite trees (defined in terms of the

predicates root and edge, with the obvious meaning), is able to recognize if two

nodes belong to the same tree and if so returns the root.

The program P consists of the following five rules

r1@root(V ), same(X,Y ) ⇒ X = Y,X = V | success(V )

r2@root(V ), same(X,Y ) ⇔ X 6= Y | root(V ), same(V,X), path(V, Y )

r3@path(I, J) ⇒ I = J | true

r4@edge(U,Z) \ path(I, J) ⇔ J = Z | path(I, U)

r5@root(V ) \ path(I, J) ⇔ V = J, V 6= I | false

Then its annotated version Ann(P ) is defined as follows:

r1@root(V ), same(X,Y ) ⇒ X = Y,X = V | success(V )#1; ∅

r2@root(V ), same(X,Y ) ⇔ X 6= Y | root(V )#1, same(V,X)#2, path(V, Y )#3; ∅

r3@path(I, J) ⇒ I = J | true; ∅

r4@edge(U,Z) \ path(I, J) ⇔ J = Z | path(I, U)#1; ∅

r5@root(V ) \ path(I, J) ⇔ V = J, V 6= I | false; ∅

3 CHR operational semantics

This section first introduces the reference semantics ωt (Duck et al. 2004). For the

sake of simplicity, we omit indexing the relation with the name of the program.
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Table 1. The transition system Tωt
for the ωt semantics

Solve
c is a built-in constraint

〈{c} ⊎G,S,C, T 〉n −→ωt
〈G,S,C ∧ c, T 〉n

Introduce
h is a user-defined constraint

〈{h} ⊎G,S,C, T 〉n −→ωt
〈G, {h#n} ⊎ S,C, T 〉n+1

Apply

r@H ′

1 \H
′

2 ⇔ D |B ∈ P

CT |= C → ∃r((chr(H1,H2) = (H ′

1, H
′

2)) ∧D)

〈G,H1 ⊎H2 ⊎ S,C, T 〉n −→ωt

〈B ⊎G,H1 ⊎ S, (chr(H1,H2) = (H ′

1,H
′

2)) ∧D ∧ C, T ′〉n

where r@id(H1,H2) 6∈ T and T ′ = T ∪ {r@id(H1,H2)}

Next, we define a slightly different operational semantics, called ω′
t, which con-

siders annotated programs and which will be used to prove the correctness of our

unfolding rules (via some form of equivalence between ω′
t and ωt).

In the following, given a (possibly annotated) rule clr = r@H1 \H2 ⇔ C |B(;T ),

we denote by ∃clr the existential quantification ∃Fv(H1,H2,C,B). By an abuse of

notation, when it is clear from the context, we will write ∃r instead of ∃clr .

3.1 The semantics ωt

We describe the operational semantics ωt, introduced in (Duck et al. 2004), by using

a transition system

Tωt
= (Conft ,−→ωt

).

Configurations in Conft are tuples of the form 〈G,S,C, T 〉n where G, the goal store

is a multiset of constraints. The CHR constraint store S is a set of identified CHR

constraints. The built-in constraint store C is a conjunction of built-in constraints.

The propagation history T is a token store and n is an integer. Throughout this

paper, we use the symbols σ, σ′, σi, . . . to represent configurations in Conft .

The goal store (G) contains all constraints to be executed. The CHR constraint

store (S) is the set1 of identified CHR constraints that can be matched with the

head of the rules in the program P . The built-in constraint store (C) contains any

built-in constraint that has been passed to the built-in constraint solver. Since we

will usually have no information about the internal representation of C, we treat

it as a conjunction of constraints. The propagation history (T ) describes which rule

has been used for reducing which identified atoms. Finally, the counter n represents

the next free integer which can be used to number a CHR constraint.

1 Note that sometimes we treat S as a multiset. This is the case, for example, of the transition
rules, where considering S as a multiset simplifies the notation.
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Given a goal G, the initial configuration has the form

〈G, ∅, true, ∅〉1.

A final configuration has either the form 〈G′, S, false, T 〉n, when it is failed, or it

has the form 〈∅, S, C, T 〉n (with CT |= C 6↔ false) when it represents a successful

termination (since there are no more applicable rules).

The relation −→ωt
(of the transition system Tωt

) is defined by the rules in Ta-

ble 1: the Solve rule moves a built-in constraint from the goal store to the built-in

constraint store; the Introduce rule identifies and moves a CHR (or user-defined)

constraint from the goal store to the CHR constraint store; the Apply rule chooses

a program rule cl and fires it, provided that the following conditions are satisfied:

there exists a matching between the constraints in the CHR store and the ones in

the head of cl; the guard of cl is entailed by the built-in constraint store (taking

into account also the matching mentioned before); the token that would be added

by Apply to the token store is not already present. After the application of cl,

the constraints which match with the right hand side of the head of cl are deleted

from the CHR constraint store, the body of cl is added to the goal store and the

guard of cl, together with the equality representing the matching, is added to the

built-in constraint store. The Apply rule assumes that all the variables appearing

in a program clause are renamed with fresh ones in order to avoid variable names

clashes.

From the rules, it is clear that when not considering tokens (as in the original

semantics of (Frühwirth 1998)) if a propagation rule can be applied once then it

can be applied infinitely many times, thus producing an infinite computation (no

fairness assumptions are made here). Such a trivial non-termination is avoided by

tokens, since they ensure that if a propagation rule is used to reduce a sequence of

constraints then the same rule has not been used before on the same sequence of

constraints.

3.2 The modified semantics ω′
t

We now define the semantics ω′
t which considers annotated rules. This semantics

differs from ωt in two aspects.

First, in ω′
t the goal store and the CHR store are fused in a unique generic store,

where CHR constraints are immediately labeled. As a consequence, we do not need

the Introduce rule anymore and every CHR constraint in the body of an applied

rule is immediately utilizable for rewriting.

The second difference concerns the shape of the rules. In fact, each annotated

rule cl has a local token store (which can be empty) that is associated with it and

which is used to keep track of the propagation rules that are used to unfold the

body of cl. Note also that here, differently from the case of the propagation history

in ωt, the token store associated with a computation can be updated by adding

multiple tokens at once (because an unfolded rule with many tokens in its local

token store has been used).

In order to define ω′
t formally, we need a function inst which updates the formal



Unfolding for CHR programs 9

identifiers of a rule to the actual computation ones. Such a function is defined as

follows.

Definition 4

Let Token be the set of all possible token sets and let N be the set of natural

numbers. We denote by inst : Goals × Token × N → Goals × Token × N the

function such that inst(B, T, n) = (B′, T ′,m), where

• B is an identified CHR goal,

• (B′, T ′) is obtained from (B, T ) by incrementing each identifier in (B, T ) with

n and

• m is the greatest identifier in (B′, T ′).

We describe now the operational semantics ω′
t for annotated CHR programs by

using, as usual, a transition system

Tω′

t
= (Conf ′

t
,−→ω′

t
).

Configurations in Conf ′
t
are tuples of the form 〈S,C, T 〉n with the following mean-

ing. S is the set2 of identified CHR constraints that can be matched with rules in the

program P and built-in constraints. The built-in constraint store C is a conjunction

of built-in constraints and T is a set of tokens, while the counter n represents the

last integer which was used to number the CHR constraints in S.

Given a goal G, the initial configuration has the form

〈I(G), true, ∅〉m,

where m is the number of CHR constraints in G and I is the function which

associates the identifiers with the CHR constraints in G. A failed configuration has

the form 〈S, false, T 〉n.

A final configuration either is failed or it has the form 〈S,C, T 〉n (with CT |=

C 6↔ false) when it represents a successful termination, since there are no more

applicable rules.

The relation −→ω′

t
(of the transition system Tω′

t
) is defined by the rules in Table 2

which have the following explanation:

Solve’ moves a built-in constraint from the store to the built-in constraint store;

Apply’ fires a rule cl of the form r@H ′
1\H

′
2 ⇔ D |B;Tr provided that the following

conditions are satisfied: there exists a matching between the constraints in the

store and the ones in the head of cl; the guard of cl is entailed by the built-

in constraint store (taking into account also the matching mentioned before);

r@id(H1, H2) 6∈ T . These conditions are equal to those already seen for Apply.

Moreover, analogously to the Apply transition step, chr(H1, H2) = (H ′
1, H

′
2)

together with D are added to the built-in constraint store. However, in this case,

when the rule cl is fired, H2 is replaced by B and the local store Tr is added to

T (with r@id(H1, H2)), where each identifier is suitably incremented by the inst

2 Also in this case, sometimes we treat S as a multiset. See the previous footnote.
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Table 2. The transition system Tω′

t
for the ω′

t semantics

Solve’
c is a built-in constraint

〈{c} ⊎G,C, T 〉n −→ω′

t
〈G, c ∧ C, T 〉n

Apply’

r@H ′

1\H
′

2 ⇔ D |B;Tr ∈ P,

CT |= C → ∃r((chr(H1,H2) = (H ′

1,H
′

2)) ∧D)

〈H1 ⊎H2 ⊎G,C, T 〉n −→ω′

t

〈B′ ⊎H1 ⊎G, (chr(H1,H2) = (H ′

1, H
′

2)) ∧D ∧ C, T ′〉m

where (B′, T ′

r,m) = inst(B, Tr, n), r@id(H1,H2) 6∈ T and
T ′ = T ∪ {r@id(H1,H2)} ∪ T ′

r.

function. Finally, the subscript n is replaced by m, that is the greatest number

used during the computation step.

As for the Apply rule, the Apply’ rule assumes that all the variables appearing

in a program clause are renamed with fresh ones in order to avoid variable names

clashes.

The following example shows a derivation obtained by the new transition system.

Example 2
Given the goal root(a), same(b, c), edge(a, b), edge(a, d), edge(d, c) in the following
program P ′,

r1@root(V ), same(X,Y ) ⇒ X = Y,X = V | success(V )#1; ∅
r2@root(V ), same(X,Y ) ⇔ X 6= Y | root(V )#1, same(V,X)#2,path(V, Y )#3; ∅
r2@root(V ), same(X,Y ) ⇔ X 6= Y, V = X | root(V )#1, same(V,X)#2,path(V, Y )#3,

success(I)#4, V = I, V = J,X = L; {r1@1, 2}
r2@root(V ), same(X,Y ) ⇔ X 6= Y, V 6= X | path(V, Y )#3, root(I)#4, same(J, L)#5,

I = V, J = V,L = X; ∅
r2@root(V ), same(X,Y ) ⇔ X 6= Y, V = Y | root(V )#1, same(V,X)#2,

path(V, Y )#3, V = I, Y = J ; {r3@3}
r3@path(I, J) ⇒ I = J | true; ∅
r4@edge(U,Z) \ path(I, J) ⇔ J = Z | path(I,U)#1; ∅
r4@edge(U,Z) \ path(I, J) ⇔ J = Z, I = U | path(I,U)#1, I = X,U = Y ; {r3@1}
r5@root(V ) \ path(I, J) ⇔ V = J, V 6= I | false; ∅

we obtain the following derivation

〈(root(a)#1, same(b,c)#2, edge(a, b)#3, edge(a, c)#4, edge(c, d)#5), true, ∅〉5 −→ω′

t

〈(path(V1, Y1)#6, root(I1)#7, same(J1, L1)#8, I1 = V1, J1 = V1, L1 = X1,

edge(a, b)#3, edge(a, d)#4, edge(d, c)#5),
(a = V1, b = X1, c = Y1, X1 6= Y1, V1 6= X1), {r2@1, 2}〉8 −→∗

ω
′

t

〈(path(V1, Y1)#6, root(I1)#7, same(J1,L1)#8, edge(a, b)#3, edge(a, c)#4, edge(c, d)#5),
(I1 = V1, J1 = V1, L1 = X1, a = V1, b = X1, c = Y1, X1 6= Y1, V1 6= X1), {r2@1, 2}〉8 −→ω′

t
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〈(root(V2)#9, same(V2, X2)#10,path(V2, Y2)#11, success(I2)#12,
V2 = I2, V2 = J2, X2 = L2,path(V1, Y1)#6, edge(a, b)#3, edge(a, c)#4, edge(c, d)#5),
(V2 = I1, X2 = J1, Y2 = L1, X2 6= Y2, V2 = X2, I1 = V1, J1 = V1, L1 = X1,

a = V1, b = X1, c = Y1, X1 6= Y1, V1 6= X1), {r2@1, 2, r2@7, 8, r1@9, 10}〉12 −→∗

ω
′

t

〈(root(V2)#9, same(V2, X2)#10,path(V2,Y2)#11, success(I2)#12,
path(V1, Y1)#6, edge(a,b)#3, edge(a, c)#4, edge(c, d)#5),
(V2 = I2, V2 = J2, X2 = L2, V2 = I1, X2 = J1, Y2 = L1, X2 6= Y2, V2 = X2, I1 = V1, J1 = V1,

L1 = X1, a = V1, b = X1, c = Y1, X1 6= Y1, V1 6= X1), {r2@1, 2, r2@7, 8, r1@9, 10}〉12 −→ω′

t

〈(path(I3, U3)#13, I3 = X3, U3 = Y3, root(V2)#9, same(V2, X2)#10,
success(I2)#12, path(V1, Y1)#6, edge(a, b)#3, edge(a, c)#4, edge(c, d)#5),
(a = U3, b = Z3, a = I3, b = J3, J3 = Z3, I3 = U3, V2 = I2, V2 = J2, X2 = L2, V2 = I1,

X2 = J1, Y2 = L1, X2 6= Y2, V2 = X2, I1 = V1, J1 = V1, L1 = X1, a = V1, b = X1,

c = Y1, X1 6= Y1, V1 6= X1), {r2@1, 2, r2@7, 8, r1@9, 10, r4@11, 3, r3@13}〉13 −→∗

ω′

t

〈(path(I3, U3)#13, root(V2)#9, same(V2, X2)#10, success(I2)#12,
path(V1,Y1)#6, edge(a, b)#3, edge(a, c)#4, edge(c, d)#5),
(I3 = X3, U3 = Y3, a = U3, b = Z3, a = I3, b = J3, J3 = Z3, I3 = U3, V2 = I2,

V2 = J2, X2 = L2, V2 = I1, X2 = J1, Y2 = L1, X2 6= Y2, V2 = X2, I1 = V1, J1 = V1,

L1 = X1, a = V1, b = X1, c = Y1, X1 6= Y1, V1 6= X1),
{r2@1, 2, r2@7, 8, r1@9, 10, r4@11, 3, r3@13}〉13 −→ω′

t

〈(path(I4, U4)#14, I4 = X4, U4 = Y4,path(I3, U3)#13, root(V2)#9,
same(V2, X2)#10, success(I2)#12, edge(a, b)#3, edge(a, c)#4, edge(c, d)#5),
(a = U4, c = Z4, V1 = I4, Y1 = J4, J4 = Z4, I4 = U4, I3 = X3, U3 = Y3, a = U3, b = Z3,

a = I3, b = J3, J3 = Z3, I3 = U3, V2 = I2, V2 = J2, X2 = L2, V2 = I1, X2 = J1, Y2 = L1,

X2 6= Y2, V2 = X2, I1 = V1, J1 = V1, L1 = X1, a = V1, b = X1, c = Y1, X1 6= Y1, V1 6= X1),
{r2@1, 2, r2@7, 8, r1@9, 10, r4@11, 3, r3@13, r4@4, 6, r3@14}〉14 −→∗

ω
′

t

〈(path(I4, U4)#14, path(I3, U3)#13, root(V2)#9, same(V2, X2)#10,
success(I2)#12, edge(a, b)#3, edge(a, c)#4, edge(c, d)#5),
(I4 = X4, U4 = Y4, a = U4, c = Z4, V1 = I4, Y1 = J4, J4 = Z4, I4 = U4, I3 = X3,

U3 = Y3, a = U3, b = Z3, a = I3, b = J3, J3 = Z3, I3 = U3, V2 = I2, V2 = J2,

X2 = L2, V2 = I1, X2 = J1, Y2 = L1, X2 6= Y2, V2 = X2, I1 = V1, J1 = V1, L1 = X1,

a = V1, b = X1, c = Y1, X1 6= Y1, V1 6= X1),
{r2@1, 2, r2@7, 8, r1@9, 10, r4@11, 3, r3@13, r4@4, 6, r3@14}〉14 6−→ω′

t

From the previous transition systems we can obtain a notion of observable prop-

erty of CHR computations that will be used in order to prove the correctness

of our unfolding rule. The notion of ”observable property” usually identifies the

relevant property that one is interested in observing as the result of a compu-

tation. In our case, we use the notion of qualified answer, originally introduced

in (Frühwirth 1998): Intuitively this is the constraint obtained as the result of a

non-failed computation, including both built-in constraints and CHR constraints

which have not been ”solved” (i.e. transformed by rule applications into built-in

constraints). Formally qualified answer are defined as follows.

Definition 5 (Qualified answers)

Let P be a CHR program and let G be a goal. The set QAP (G) of qualified answers
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for the query G in the program P is defined as follows:

QAP (G) = {∃−Fv(G)(chr(K) ∧D) | CT 6|= D ↔ false and

〈G, ∅, true, ∅〉1 →∗
ωt

〈∅,K,D, T 〉n 6→ωt
}.

Analogously, we can define the qualified answer of an annotated program.

Definition 6 (Qualified answers for annotated programs)

Let P be an annotated CHR program and let G be a goal. The set QA′
P (G) of

qualified answers for the query G in the annotated program P is defined as follows:

QA′
P (G) = {∃−Fv(G)(chr(K) ∧D) | CT 6|= D ↔ false and

〈I(G), true, ∅〉m →∗
ω′

t

〈K,D, T 〉n 6→ω′

t
}.

The previous two notions of qualified answers are equivalent, as shown by the

proof (in the Appendix) of the following proposition. This fact will be used to prove

the correctness of the unfolding.

Proposition 1

Let P and Ann(P ) be respectively a CHR program and its annotated version. Then,

for every goal G,

QAP (G) = QA′
Ann(P )(G)

holds.

4 The unfolding rule

In this section, we define the unfold operation for CHR simpagation rules. As a

particular case, we obtain also unfolding for simplification and propagation rules,

as these can be seen as particular cases of the former.

The unfolding allows to replace a conjunction S of constraints (which can be seen

as a procedure call) in the body of a rule clr by the body of a rule clv, provided that

the head of clv matches with S (when considering also the instantiations provided

by the built-in constraints in the guard and in the body of the rule clr). More

precisely, assume that the built-in constraints in the guard and in the body of the

rule clr imply that the head H of clv, instantiated by a substitution θ, matches

with the conjunction S in the body of clr. Then, the unfolded rule is obtained from

clr by performing the following steps: 1) the new guard in the unfolded rule is the

conjunction of the guard of clr with the guard of clv, the latter instantiated by θ

and without those constraints that are entailed by the built-in constraints which

are in clr; 2) the body of clv and the equality H = S are added to the body of

clr; 3) the conjunction of constraints S can be removed, partially removed or left

in the body of the unfolded rule, depending on the fact that clv is a simplification,

a simpagation or a propagation rule, respectively; 4) as for the local token store

Tr associated with every rule clr, this is updated consistently during the unfolding

operations in order to avoid that a propagation rule is used twice to unfold the

same sequence of constraints.

Before giving the formal definition of the unfolding rule, we illustrate the above

steps by means of the following example.
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Example 3
Consider the following programP , similar to that one given in (Schrijvers and Sulzmann 2008),
which describes the rules for updating a bank account and for performing the money
transfer. We write the program by using the standard syntax, namely without us-
ing the local token store and the identifiers in the body of rules, since there are no
annotated propagation rules. The program P consists of the following three rules

r1@b(Acc1, Bal1), b(Acc2, Bal2), t(Acc1, Acc2, Amount) ⇔ Acc1 6= Acc2 |
b(Acc1, Bal1), b(Acc2, Bal2), w(Acc1, Amount), d(Acc2, Am)

r2@b(Acc,Bal), d(Acc,Am) ⇔ b(Acc,B),B = Bal+ Am

r3@b(Acc′, Bal′), w(Acc′, Am′) ⇔ Bal′ > Amount′ | b(Acc′, B′), B′ = Bal′ − Am′

where the three rules identified by r1, r2, and r3 are called clr1 , clr2, and clr3 ,

respectively. The predicate names are abbreviations: b for balance, d for deposit, w

for withdraw and t for transfer.
Now, we unfold the rule clr1 by using the rule clr2 and we obtain the new clause

cl′r1 :

r1@b(Acc1, Bal1), b(Acc2, Bal2), t(Acc1, Acc2, Amount) ⇔ Acc1 6= Acc2 |
b(Acc1, Bal1), w(Acc1, Amount), b(Acc,B),
B = Bal + Am,Acc2 = Acc,Bal2 = Bal,Amount = Am.

Next, we unfold the rule cl′r1 by using the rule clr3 and we can obtain the new
clause cl′′r3

r3@b(Acc1, Bal1), b(Acc2, Bal2), t(Acc1, Acc2, Amount) ⇔
Acc1 6= Acc2, Bal1 > Amount | b(Acc,B), B = Bal + Am,Acc2 = Acc,Bal2 = Bal,

Amount = Am, b(Acc′, B′), B′ = Bal′ −Am′,

Acc1 = Acc′, Bal1 = Bal′, Amount = Am′.

Before formally defining the unfolding, we need to define a function which removes

the useless tokens from the token store.

Definition 7

Let B be an identified goal and let T be a token set,

clean : Goals× Token → Token,

is defined as follows: clean(B, T ) deletes from T all the tokens for which at least

one identifier is not present in the identified goal B. More formally

clean(B, T ) = {t ∈ T | t = r@i1, . . . , ik and ij ∈ id(B), for each j ∈ [1, k]}.

Definition 8 (Unfold)

Let P be an annotated CHR program and let clr, clv ∈ P be the two following

annotated rules

r@H1\H2 ⇔ D |K,S1, S2, C;T and

v@H ′
1\H

′
2 ⇔ D′ |B;T ′

respectively, where C is the conjunction of all the built-in constraints in the body of

clr. Let θ be a substitution such that dom(θ) ⊆ Fv(H ′
1, H

′
2) and CT |= (C ∧D) →

chr(S1, S2) = (H ′
1, H

′
2)θ. Furthermore let m be the greatest identifier which appears

in the rule clr and let (B1, T1,m1) = inst(B, T ′,m). Then, the unfolded rule is:

r@H1\H2 ⇔ D, (D′′θ) |K,S1, B1, C, chr(S1, S2) = (H ′
1, H

′
2);T

′′
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where v@id(S1, S2) 6∈ T , V = {d ∈ D′ | CT |= C ∧ D → dθ}, D′′ = D′\V ,

Fv(D′′θ)∩Fv(H ′
1, H

′
2)θ ⊆ Fv(H1, H2), the constraint (D, (D′′θ)) is satisfiable and

• if H ′
2 = ǫ then T ′′ = T ∪ T1 ∪ {v@id(S1)}

• if H ′
2 6= ǫ then T ′′ = clean((K,S1), T ) ∪ T1.

Note that V ⊆ D′ is the greatest set of built-in constraints such that CT |=

C ∧ D → dθ for each d ∈ V . Moreover, as shown in the following, all the results

in the paper are independent from the choice of the substitution θ which satisfies

the conditions of Definition 8. Finally, we use the function inst (Definition 4) in

order to increment the value of the identifiers associated with atoms in the unfolded

rule. This allows us to distinguish the new identifiers introduced in the unfolded

rule from the old ones. Note also that the condition on the token store is needed to

obtain a correct rule. Consider for example a ground annotated program

P = { r1@h ⇔ k#1

r2@k ⇒ s#1

r3@s, s ⇔ q#1 }

where the three rules identified by r1, r2, and r3 are called clr1 , clr2 , and clr3 , re-

spectively3. Let h be the start goal. In this case, the unfolding could change the

semantics if the token store was not used. In fact, according to the semantics pro-

posed in Table 1 or 2, we have that the goal h has only the qualified answer

(k, s). On the other hand, considering an unfolding without the update of the token

store, one would have r1@h ⇔ k#1
unfold using clr2−→ r1@h ⇔ k#1, s#2

unfold using clr2−→

r1@h ⇔ k#1, s#2, s#3
unfold using clr3−→ r1@h ⇔ k#1, q#4. So, starting from the con-

straint h we could obtain the qualified answer (k, q), that is not possible in the

original program (the rule obtained after the wrongly applied unfolding rule is

underlined).

As previously mentioned, the unfolding rules for simplification and propagation

can be obtained as particular cases of Definition 8, by setting H ′
1 = ǫ and H ′

2 = ǫ,

respectively, and by considering accordingly the resulting unfolded rule.

Example 4

Consider the program P consisting of the following four rules

r1@f(X,Y ), f(Y, Z), f(Z,W ) ⇔ g(X,Z)#1, f(Z,W )#2, gs(Z,X)#3

r2@g(U, V ), f(V, T ) ⇔ gg(U, T )#1

r3@g(U, V ), f(V, T ) ⇒ gg(U, T )#1

r4@g(J, L)\f(L,N) ⇔ gg(J,N)#1

that we call clr1 , clr2 , clr3 , and clr4 , respectively. This program deduces information

about genealogy. Predicate f is considered as father, g as grandfather, gs as grand-

son and gg as great-grandfather. The following rules are such that we can unfold

some constraints in the body of clr1 using the rule clr2 , clr3 , and clr4 .

3 Here and in the following examples, we use an identifier and also a name for a rule. The reason
for this is that after having performed an unfolding we could have different rules labeled by the
same identifier. Moreover, we omit the token stores if they are empty.
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Now, we unfold the body of rule clr1 by using the simplification rule clr2 . We use

the inst function inst(gg(U, T )#1, ∅, 3) = (gg(U, T )#4, ∅, 4). So the new unfolded

rule is:

r1@f(X,Y ), f(Y, Z), f(Z,W ) ⇔ gs(Z,X)#3, gg(U, T )#4, X = U,Z = V,W = T.

Now, we unfold the body of clr1 by using the propagation rule clr3 . As in the

previous case, we have that inst(gg(U, T )#1, ∅, 3) = (gg(U, T )#4, ∅, 4) and then

the new unfolded rule is:

r1@f(X,Y ), f(Y, Z), f(Z,W ) ⇔ g(X,Z)#1, f(Z,W )#2, gs(Z,X)#3,

gg(U, T )#4, X = U,Z = V,W = T ; {r3@1, 2}.

Finally, we unfold the body of rule clr1 by using the simpagation rule clr4 . As

before, the function

inst(gg(J,N)#1, ∅, 3) = (gg(J,N)#4, ∅, 4)

is computed. The new unfolded rule is:

r1@f(X,Y ), f(Y, Z), f(Z,W ) ⇔ g(X,Z)#1, gs(Z,X)#3,

gg(J,N)#4, X = J, Z = L,W = J.

The following example considers more specialized rules with guards which are

not true.

Example 5

Consider the program consisting of the following rules

r1@f(X,Y ), f(Y, Z), f(Z,W ) ⇔ X = Adam, Y = Seth |

g(X,Z)#1, f(Z,W )#2, gs(Z,X)#3, Z = Enosh

r2@g(U, V ), f(V, T ) ⇒ U = Adam, V = Enosh | gg(U, T )#1, T = Kenan

r3@g(J, L)\f(L,N) ⇔ J = Adam,L = Enosh | gg(J,N)#1, N = Kenan

that, as usual, we call clr1 , clr2 , and clr3 , respectively, and which specialize the rules

introduced in Example 4 to the genealogy of Adam. That is, here we remember that

Adam was father of Seth; Seth was father of Enosh; Enosh was father of Kenan.

As before, we consider the predicate f as father, g as grandfather, gs as grandson

and gg as great-grandfather.

If we unfold clr1 by using clr3 we have

r1@f(X,Y ), f(Y, Z)f(Z,W ) ⇔X = Adam, Y = Seth |

g(X,Z)#1, gs(Z,X)#3, Z = Enosh,

gg(J,N)#4 , N = Kenan, X = J, Z = L,W = N.

Moreover, when clr2 is considered to unfold clr1 , we obtain

r1@f(X,Y ), f(Y, Z), f(Z,W ) ⇔ X = Adam, Y = Seth |

g(X,Z)#1, f(Z,W )#2, gs(Z,X)#3, Z = Enosh,

gg(U, T )#4, T = Kenan, X = U,Z = V,W = T ; {r2@1, 2}.

Note that U = Adam, V = Enosh, which is the guard of the rule clr2 , is not

added to the guard of the unfolded rule because U = Adam is entailed by the guard
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of clr1 and V = Enosh is entailed by the built-in constraints in the body of clr1 ,

by considering also the binding provided by the parameter passing (analogously for

clr3).

Example 6

The program P ′ of the Example 2 is obtained from the program Ann(P ) of Exam-

ple 1 by adding to Ann(P ) the clauses resulting from the unfolding of the clause

r2 with r1, r2 and r3 and from the unfolding of the clause r4 with r3. It is worth

noticing that the use of the unfolded clauses allows to decrease the number of Apply

tansition steps in the successful derivation.

The following result states the correctness of our unfolding rule. The proof is in

the Appendix.

Proposition 2

Let P be an annotated CHR program with clr, clv ∈ P . Let cl′r be the result of the

unfolding of clr with respect to clv and let P ′ be the program obtained from P by

adding rule cl′r. Then, for every goal G, QA′
P ′(G) = QA′

P (G) holds.

Since the previous result is independent from the choice of the particular sub-

stitution θ which satisfies the conditions of Definition 8, we can choose any such a

substitution in order to define the unfolding.

Using the semantic equivalence of a CHR program and its annotated version,

we obtain also the following corollary which shows the equivalence between a CHR

program and its annotated and unfolded version.

Corollary 1

Let P and Ann(P ) be respectively a CHR program and its annotated version.

Moreover let clr, clv ∈ Ann(P ) be CHR annotated rules such that cl′r is the result

of the unfolding of clr with respect to clv and P ′ = Ann(P )∪{cl′r}. Then, for every

goal G, QAP (G) = QA′
P ′(G).

Proof

The proof follows from Proposition 1 and Proposition 2.

5 Safe rule replacement

The previous result shows that we can safely add to a program P a rule result-

ing from the unfolding, while preserving the semantics of P in terms of qualified

answers. However, when a rule clr ∈ P has been unfolded producing the new rule

cl′r, in some cases we would also like to replace clr by cl′r in P , since this could im-

prove the efficiency of the resulting program. Performing such a replacement while

preserving the semantics is in general a very difficult task.

In the case of CHR this is mainly due to three problems. The first one is the

presence of guards in the rules. Intuitively, when unfolding a rule r by using a rule

v (i.e. when replacing in the body of r a “call” of a procedure by its definition

v) it could happen that some guard in v is not satisfied “statically” (i.e. when
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performing the unfold), even though it could become satisfied at run-time when

the rule v is actually used. If we move the guard of v in the unfolded version of r

we can then loose some computations, because the guard in v is moved before the

atoms in the body of r (and those atoms could instantiate and satisfy the guard).

In other words, the overall guard in the unfolded rule has been strengthened, which

means that the rule applies in fewer cases. This implies that if we want to preserve

the meaning of a program in general we cannot replace the rule r by its unfolded

version. Suitable conditions can be defined in order to allows such a replacement,

as we do later. The second source of difficulties consists in the pattern matching

mechanism which is used by the CHR computation. According to this mechanism,

when rewriting a goal G by a rule r only the variables in the head of r can be

instantiated (to become equal to the terms in G). Hence, it could happen that

statically the body of a rule r is not instantiated enough to perform the pattern

matching involved in the unfolding, while it could become instantiated at run-time

in the computations. Also in this case replacing r by its unfolded version in general

is not correct. Note that this is not a special case of the first issue, indeed if we

cannot (statically) perform the pattern matching we do not unfold the rule while

if we move the pattern matching to the guard we could still unfold the rule (under

suitable conditions).

Finally, we have the problem of the multiple heads. In fact, let B be the body of

a rule r and let H be the (multiple) head of a rule v, which can be used to unfold

r: we cannot be sure that at run-time all the atoms in H will be used to rewrite

B, since in general B could be in a conjunction with other atoms even though the

guards are satisfied. Note that the last point does not mean that the answers of

the transformed program are a subset of those of the original one, since by deleting

some computations we could introduce in the transformed program new qualified

answers which were not in the original program. This is a peculiarity of CHR and

it is different from what happens in Prolog.

The next subsection clarifies these three points by using some examples.

5.1 Replacement problems

As previously mentioned, the first problem in replacing a rule by its unfolded version

concerns the anticipation of the guard of the rule clv (used to unfold the rule clr) in

the guard of clr (as we do in the unfold operation). In fact, as shown by the following

example, this could lead to the loss of some computations, when the unfolded rule

cl′r is used rather than the original rule clr.

Example 7

Let us consider the program

P = { r1@p(Y ) ⇔ q(Y ), s(Y )

r2@q(Z) ⇔ Z = a | true

r3@s(V ) ⇔ V = a }

where we do not consider the identifiers (and the local token store) in the body of

rules, because we do not have propagation rules in P .
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The unfolding of r1@p(Y ) ⇔ q(Y ), s(Y ) by using the rule r2@q(Z) ⇔ Z =

a | true returns the new rule r1@p(Y ) ⇔ Y = a | s(Y ), Y = Z. Now the program

P ′ = { r1@p(Y ) ⇔ Y = a | s(Y ), Y = Z

r2@q(Z) ⇔ Z = a | true

r3@s(V ) ⇔ V = a }

is not semantically equivalent to P in terms of qualified answers. In fact, given the

goal G = p(X) we have (X = a) ∈ QA′
P (G), while (X = a) 6∈ QA′

P ′(G).

The second problem is related to the pattern matching used in CHR computa-

tions. In fact, following Definition 8, there are some matchings that could become

possible only at run-time, and not at compile time, because a stronger (as a first or-

der formula) built-in constraint store is needed. Also in this case, a rule elimination

could lead to lose possible answers as illustrated in the following example.

Example 8

Let us consider the program

P = { r1@p(X,Y ) ⇔ q(Y,X)

r2@q(W,a) ⇔ W = b

r3@q(J, T ) ⇔ J = d }

where, as before, we do not consider the identifiers and the token store in the body

of rules, because we do not have propagation rules in P . Let P ′ be the program

where the unfolded rule r1@p(X,Y ) ⇔ Y = J,X = T, J = d, obtained by using

r3@q(J, T ) ⇔ J = d in P , substitutes the original one (note that other unfoldings

are not possible, in particular the rule r2@q(W,a) ⇔ W = b can not be used to

unfold r1@p(X,Y ) ⇔ q(Y,X))

P ′ = { r1@p(X,Y ) ⇔ Y = J,X = T, J = d

r2@q(W,a) ⇔ W = b

r3@q(J, T ) ⇔ J = d }.

Let G = p(a,R) be a goal. We can see that (R = b) ∈ QA′
P (G) and (R =

b) 6∈ QA′
P ′(G) because, with the considered goal (and consequently the considered

built-in constraint store) r2@q(W,a) ⇔ W = b can fire in P but can not fire in P ′.

The third problem is related to multiple heads. In fact, the unfolding that we

have defined assumes that the head of a rule matches completely with the body of

another one, while in general, during a CHR computation, a rule can match with

constraints produced by more than one rule and/or introduced by the initial goal.

The following example illustrates this point.

Example 9

Let us consider the program

P = { r@p(Y ) ⇔ q(Y ), h(b)

v@q(Z), h(V ) ⇔ Z = V }

where we do not consider the identifiers and the token store in the body of rules,

as usual.
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The unfolding of r@p(Y ) ⇔ q(Y ), h(b) by using v@q(Z), h(V ) ⇔ Z = V returns

the new rule

r@p(Y ) ⇔ Y = Z, V = b, Z = V.

Now the program

P ′ = { r@p(Y ) ⇔ Y = Z, V = b, Z = V

v@q(Z), h(V ) ⇔ Z = V }

where we substitute the original rule by its unfolded version is not semantically

equivalent to P . In fact, given the goal G = p(X), h(a), q(b), we have that (X =

a) ∈ QA′
P (G), while (X = a) 6∈ QA′

P ′(G).

5.2 A condition for safe rule replacement

We have identified some conditions which ensure that we can safely replace the

original rule clr by its unfolded version while maintaining the qualified answers

semantics. Intuitively, this holds when: 1) the constraints of the body of clr can

be rewritten only by CHR rules such that all the atoms in the head contain the

same set of variables; 2) there exists no rule clv which can be fired by using a part

of constraints introduced in the body of clr plus some other constraints; 3) all the

rules that can be applied at run-time to the body of the original rule clr, can also

be applied at transformation time. Before defining formally these conditions, we

need some further notations. First of all, given a rule clr we define two sets.

The first one contains a set of pairs: for each pair the first component is a rule

that can be used to unfold clr, while the second one is the sequence of the identifiers

of the atoms in the body of clr which are used in the unfolding.

The second set contains all the rules that can be used for the partial unfolding of

clr; in other words, it is the set of rules that can fire by using at least an atom in

the body of clr and necessarily some other CHR and built-in constraints. Moreover,

such a set contains also the rules that can fire, when an opportune built-in constraint

store is provided by the computation, but that cannot be unfolded.

Definition 9

Let P be an annotated CHR program and let clr, clv be the following two annotated

rules

r@H1\H2 ⇔ D |A;T and

v@H ′
1\H

′
2 ⇔ D′ |B;T ′

such that clr, clv ∈ P and clv is renamed apart with respect to clr. We define U+

and U# as follows:

1. (clv, (i1, . . . , in)) ∈ U+
P (clr) if and only if clr can be unfolded with clv (by

Definition 8) by using the sequence of the identified atoms in A with identifiers

(i1, . . . , in).

2. clv ∈ U#
P (clr) if and only if at least one of the following conditions holds:

(a) there exists (A1, A2) ⊆ A and a built-in constraint C such that
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Fv(C) ∩ Fv(clv) = ∅, the constraint D ∧ C is satisfiable, CT |=

(D∧C) → ∃clv ((chr(A1, A2) = (H ′
1, H

′
2))∧D

′), v@id(A1, A2) 6∈ T ,

and (clv, id(A1, A2)) 6∈ U+
P (clr)

(b) or there exist k ∈ A, h ∈ H ′
1 ⊎ H ′

2 and a built-in constraint C

such that Fv(C) ∩ Fv(clv) = ∅, the constraint D ∧ C is satis-

fiable, CT |= (D ∧ C) → ∃clv((chr(k) = h) ∧ D′), and there

exists no (A1, A2) ⊆ A such that v@id(A1, A2) 6∈ T and CT |=

(D ∧ C ∧ (chr(k) = h)) → (chr(A1, A2) = (H ′
1, H

′
2)).

Some explanations are in order here.

The set U+ contains all the couples composed by those rules that can be used

to unfold a fixed rule clr, and the identifiers of the constraints considered in the

unfolding, introduced in Definition 8.

Let us consider now the set U#. The conjunction of built-in constraints C repre-

sents a generic set of built-in constraints (such a set naturally can be equal to every

possible built-in constraint store that can be generated by a real computation before

the application of rule clv); the condition Fv(C) ∩Fv(clv) = ∅ is required to avoid

free variable capture, it represents the renaming (with fresh variables) of a rule clv
with respect to the computation before the use of the clv itself in an Apply’ tran-

sition; the condition v@id(A1, A2) 6∈ T avoids trivial non-termination due the prop-

agation rules; the conditions CT |= (D∧C) → ∃clv ((chr(A1, A2) = (H ′
1, H

′
2))∧D′)

and CT |= (D ∧C) → ∃clv ((chr(k) = h) ∧D′) secure that a strong enough built-in

constraint is provided by the computation, before the application of rule clv; finally,

the condition (clv, id(A1, A2)) 6∈ U+
P (clr) is required to avoid to consider the rules

that can be correctly unfolded in the body of clr. There are two kinds of rules that

are added to U#. The first one, due to Condition 2a in Definition 9, indicates a

matching substitution problem similar to that one described in Example 8. The sec-

ond kind, due to Condition 2b in Definition 9, indicates a multiple heads problem

similar to that one in Example 9. Hence, as we will see in Definition 11, in order to

be able to correctly perform the unfolding, the set U# must be empty.

Note also that if U+
P (clr) contains a pair, whose first component is a rule with a

multiple head and such that the atoms in the head contain different sets of variables,

then by definition, U#
P (clr) 6= ∅ (Condition 2b of Definition 9).

The following definition introduces a notation for the set obtained by unfolding

a rule with (the rules in) a program.

Definition 10

Let P be an annotated CHR program and assume that cl ∈ P ,

UnfP (cl)

is the set of all annotated rules obtained by unfolding the rule cl with a rule in P ,

by using Definition 8.

We can now give the central definition of this section.
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Definition 11 (Safe rule replacement)

Let P be an annotated CHR program and let clr ∈ P be the annotated rule

r@H1\H2 ⇔ D |A;T , such that the following holds

i) U#
P (clr) = ∅,

ii) U+
P (clr) 6= ∅ and

iii) for each r@H1\H2 ⇔ D′ |A′;T ′ ∈ UnfP (clr) we have that CT |= D ↔ D′.

Then, we say that the rule clr can be safely replaced (by its unfolded version) in

P .

Condition i) of the previous definition implies that clr can be safely replaced in

P only if:

• U+
P (clr) contains only pairs, whose first component is a rule such that each

atom in the head contains the same set of variables;

• a sequence of identified atoms of body of the rule clr can be used to fire a

rule clv only if clr can be unfolded with clv by using the same sequence of the

identified atoms.

Condition ii) states that there exists at least one rule for unfolding the rule clr.

Condition iii) states that each annotated rule obtained by the unfolding of clr in

P must have a guard equivalent to that one of clr: in fact the condition CT |= D ↔

D′ in iii) avoids the problems discussed in Example 7, thus allows the moving (i.e.

strengthening) of the guard in the unfolded rule.

Note that Definition 11 is independent from the particular substitution θ chosen

in Definition 8 in order to define the unfolding of the rule

r@H1\H2 ⇔ D |K,S1, S2, C;T with respect to

v@H ′
1\H

′
2 ⇔ D′ |B;T ′

In fact, let us assume that there exist two substitution θ and γ which satisfy the

conditions of Definition 8. Then CT |= (C ∧ D) → (dθ ↔ dγ) for each d ∈ D′.

Therefore, if V = {d ∈ D′ | CT |= C ∧D → dθ} and W = {d ∈ D′ | CT |= C ∧D →

dγ}, we have that V = W and then D′′ = D \ V = D \W . Now, it is easy to check

that Condition iii) follows if and only if D′′θ = D′′γ = ∅.

The following is an example of a safe replacement.

Example 10

Consider the program P consisting of the following four rules

r1@p(X,Y, Z) ⇔ r(b, b, Z)#1, s(Z, b, a)#2, q(X, f(Z), a)#3, r(g(X, b), f(a), f(Z))#4; ∅
r2@q(V,U,W ), r(g(V, b), f(W ), U) ⇔ W = a | s(V,U,W )#1, r(U,U, V )#2; ∅
r3@r(M,M,N), s(N,M, a) ⇔ p(M,N,N)#1; ∅
r4@s(L,J, I) ⇒ I = L; ∅

where the four rules identified by r1, r2, r3, and r4 are called clr1 , clr2 , clr3 , and clr4 ,

respectively. By Definition 9, we have that

U+
P (clr1) = {clr2@3, 4, clr3@1, 2, clr4@2}

U#
P (clr1) = ∅.
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Moreover

UnfP (clr1) =
{ r1@p(X,Y, Z) ⇔ r(b, b, Z)#1, s(Z, b, a)#2, s(V,U,W )#5, r(U,U, V )#6,

X = V,U = f(Z),W = a; ∅
r1@p(X,Y, Z) ⇔ q(X, f(Z), a)#3, r(g(X, b), f(a), f(Z))#4, p(M,N,N)#5,

M = b,N = Z; ∅
r1@p(X,Y, Z) ⇔ r(b, b, Z)#1, s(Z, b, a)#2, q(X, f(Z), a)#3,

r(g(X, b), f(a), f(Z))#4, I = L,Z = L, b = J, a = I ; {clr4@2} }

Then cl1 can be safely replaced in P according to Definition 11 and then we

obtain

P1 = (P \ {cl1}) ∪ UnfP (cl1),

where P1 is the program

{ r1@p(X,Y, Z) ⇔ r(b, b, Z)#1, s(Z, b, a)#2, s(V,U,W )#5, r(U,U, V )#6,
X = V,U = f(Z),W = a; ∅

r1@p(X,Y, Z) ⇔ q(X, f(Z), a)#3, r(g(X, b), f(a), f(Z))#4, p(M,N,N)#5,
M = b,N = Z; ∅

r1@p(X,Y, Z) ⇔ r(b, b, Z)#1, s(Z, b, a)#2, q(X, f(Z), a)#3,
r(g(X, b), f(a), f(Z))#4, I = L,Z = L, b = J, a = I ; {clr4@2}

r2@q(V,U,W ), r(g(V, b), f(W ), U) ⇔ W = a | s(V,U,W )#1, r(U,U, V )#2; ∅
r3@r(M,M,N), s(N,M, a) ⇔ p(M,N,N)#1; ∅
r4@s(L,J, I) ⇒ I = L; ∅ }

We can now provide the result which shows the correctness of our safe replacement

rule. The proof is in the Appendix.

Theorem 1

Let P be an annotated program, cl be a rule in P such that cl can be safely replaced

in P according to Definition 11. Assume also that

P ′ = (P \ {cl}) ∪ UnfP (cl).

Then QA′
P (G) = QA′

P ′(G) for any arbitrary goal G.

Of course, the previous result can be applied to a sequence of program transfor-

mations. Let us define such a sequence as follows.

Definition 12 (U-sequence)

Let P be an annotated CHR program. An U-sequence of programs starting from P

is a sequence of annotated CHR programs P0, . . . , Pn, such that

P0 = P and

Pi+1 = (Pi \ {cli}) ∪ UnfPi
(cli),

where i ∈ [0, n− 1], cli ∈ Pi and can be safely replaced in Pi.

Example 11

Let us to consider the program P1 of Example 10. The clause cl2 can be safely

replaced in P1 according to Definition 11 and then we obtain

P2 = (P1 \ {cl2}) ∪ UnfP1
(cl2),
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where P2 is the program

{ r1@p(X,Y, Z) ⇔ r(b, b, Z)#1, s(Z, b, a)#2, s(V,U,W )#5, r(U,U, V )#6,
X = V,U = f(Z),W = a; ∅

r1@p(X,Y, Z) ⇔ q(X, f(Z), a)#3, r(g(X, b), f(a), f(Z))#4, p(M,N,N)#5,
M = b,N = Z; ∅

r1@p(X,Y, Z) ⇔ r(b, b, Z)#1, s(Z, b, a)#2, q(X, f(Z), a)#3,
r(g(X, b), f(a), f(Z))#4, I = L,Z = L, b = J, a = I ; {clr4@2}

r2@q(V,U,W ), r(g(V, b), f(W ), U) ⇔ W = a | p(M,N,N)#3, V = N,U = M ; ∅
r2@q(V,U,W ), r(g(V, b), f(W ), U) ⇔ W = a | s(V,U,W )#1, r(U,U, V )#2, V = L,

U = J,W = I, I = L; {clr4@1}
r3@r(M,M,N), s(N,M, a) ⇔ p(M,N,N)#1; ∅
r4@s(L,J, I) ⇒ I = L; ∅ }.

Then, from Theorem 1 and Proposition 1, we have the following.

Corollary 2
Let P be a program and let P0, . . . , Pn be an U-sequence starting from Ann(P ).

Then QAP (G) = QA′
Pn

(G) for any arbitrary goal G.

5.3 Confluence and Termination

In this section, we prove that our unfolding preserves termination provided that

one considers normal derivations. These are the derivations in which the Solve

(Solve’) transitions are applied as soon as possible, as specified by Definition 14.

Moreover, we prove that our unfolding preserves also confluence, provided that one

considers only non-recursive unfoldings.

We first need to introduce the concept of built-in free configuration: This is a

configuration which has no built-in constraints in the first component.

Definition 13 (Built-in free configuration)
Let σ = 〈G,S,D, T 〉o ∈ Conft (σ = 〈G,D, T 〉o ∈ Conf ′

t
). The configuration σ is

built-in free if G is a multiset of (identified) CHR-constraints.

Now, we can introduce the concept of normal derivation.

Definition 14 (Normal derivation)
Let P be a (possibly annotated) CHR program and let δ be a derivation in P . We

say that δ is normal if, for each configuration σ in δ, a transition Apply (Apply’)

is used on σ only if σ is built-in free.

Note that, by definition, given a CHR program P , QA(P ) can be calculated

by considering only normal derivations and analogously for an annotated CHR

program P ′.

Definition 15 (Normal Termination)
A CHR program P is called terminating, if there are no infinite derivations. A

(possibly annotated) CHR program P is called normally terminating, if there are

no infinite normal derivations.

The following result shows that normal termination is preserved by unfolding

with the safe replacement condition. The proof is in the Appendix.
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Proposition 3 (Normal Termination)

Let P be a CHR program and let P0, . . . , Pn be an U-sequence starting from

Ann(P ). P satisfies normal termination if and only if Pn satisfies normal termi-

nation.

When standard termination is considered rather than normal termination, the

previous result does not hold, due to the guard elimination in the unfolding. This

is shown by the following example.

Example 12

Let us consider the following program:

P = { r1@p(X) ⇔ X = a, q(X)

r2@q(Y ) ⇔ Y = a | r(Y )

r3@r(Z) ⇔ Z = d | p(Z) }

where we do not consider the identifiers and the token store in the body of rules

(because we do not have propagation rules in P ). Then, by using

r2@q(Y ) ⇔ Y = a | r(Y )

to unfold r1@p(X) ⇔ X = a, q(X) (with replacement) we obtain the following

program P ′:

P ′ = { r1@p(X) ⇔ X = a,X = Y, r(Y )

r2@q(Y ) ⇔ Y = a | r(Y )

r3@r(Z) ⇔ Z = d | p(Z) }.

It is easy to check that the program P satisfies the (standard) termination. On

the other hand, considering the program P ′ and the start goal (V = d, p(V )), the

following state can be reached

〈(X = a, p(Z)#3), (V = d, V = X,X = Y, Y = Z), ∅〉3

where rules r1@p(X) ⇔ X = a,X = Y, r(Y ) and r3@r(Z) ⇔ Z = d | p(Z) can be

applied infinitely many times if the built-in constraint X = a is not moved by the

Solve’ rule into the built-in store. Hence, we have non-termination.

The next property we consider is confluence. This property guarantees that any

computation for a goal results in the same final state, no matter which of the

applicable rules are applied (Abdennadher and Frühwirth 2004; Frühwirth 2005).

We first give the following definition which introduces some specific notation for

renamings of indexes.

Definition 16

Let j1, . . . , jo be distinct identification values.

• A renaming of identifiers is a substitution of the form [j1/i1, . . . , jo/io], where

i1, . . . , io is a permutation of j1, . . . , jo.

• Given an expression E and a renaming of identifiers ρ = [j1/i1, . . . , jo/io], Eρ

is defined as the expression obtained from E by substituting each occurrence

of the identification value jl with the corresponding il, for l ∈ [1, o]
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• If ρ and ρ′ are renamings of identifiers, then ρρ′ denotes the renaming of

identifiers such that for each expression E, E(ρρ′) = (Eρ)ρ′.

We will use ρ, ρ′, . . . to denote renamings.

Now, we need the following definition introducing a form of equivalence between

configurations, which is a slight modification of that one in (Raiser et al. 2009),

since considers a different form of configuration and, in particular, also the presence

of the token store. Two configurations are equivalent if they have the same logical

reading and the same rules are applicable to these configurations with the same

results. By an abuse of notation, when it is clear from the context, we will write ≡V

to denote two equivalence relations in Conft and in Conf ′
t
with the same meaning.

Definition 17

Let V be a set of variables The equivalence ≡V between configurations in Conft is

the smallest equivalence relation that satisfies the following conditions.

• 〈d ∧G,S,C, T 〉n ≡V 〈G,S, d ∧C, T 〉n,
• 〈G,S,X = t ∧ C, T 〉n ≡V 〈G[X/t], S[X/t], X = t ∧ C, T 〉n,

• Let X,Y be variables such that X,Y 6∈ V and Y does not occur in G,S or c.

〈G,S,C, T 〉n ≡V 〈G[X/Y ], S[X/Y ], C[X/Y ], T 〉n,

• If W = Fv(C) \ (Fv(G,S) ∪ V ), U = Fv(C′) \ (Fv(G,S) ∪ V ), and CT |=

∃WC ↔ ∃UC′ then 〈G,S,C, T 〉n ≡V 〈G,S,C′, T 〉n,

• 〈G,S, false, T 〉n ≡V 〈G′, S′, false, T ′〉m,

• 〈G,S,C, T 〉n ≡V 〈G,Sρ,C, Tρ〉m for each renaming of identifiers ρ such that

for each i ∈ id(Sρ) ∪ id(Tρ) we have that i < m,

• 〈G,S,C, T 〉n ≡V 〈G,S,C, clean(S, T )〉n.

We can define the equivalence ≡V between configurations in Conf ′
t
in an analo-

gous way.

Definition 18

Let V be a set of variables The equivalence ≡V between configurations in Conf ′
t
is

the smallest equivalence relation that satisfies the following conditions.

• 〈d ∧G,C, T 〉n ≡V 〈G, d ∧C, T 〉n,
• 〈G,X = t ∧ C, T 〉n ≡V 〈G[X/t], X = t ∧ C, T 〉n,

• Let X,Y be variables such that X,Y 6∈ V and Y does not occur in G or c.

〈G,C, T 〉n ≡V 〈G[X/Y ], C[X/Y ], T 〉n,
• If W = Fv(C)\ (Fv(G)∪V ), U ′ = Fv(C′)\ (Fv(G)∪V ), and CT |= ∃WC ↔

∃uC′ then 〈G,C, T 〉n ≡V 〈G,C′, T 〉n,

• 〈G, false, T 〉n ≡V 〈G′, false, T ′〉m,

• 〈G,C, T 〉n ≡V 〈Gρ,C, Tρ〉m for each renaming of identifiers ρ such that for

each i ∈ id(Gρ) ∪ id(Tρ) we have that i ≤ m,

• 〈G,C, T 〉n ≡V 〈G,C, clean(G, T )〉n.

By definition of ≡V , it is straightforward to check that if σ, σ′ ∈ Conft (Conf
′
t
),

V is a set of variables, and σ ≡V σ′ then the following holds

• if W ⊆ V then σ ≡W σ′ and
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• if X 6∈ Fv(σ) ∪ Fv(σ′) then σ ≡V ∪{X} σ′.

We now introduce the concept of confluence which is a slight modification of that

one in (Raiser et al. 2009), since it considers also the cleaning of the token store.

In the following 7→∗ means either −→∗
ωt

or −→∗
ω′

t

.

Definition 19 (Confluence)

A CHR [annotated] program is confluent if for any state σ the following holds: if

σ 7→∗ σ1 and σ 7→∗ σ2 then there exist states σ′
f and σ′′

f such that σ1 7→∗ σ′
f and

σ2 7→∗ σ′′
f , where σ′

f ≡Fv(σ) σ′′
f .

Now, we prove that our unfolding preserves confluence, provided that one con-

siders only non-recursive unfolding. These are the unfoldings such that a clause cl

cannot be used in order to unfold cl itself.

When safe rule replacement is considered rather than non-recursive safe rule

replacement (see Definition 20), the confluence is not preserved. This is shown by

the following example.

Example 13

Let us consider the following program:

P = { r1@p ⇔ q

r2@p ⇔ r

r3@r ⇔ r, s

r4@q ⇔ r, s }

where we do not consider the identifiers and the token store in the body of rules

(because we do not have propagation rules in P ). Then, by using r3 to unfold r3
itself (with safe rule replacement) we obtain the following program P ′:

P ′ = { r1@p ⇔ q

r2@p ⇔ r

r3@r ⇔ r, s, s

r4@q ⇔ r, s }.

It is easy to check that the program P is confluent. On the other hand, considering

the program P ′ and the start goal p, the following two states can be reached

σ = 〈(r#3, s#4, s#5), true, ∅〉5 and σ′ = 〈(r#3, s#4), true, ∅〉4

and there exist no states σ1 and σ′
1 such that σ −→∗

ω′

t

σ1 and σ′ −→∗
ω′

t

σ′
1 in P ′,

where σ1 ≡∅ σ′
1.

Note that the program in previous example is not terminating. We cannot con-

sider a terminating program here, since for such a program (weak) safe rule re-

placement would allow to preserve confluence. Now, we give the definition of non-

recursive safe rule replacement.

Definition 20 (Non-recursive safe rule replacement)

Let P be an annotated CHR program and let clr ∈ P be an annotated rule such

that clr can be safely replaced (by its unfolded version) in P . We say that clr
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can be non-recursively safely replaced (by its unfolded version) in P if for each

(clv, (i1, . . . , in)) ∈ U+
P (clr), we have that clv 6= clr.

The following is the analogous of Definition 12, where non-recursive safe rule

replacement is considered.

Definition 21 (NRU-sequence)

Let P be an annotated CHR program. An NRU-sequence of programs starting from

P is a sequence of annotated CHR programs P0, . . . , Pn, such that

P0 = P and

Pi+1 = (Pi \ {cli}) ∪ UnfPi
(cli),

where i ∈ [0, n− 1], cli ∈ Pi and can be non-recursively safely replaced in Pi.

Theorem 2

Let P be a CHR program and let P0, . . . , Pn be an NRU-sequence starting from

P0 = Ann(P ). P satisfies confluence if and only if Pn satisfies confluence too.

6 Weak safe rule replacement

In this subsection, we consider only programs which are normally terminating and

confluent. For this class of programs we give a condition for rule replacement which

is much weaker than that one used in the previous section and which still allows

one to preserve the qualified answers semantics. Intuitively this new condition re-

quires that there exists a rule obtained by the unfolding of clr in P whose guard is

equivalent to that one in clr.

Definition 22 (Weak safe rule replacement)

Let P be an annotated CHR program and let r@H1\H2 ⇔ D |A;T ∈ P be a rule

such that there exists

r@H1\H2 ⇔ D′ |A′;T ′ ∈ UnfP (r@H1\H2 ⇔ D |A;T )

with CT |= D ↔ D′.

Then, we say that the rule r@H1\H2 ⇔ D |A;T can be weakly safely replaced

(by its unfolded version) in P .

Example 14

Let us consider the following program P :

P1 = { r1@p(X) ⇔ q(X), s(X)

r2@t(a) ⇔ r(b)

r3@q(Y ) ⇔ t(Y )

r4@s(a) \ q(a) ⇔ r(b) }

where we do not consider the identifiers and the token store in the body of rules

(because we do not have propagation rules in P ). By Definition 22, r1 can be weakly

safely replaced (by its unfolded version) in P and then we can obtain the program

P1 = (P \ {r1}) ∪ UnfP (r1),
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where P1 is the program

P1 = { r1@p(X) ⇔ s(X), t(Y ), X = Y

r2@t(a) ⇔ r(b)

r3@q(Y ) ⇔ t(Y )

r4@s(a) \ q(a) ⇔ r(b) }.

Finally, observe that r1 cannot be safely replaced (by its unfolded version) in P .

The following proposition shows that normal termination and confluence are

preserved by weak safe rule replacement. The proof is in the Appendix.

Proposition 4

Let P be an annotated CHR program and let cl ∈ P such that cl can be weakly

safely replaced in P . Moreover let

P ′ = (P \ {cl}) ∪ UnfP (cl).

If P is normally terminating then P ′ is normally terminating. If P is normally

terminating and confluent then P ′ is confluent too.

The converse of the previous theorem does not hold, as shown by the following

example.

Example 15

Let us consider the following program:

P = { r1@p(X) ⇔ q(X)

r2@q(a) ⇔ p(a)

r3@q(Y ) ⇔ r(Y ) }

where we do not consider the identifiers and the token store in the body of rules

(because we do not have propagation rules in P ). Then, by using r3 to unfold r1
itself (with weak safe rule replacement) we obtain the following program P ′:

P ′ = { r1@p(X) ⇔ X = Y, r(Y )

r2@q(a) ⇔ p(a)

r3@q(Y ) ⇔ r(Y ). }

It is easy to check that the program P ′ satisfies the (normal) termination. On the

other hand, considering the program P and the start goal p(a), the following state

can be reached

〈(p(a)#3), (X = a), ∅〉3

where rules r1@p(X) ⇔ q(X) and r2@q(a) ⇔ p(a) in P can be applied infinitely

many times. Hence, we have non-(normally)termination.

Next, we show that weak safe rule replacement transformation preserves qualified

answers.
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Theorem 3

Let P be a normally terminating and confluent annotated program and let cl be a

rule in P such that cl can be weakly safely replaced in P according to Definition 22.

Assume also that

P ′ = (P \ {cl}) ∪ UnfP (cl).

Then QA′
P (G) = QA′

P ′(G) for any arbitrary goal G.

Proof

Analogously to Theorem 1, by using Proposition 1 we can prove that QA′
P (G) =

QA′
P ′′(G) where

P ′′ = P ∪ UnfP (cl),

for any arbitrary goal G.

Then, to prove the thesis, we have only to prove that

QA′
P ′(G) = QA′

P ′′(G).

We prove the two inclusions separately.

(QA′
P ′(G) ⊆ QA′

P ′′(G)) The proof is the same of the caseQA′
P ′(G) ⊆ QA′

P ′′(G)

of Theorem 1 and hence it is omitted.

(QA′
P ′′(G) ⊆ QA′

P ′(G)) The proof is by contradiction. Assume that there exists

Q ∈ QA′
P ′′(G) \ QA′

P ′(G). Since, from the proof of Proposition 4, we can

conclude that P ′′ is normally terminating and confluent, we have that QA′
P ′′ (G)

is a singleton. Moreover, since by the previous point QA′
P ′(G) ⊆ QA′

P ′′(G),

we have that QA′
P ′(G) = ∅. This means that each normal derivation in P ′

either is not terminating or terminates with a failed configuration. Then, by

using Proposition 4, we have that each normal derivation in P ′ terminates with a

failed configuration. Since P ′ ⊆ P ′′, we have that there exist normal derivations

in P ′′ which terminate with a failed configuration. Then, by Lemma 3 and since

Q ∈ QA′
P ′′(G), we have a contradiction and then the thesis holds.

Let cl be the rule r@H1\H2 ⇔ D |A;T . Note that Proposition 4 and Theorem 3

hold also if

P ′ = (P \ {cl}) ∪ S,

where S ⊆ UnfP (cl) and there exists cl′ = r@H1\H2 ⇔ D′ |A′;T ′ ∈ S such that

CT |= D ↔ D′.

If in Definition 12 we consider weak safe rule replacement rather than safe rule

replacement, then we can obtain a definition of WU-sequence (rather than U-

sequence). From the previous theorem and by Proposition 4, by using an obvious

inductive argument, we can derive that the semantics (in terms of qualified answers)

is preserved in WU-sequences starting from a normally terminating and confluent

annotated program, where weak safe replacement is applied repeatedly.
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7 Conclusions

In this paper, we have defined an unfold operation for CHR which preserves the

qualified answers of a program.

This was obtained by transforming a CHR program into an annotated one which

is then unfolded. The equivalence of the unfolded program and the original (unan-

notated) one is proven by using a slightly modified operational semantics for anno-

tated programs. We have then provided a condition that can be used to replace a

rule by its unfolded version, while preserving the qualified answers. We have also

shown that this condition ensures that confluence and termination are preserved,

provided that one considers normal derivations. Finally, we have defined a further,

weaker, condition which allows one to safely replace a rule by its unfolded version

(while preserving qualified answers) for programs which are normally terminating

and confluent.

There are only few other papers that consider source to source transformation

of CHR programs. (Frühwirth 2005), rather than considering a generic transfor-

mation system focuses on the specialization of rules w.r.t. a specific goal, analo-

gously to what happens in partial evaluation. In (Frühwirth and Holzbaur 2003)

CHR rules are transformed in a relational normal form, over which a source to

source transformation is performed. Some form of transformation for probabilistic

CHR is considered in (Frühwirth et al. 2002), while guard optimization was studied

in (Sneyers et al. 2005). Another paper which involves program transformation for

CHR is (Sarna-Starosta and Schrijvers 2009).

Both the general and the goal specific approaches are important in order to

define practical transformation systems for CHR. In fact, on the one hand of

course one needs some general unfold rule, on the other hand, given the diffi-

culties in removing rules from the transformed program, some goal specific tech-

niques can help to improve the efficiency of the transformed program for spe-

cific classes of goals. A method for deleting redundant CHR rules is considered

in (Abdennadher and Frühwirth 2004). However, it is based on a semantic check

and it is not clear whether it can be transformed into a specific syntactic program

transformation rule.

When considering more generally the field of concurrent logic languages, we

find few papers which address the issue of program transformation. Notable ex-

amples include (Etalle et al. 2001) that deals with the transformation of Concur-

rent Constraint Programming (CCP) and (Ueda and Furukawa 1988) that consid-

ers Guarded Horn Clauses (GHC). The results in these papers are not directly

applicable to CHR because neither CCP nor GHC allow rules with multiple heads.

As mentioned in the introduction, some of the results presented here appeared

in (Tacchella et al. 2007) and in the thesis (Tacchella 2008). However, it is worth

noticing that the conditions for safe rule replacement that we have presented in

Section 5 and the content of Section 6 are original contributions of this paper.

In particular, differently from the conditions given in (Tacchella et al. 2007) and

(Tacchella 2008), the conditions defined in Section 5 allow us to perform rule re-
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placement also when rules with multiple heads are used for unfolding a given rule.

This is a major improvement, since CHR rules have naturally multiple heads.

The results obtained in the current article can be considered as a first step in

the direction of defining a transformation system for CHR programs, based on un-

folding. This step could be extended in several directions: First of all, the unfolding

operation could be extended to take into account also the constraints in the propa-

gation part of the head of a rule. Also, we could extend to CHR some of the other

transformations, notably folding (Tamaki and Sato 1984) which has already been

applied to CCP in (Etalle et al. 2001). Finally, we would like to investigate from

a practical perspective to what extent program transformation can improve the

performance of the CHR solver. Clearly, the application of an unfolded rule avoids

some computational steps (assuming that unfolding is done at the time of compi-

lation, of course). However, the increase in the number of program rules produced

by unfolding could eliminate this improvement.

Here, it would probably be important to consider some unfolding strategy, in

order to decide which rules have to be unfolded.

An efficient unfolding strategy could also incorporate in particular probabilistic

or statistical information. The idea would be to only unfold CHR rules which are

used often and leave those which are used only occasionally unchanged in order to

avoid an unnecessary increase in the number of program rules. This approach could

be facilitated by probabilistic CHR extensions such as the ones as presented for

example in (Frühwirth et al. 2002) and (Sneyers et al. 2010). Extending the results

of this paper to probabilistic CHR will basically follow the lines and ideas presented

here. The necessary information which one would need to decide whether and in

which sequence to unfold CHR rules could obtain experimentally, e.g. by profiling,

or formally via probabilistic program analysis. One could see this as a kind of

speculative unfolding.
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Appendix A Proofs

In this appendix, we give the proofs of some of the results contained in the paper.

A.1 Equivalence of the two operational semantics

Here, we provide the proof of Proposition 1. To this aim we first introduce some

preliminary notions and lemmas.

Then, we define two configurations (in the two different transition systems) equiv-

alent when they are essentially the same up to renaming of identifiers.

Definition 23 (Configuration equivalence)

Let σ = 〈(H1, C), H2, D, T 〉n ∈ Conft be a configuration in the transition system ωt

and let σ′ = 〈(K,C), D, T ′〉m ∈ Conf ′
t
be a configuration in the transition system

ω′
t.

σ and σ′ are equivalent (and we write σ ≈ σ′) if:

1. there exist K1 and K2, such that K = K1⊎K2, H1 = chr(K1) and chr(H2) =

chr(K2),

2. for each l ∈ id(K1), l does not occur in T ′,

3. there exists a renaming of identifier ρ s.t. H2ρ = K2 and Tρ = T ′.

Condition 1 grants that σ and σ′ have equal CHR constraints, while Condition 2

ensures that no propagation rule is applied to constraints in σ′ corresponding to

constrains in σ that are not previously introduced in the CHR store. Finally, con-

dition 3 requires that there exists a renaming of identifiers such that the identified

CHR constraints and the tokens of σ and the ones associated with them in σ′ are

equal, after the renaming.

The following result shows the equivalence of the two introduced semantics prov-

ing the equivalence of intermediate configurations.

Lemma 1

Let P and Ann(P ) be respectively a CHR program and its annotated version.

Moreover, let σ ∈ Conft and let σ′ ∈ Conf ′
t
such that σ ≈ σ′. Then, the following

holds

• there exists a derivation δ = σ −→∗
ωt

σ1 in P if and only if there exists a

derivation δ′ = σ′ −→∗
ω′

t

σ′
1 in Ann(P ) such σ1 ≈ σ′

1

• the number of Solve (Apply) transition steps in δ and the number of Solve’

(Apply’) transition steps in δ′ are equal.

Proof

We show that any transition step from any configuration in one system can be

imitated from a (possibly empty) sequence of transition steps from an equivalent

configuration in the other system to achieve an equivalent configuration. Moreover

there exists a Solve (Apply) transition step in δ if and only if there exists a Solve’

(Apply’) transition step in δ′.

Then, the proof follows by a straightforward inductive argument.
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Let σ = 〈(H1, C), H2, D, T 〉n ∈ Conft and let σ′ = 〈(K,C), D, T ′〉m ∈ Conf ′
t

such that σ ≈ σ′. By definition of ≈, there exist K1 and K2 and a renaming ρ such

that

K = K1 ⊎K2, H1 = chr(K1), chr(H2) = chr(K2), H2ρ = K2 and Tρ = T ′. (A1)

Solve and Solve’: they move a built-in constraint from the Goal store or the Store

respectively to the built-in constraint store. In this case, let C = C′ ⊎ {c}. By

definition of the two transition systems

σ −→Solve
ωt

〈(H1, C
′), H2, D ∧ c, T 〉n and σ′ −→Solve′

ω′

t

〈(K,C′), D ∧ c, T ′〉m.

By definition of ≈, it is easy to check that 〈(H1, C
′), H2, D∧c, T 〉n ≈ 〈(K,C′), D∧

c, T ′〉m.

Introduce: this kind of transition there exists only in ωt semantics and its appli-

cation labels a CHR constraint in the goal store and moves it in the CHR store.

In this case, let H1 = H ′
1 ⊎ {h} and

σ −→Introduce
ωt

〈(H ′
1, C), H2 ⊎ {h#n}, D, T 〉n+1.

LetH ′
2 = H2⊎{h#n}. By (A1) and sinceH1 = H ′

1⊎{h}, there exists an identified

atom h#f ∈ K1. Let n
′ = ρ(n) (where n′ = n if n is not in the domain of ρ).

Now, let K ′
1 = K1 \ {h#f} and K ′

2 = K2 ⊎ {h#f}. By (A1), we have that

K = K ′
1 ⊎K ′

2, H
′
1 = chr(K ′

1) and chr(H ′
2) = chr(K ′

2).

Moreover, by definition of≈, for each l ∈ id(K1), l does not occur in T ′. Therefore,

since by constructionK ′
1 ⊆ K1, we have that for each l ∈ id(K ′

1), l does not occur

in T ′.

Now, to prove that σ′ ≈ 〈(H ′
1, C), H ′

2, D, T 〉n+1, we have only to prove that there

exists a renaming ρ′, such that Tρ′ = T ′ and H ′
2ρ

′ = K ′
2. We can consider the

new renaming ρ′ = ρ{n′/f, f/n′}. By definition ρ′ is a renaming of identifiers.

Let us start proving that H ′
2ρ

′ = K ′
2.

We recall that H2ρ = K2 by hypothesis. Since by construction, f 6∈ id(K2) =

id(H2ρ), we have that H2ρ
′ = H2ρ{n′/f, f/n′} = H2ρ{n′/f}. Moreover, since

by definition n 6∈ id(H2) and n′ = ρ(n), we have that H2ρ{n′/f} = H2ρ. By the

previous observations, we have that

H ′
2ρ

′ = H2ρ ⊎ ({h#n}{n/f}) = K ′
2.

Finally, we prove that Tρ′ = T ′. Since by definition of configurations in Conft , n

does not occur in T and n′ = ρ(n), we have that Tρ′ = (Tρ){f/n′} = T ′{f/n′},

where the last equality follows by hypothesis. Moreover since f ∈ id(K1), we

have that f does not occur in T ′. Therefore, T ′{f/n′} = T ′ and then the thesis.

Apply and Apply’: Let clr = r@F ′\F ′′ ⇔ D1 |B,C1 ∈ P and let cl′r = r@F ′\F ′′ ⇔

D1 | B̃, C1 ∈ Ann(P ) be its annotated version, where B̃ = I(B). The latter can

be applied to the considered configuration σ′ = 〈(K,C), D, T ′〉m. In particular

F ′, F ′′ match respectively with P1 and P2 such that P1 ⊎ P2 ⊆ K. Without loss
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of generality, by using a suitable number of Introduce steps, we can assume

that r@F ′\F ′′ ⇔ D1 |B,C1 ∈ P can be applied to σ = 〈(H1, C), H2, D, T 〉n. In

particular, considering the hypothesis σ ≈ σ′, we can assume for i = 1, 2, there

exists Qi such that Q1 ⊎Q2 ⊆ H2, Qiρ = Pi and F ′, F ′′ match respectively with

Q1 and Q2.

Then, by (A1), there exist P3 and Q3 such that Q3ρ = P3, K2 = P1 ⊎ P2 ⊎ P3

and H2 = Q1 ⊎Q2 ⊎Q3.

By construction, since Tρ = T ′ and (P1, P2) = (Q1, Q2)ρ (and then chr(P1, P2) =

chr(Q1, Q2)), we have that

• r@id(P1, P2) 6∈ T ′ if and only if r@id(Q1, Q2) 6∈ T and

• CT |= D → ∃cl′
r
(((F ′, F ′′) = chr(P1, P2)) ∧D1) if and only if CT |= D →

∃clr (((F
′, F ′′) = chr(Q1, Q2)) ∧D1).

Therefore, by definition of Apply and of Apply’

σ −→Apply
ωt

〈{H1, C}⊎{B,C1}, (Q1, Q3), ((F
′, F ′′) = chr(Q1, Q2))∧D1∧D,T1〉n

if and only if

σ′ →Apply′

ω′

t

〈(K1, P1, P3, C,B
′, C1), ((F

′, F ′′) = chr(P1, P2)) ∧D1 ∧D,T ′
1〉o

where

• T1 = T ∪ {r@id(Q1, Q2)},

• (B′, ∅, o) = inst(B̃, ∅,m) and

• T ′
1 = T ′ ∪ {r@id(P1, P2)}.

Let σ1 = 〈{H1, C} ⊎ {B,C1}, (Q1, Q3), ((F
′, F ′′) = chr(Q1, Q2)) ∧D1 ∧D,T1〉n

and σ′
1 = 〈(K1, P1, P3, B

′, C, C1), ((F
′, F ′′) = chr(P1, P2)) ∧D1 ∧D,T ′

1〉o.

Now, to prove the thesis, we have to prove that σ1 ≈ σ′
1.

The following holds.

1. There exist K ′
1 = (K1, B

′) and K ′
2 = (P1, P3), such that (K1, P1, P3, B

′) =

K ′
1 ∪K ′

2, H1 ⊎B = chr(K ′
1) and chr(Q1, Q3) = chr(K ′

2).

2. Since for each l ∈ id(K1), l does not occur in T ′, P1 ⊆ K2 and by definition

of Apply’ transition, we have that for each l ∈ id(K ′
1) = id(K1, B

′), l does

not occur in T ′
1,

3. By construction and since Tρ = T ′, we have that T1ρ = T ′
1. Moreover, by

construction (Q1, Q3)ρ = (P1, P3) = K ′
2.

By definition, we have that σ1 ≈ σ′
1 and then the thesis.

Then, we easily obtain the following
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Proposition 1

Let P and Ann(P ) be respectively a CHR program and its annotated version. Then,

for every goal G,

QAP (G) = QA′
Ann(P )(G)

holds.

Proof

By definition of QA and of QA′, the initial configurations of the two transition

systems are equivalent. Then, the proof follows by Lemma 1.

A.2 Correctness of the unfolding

We prove now the correctness of our unfolding definition.

Next proposition states that qualified answers can be obtained by considering

normal derivations only for both the semantics considered. Its proof is straightfor-

ward and hence it is omitted.

Proposition 5

Let P be CHR program and let P ′ an annotated CHR program. Then

QAP (G) = {∃−Fv(G)(chr(K) ∧ d) | CT 6|= d ↔ false,

δ = 〈G, ∅, true, ∅〉1 →∗
ωt

〈∅,K, d, T 〉n 6→ωt

and δ is a normal derivation}

and

QA′
P ′(G) = {∃−Fv(G)(chr(K) ∧ d) | CT 6|= d ↔ false,

δ = 〈I(G), true, ∅〉m →∗
ω′

t

〈K, d, T 〉n 6→ω′

t

and δ is a normal derivation}.

The next proposition essentially shows the correctness of unfolding w.r.t. a deriva-

tion step. We first define an equivalence between configurations in Conf ′
t
.

Definition 24 (Configuration Equivalence)

Let σ = 〈G,D, T 〉o and σ′ = 〈G′, D′, T ′〉o be configurations in Conf ′
t
. σ and σ′ are

equivalent and we write σ ≃ σ′ if one of the following facts hold:

• σ and σ′ are both failed configurations

• or G = G′, CT |= D ↔ D′ and clean(G, T ) = clean(G′, T ′).

Proposition 6

Let clr, clv be annotated CHR rules and cl′r be the result of the unfolding of clr with

respect to clv. Let σ be a generic built-in free configuration such that we can use

the transition Apply’ with the rule cl′r obtaining the configuration σr′ and then

the built-in free configuration σf
r′ . Then, we can construct a derivation which uses

at most the rules clr and clv and obtain a built-in free configuration σf such that

σf
r′ ≃ σf .
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Proof

Assume that

σ −→cl′
r σr′ −→Solve∗ σf

r′

ց clr σr −→Solve∗ σf
r (−→

clv σv −→Solve∗ σf
v )

The labeled arrow −→Solve∗ means that only Solve transition steps are applied.

Moreover:

• if σf
r has the form 〈G, false, T 〉 then the derivation between the parenthesis is not

present and σf = σf
r .

• the derivation between the parenthesis is present and σf = σf
v , otherwise.

Let σ = 〈(H1, H2, H3), C, T 〉j be a built-in free configuration and let clr and clv be

the rules r@H ′
1\H

′
2 ⇔ Dr |K,S1, S2, Cr;Tr and v@S′

1\S
′
2 ⇔ Dv |P,Cv;Tv respec-

tively, where Cr is the conjunction of all the built-in constraints in the body of clr,

θ is a substitution such that dom(θ) ⊆ Fv(S′
1, S

′
2) and

CT |= (Dr ∧ Cr) → chr(S1, S2) = (S′
1, S

′
2)θ. (A2)

Furthermore assume that m is the greatest identifier which appears in the rule clr
and that inst(P, Tv,m) = (P1, T1,m1). Then, the unfolded rule cl′r is:

r@H ′
1\H

′
2 ⇔ Dr, (D

′
vθ) |K,S1, P1, Cr, Cv, chr(S1, S2) = (S′

1, S
′
2);Tr′

where v@id(S1, S2) 6∈ Tr, V ⊆ Dv, V = {c | CT |= (Dr ∧ Cr) → cθ}, D′
v = Dv\V ,

Fv(D′
vθ) ∩ Fv((S′

1, S
′
2)θ) ⊆ Fv(H ′

1, H
′
2), the constraint (Dr, (D

′
vθ)) is satisfiable

and

• if S′
2 = ǫ then Tr′ = Tr ∪ T1 ∪ {v@id(S1)}

• if S′
2 6= ǫ then Tr′ = clean((K,S1), Tr) ∪ T1.

By the previous observations, we have that

CT |= (Dr ∧ Cr) → V θ, (A3)

and therefore CT |= V θ ↔ ∃−Fv(Dr∧Cr)V θ. Then, without loss of generality, we

can assume that

Fv(V θ) ⊆ Fv(clr). (A4)

Analogously, by (A2) and since dom(θ) ⊆ Fv(S′
1, S

′
2), we can assume that

Fv(chr(S1, S2) = (S′
1, S

′
2)θ) = Fv((chr(S1, S2) = (S′

1, S
′
2))θ) ⊆ Fv(clr). (A5)

Moreover, since by definition Fv(D′
vθ)∩Fv((S′

1, S
′
2)θ) ⊆ Fv(H ′

1, H
′
2) and dom(θ) ⊆

Fv(S′
1, S

′
2), we have that

Fv(D′
vθ) ⊆ Fv(H ′

1, H
′
2) ∪ Fv(clv). (A6)

Let us consider the application of the rule cl′r to σ. By definition of the transition

Apply’, we have that

CT |= C → ∃cl′
r
((chr(H1, H2) = (H ′

1, H
′
2)) ∧Dr ∧ (D′

vθ)) (A7)
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and

σr′ = 〈(Q,Cr, Cv, chr(S1, S2) = (S′
1, S

′
2)), D, T3〉j+m1

,

where

• Q = (H1, H3, Q1),

• CT |= D ↔ (chr(H1, H2) = (H ′
1, H

′
2) ∧Dr ∧ (D′

vθ) ∧C),

• inst((K,S1, P1), Tr′ , j) = (Q1, T
′
r′, j +m1) and T3 = T ∪ T ′

r′ ∪ {r@id(H1, H2)}.

Therefore, by definition σf
r′ = 〈Q,Cf

r′ , T3〉j+m1
, where

CT |= Cf
r′ ↔ (Cr ∧ Cv ∧ chr(S1, S2) = (S′

1, S
′
2) ∧D).

Let us consider now the application of clr to σ and then of clv to the σf
r obtained

from the previous application. Since by construction Fv((chr(H1, H2) = (H ′
1, H

′
2))∧

Dr) ∩ Fv(cl′r) ⊆ Fv(clr) and by (A7), we have that

CT |= C → ∃clr ((chr(H1, H2) = (H ′
1, H

′
2)) ∧Dr).

Therefore, by definition of the transition Apply’, we have that

σr = 〈(Q2, Cr), chr(H1, H2) = (H ′
1, H

′
2) ∧Dr ∧ C, T4〉j+m,

where

• Q2 = (H1, H3,K
′′, S′′

1 , S
′′
2 ),

• ((K ′′, S′′
1 , S

′′
2 ), T2, j+m) = inst((K,S1, S2), Tr, j) and T4 = T∪T2∪{r@id(H1, H2)}.

Therefore, by definition σf
r = 〈Q2, C

f
r , T4〉j+m, where

CT |= Cf
r ↔ Cr ∧ chr(H1, H2) = (H ′

1, H
′
2) ∧Dr ∧ C. (A8)

Now, we have two possibilities

(Cf
r = false). In this case, by construction, we have that Cf

r′ = false. Therefore

σf
r′ ≃ σf

r and then the thesis.

(Cf
r 6= false). By (A8) and (A3) (A2), we have that

CT |= Cf
r → chr(S1, S2) = (S′

1, S
′
2)θ ∧ V θ.

Moreover, by (A8), (A7) and (A6)

CT |= Cf
r → ∃H′

1
,H′

2
,clv(chr(H1, H2) = (H ′

1, H
′
2) ∧ (D′

vθ))

∧ chr(H1, H2) = (H ′
1, H

′
2)

and then CT |= Cf
r → ∃clv (D

′
vθ). Therefore, by (A4), (A5) and since the rules

are renamed apart,

CT |= Cf
r → ∃clv (chr(S1, S2) = (S′

1, S
′
2)θ ∧ V θ ∧D′

vθ).

Then, by definition of Dv and since dom(θ) ⊆ Fv(S′
1, S

′
2), we have that CT |=

Cf
r → ∃clv ((chr(S1, S2) = (S′

1, S
′
2) ∧Dv)θ).

Therefore, since dom(θ) ⊆ Fv(S′
1, S

′
2) ⊆ Fv(clv),

CT |= Cf
r → ∃clv (chr(S1, S2) = (S′

1, S
′
2) ∧Dv).
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Then, σf
r is such that we can use the transitionApply’ with the rule clv obtaining

the new configuration

σv = 〈(Q3, Cv), D
′, T5〉m1

,

where

• Q3 = (H1, H3,K
′′, S′′

1 , P2)

• CT |= D′ ↔ (chr(S1, S2) = (S′
1, S

′
2) ∧Dv ∧ Cr ∧ chr(H1, H2) = (H ′

1, H
′
2) ∧

Dr ∧ C),

• inst(P, Tv, j +m) = (P2, T
′
v,m1) and T5 = T4 ∪ T ′

v ∪ {v@id(S′′
1 , S

′′
2 )}.

Finally, by definition, we have that σf
v = 〈Q3, C

f
v , T5〉m1

, where

CT |= Cf
v ↔ Cv ∧D′.

By definition of D and D′, we have that CT |= Cf
r′ ↔ Cf

v .

If Cf
v = false then the proof is analogous to the previous case and hence it is

omitted. Otherwise, observe that by construction, Q = (H1, H3, Q1), where Q1 is

obtained from (K,S1, P1) by adding the natural j to each identifier in (K,S1) and

by adding the natural j+m to each identifier in P . Analogously, by construction,

Q3 = (H1, H3,K
′′, S′′

1 , P2), where (K ′′, S′′
1 ) are obtained from (K,S1) by adding

the natural j to each identifier in (K,S1) and P2 is obtained from P by adding

the natural j +m to each identifier in P .

Therefore Q = Q3 and then, to prove the thesis, we have only to prove that

clean(Q, T3) = clean(Q, T5).

Let us introduce the function inst′ : Token× N −→ N as the restriction of the

function inst to token sets and natural numbers, namely inst′(T, n) = T ′, where

T ′ is obtained from T by incrementing each identifier in T with n. So, since

T ′
r′ = inst′(Tr′ , j), Tr′ = Tr∪T1∪{v@id(S1, S2)} and T1 = inst′(Tv,m), we have

that

T3 = T ∪ T ′
r′ ∪ {r@id(H1, H2)}

= T ∪ inst′(clean((K,S1), Tr), j) ∪ inst′(Tv, j +m)∪

inst′({v@id(S1, S2)}, j) ∪ {r@id(H1, H2)}

Analogously, since T4 = T ∪ T2 ∪ {r@id(H1, H2)}, T2 = inst′(Tr, j) and T ′
v =

inst′(Tv, j +m), we have that

T5 = T4 ∪ T ′
v ∪ {v@id(S′′

1 , S
′′
2 )}

= T ∪ inst′(Tr, j) ∪ {r@id(H1, H2)} ∪ inst′(Tv, j +m)∪

{v@id(S′′
1 , S

′′
2 )}

Now, since by construction (S′′
1 , S

′′
2 ) is obtained from (S1, S2) by adding the nat-

ural j to each identifier, we have that inst′({v@id(S1, S2)}, j) = {v@id(S′′
1 , S

′′
2 )}.

Moreover, by definition of annotated rule id(Tr) ⊆ id(K,S1, S2) andQ = (H1, H3, Q1),

where Q1 is obtained from (K,S1, P1) by adding the natural j to each identi-

fier in (K,S1) and by adding the natural j + m to each identifier in P . Then
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clean(Q, inst′(clean((K,S1), Tr), j)) = clean(Q, inst′(Tr, j)) and then the thesis

holds.

Hence we obtain the correctness result.

Proposition 2
Let P be an annotated CHR program with clr, clv ∈ P . Let cl′r be the result of the

unfolding of clr with respect to clv and let P ′ be the program obtained from P by

adding rule cl′r. Then, for every goal G, QA′
P ′(G) = QA′

P (G) holds.

Proof
We prove the two inclusions separately.

(QA′
P ′(G) ⊆ QA′

P (G)) The proof follows from Propositions 5 and 6 and by a

straightforward inductive argument.
(QA′

P (G) ⊆ QA′
P ′(G)) The proof is by contradiction. Assume that there exists

Q ∈ QA′
P (G) \ QA′

P ′(G). By definition there exists a derivation

δ = 〈I(G), true, ∅〉m →∗
ω′

t

〈K, d, T 〉n 6→ω′

t

in P , such that Q = ∃−Fv(G)(chr(K) ∧ d). Since P ⊆ P ′, we have that there

exists the derivation 〈I(G), true, ∅〉m →∗
ω′

t

〈K, d, T 〉n in P ′. Moreover, since P ′ =

P ∪{cl′r} and by hypothesis Q 6∈ QA′
P ′(G), we have that there exists a derivation

step 〈K, d, T 〉n →ω′

t
〈K1, d1, T1〉n1

by using the rule cl′r. Then, by definition of

unfolding there exists a derivation step 〈K, d, T 〉n →ω′

t
〈K2, d2, T2〉n2

in P , by

using the rule clr and then we have a contradiction.

A.3 Safe replacement

We can now provide the result which shows the correctness of the safe rule replace-

ment condition. This is done by using the following proposition.

Proposition 7
Let clr, clv be two annotated CHR rules such that the following holds

• clr is of the form r@H ′
1\H

′
2 ⇔ Dr |Kr;Tr,

• cl′r ∈ Unf{clv}(cl) is of the form r@H ′
1\H

′
2 ⇔ D′

r |K
′
r;T

′
r, with CT |= Dr ↔

D′
r and it is obtained by unfolding the identified atoms A ⊆ Kr.

Moreover, let σ be a generic built-in free configuration such that we can construct

a derivation δ from σ where

• δ uses at the most the rules clr and clv in the order,
• a built-in free configuration σf can be obtained and
• if clv is used, then clv rewrites the atoms A′ such that chr(A) = chr(A′).

Then, we can use the transitionApply’ with the rule cl′r obtaining the configuration

σr′ and then the built-in free configuration σf
r′ such that σf

r′ ≃ σf .
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Proof

Assume that

σ −→ clr σr −→Solve∗ σf
r −→clv σv −→Solve∗ σf

v

ց cl′
r
σr′ −→Solve∗ σf

r′

The labeled arrow −→Solve∗ means that only Solve transition steps are applied.

Moreover

• if σf
r has the form 〈G, false, T 〉 then the derivation between the parenthesis is not

present and σf = σf
r .

• the derivation between the parenthesis is present and σf = σf
v , otherwise.

We first need some notation. Let σ = 〈(F1, F2, F3), C, T 〉j be a built-in free

configuration and let clr and clv be of the form r@H1\H2 ⇔ Dr |K,A,Cr;Tr and

v@H ′
1\H

′
2 ⇔ Dv |P,Cv;Tv respectively, A = A1 ⊎ A2, Cr is the conjunction of

all the built-in constraints in the body of clr and θ is a substitution such that

dom(θ) ⊆ Fv(H ′
1, H

′
2) and

CT |= (Dr ∧ Cr) → chr(A1, A2) = (H ′
1, H

′
2)θ. (A9)

Furthermore let m be the greatest identifier which appears in the rule clr and let

(P1, T1,m1) = inst(P, Tv,m).

Then, the unfolded rule cl′r is:

r@H1\H2 ⇔ Dr, (D
′
vθ) |K,A1, P1, Cr, Cv, chr(A1, A2) = (H ′

1, H
′
2);T

′
r

where v@id(A1, A2) 6∈ Tr, V = {d ∈ Dv | CT |= (Dr ∧ Cr) → dθ}, D′
v = Dv\V ,

Fv(D′
vθ) ∩ Fv(k′)θ ⊆ Fv(H1, H2), the constraint (Dr, (D

′
vθ)) is satisfiable and

• if H ′
2 = ǫ then T ′

r = Tr ∪ T1 ∪ {v@id(A1)}

• if H ′
2 6= ǫ then T ′

r = clean((K,A1), Tr) ∪ T1.

Since by hypothesis, CT |= (Dr, (D
′
vθ)) ↔ Dr, we have that

CT |= (Dr ∧ Cr) → Dvθ and D′
vθ = ∅. (A10)

Let us now consider the application of the rule clr to σ. By definition of the

Apply’ transition step, we have that

CT |= C → ∃clr ((chr(F1, F2) = (H1, H2)) ∧Dr) (A11)

and

σr = 〈(Q2, Cr), chr(F1, F2) = (H1, H2) ∧Dr ∧ C, T4〉j+m,

where Q2 = (F1, F3,K
′, A′), ((K ′, A′), T2, j + m) = inst((K,A), Tr, j) and T4 =

T ∪ T2 ∪ {r@id(F1, F2)}.

Therefore, by definition

σf
r = 〈Q2, C

f
r , T4〉j+m.

where

CT |= Cf
r ↔ Cr ∧ chr(F1, F2) = (H1, H2) ∧Dr ∧ C. (A12)
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Let us now apply the rule cl′r to σ. By (A11), (A10) and by definition of the Apply’

transition step, we have that

σr′ = 〈(Q,Cr, Cv, chr(A1, A2) = (H ′
1, H

′
2)), D, T3〉j+m1

,

where

• CT |= D ↔ chr(F1, F2) = (H1, H2) ∧Dr ∧ C,

• Q = (F1, F3, Q1),

• inst((K,A1, P1), T
′
r, j) = (Q1, T

′′
r , j +m1) and T3 = T ∪ T ′′

r ∪ {r@id(F1, F2)}.

Therefore, by definition

σf
r′ = 〈Q,Cf

r′ , T3〉j+m1
.

where

CT |= Cf
r′ ↔ Cr ∧Cv ∧ chr(A1, A2) = (H ′

1, H
′
2) ∧D.

Now, we consider the two previously obtained configurations σf
r and σf

r′ . Since

by hypothesis σf
v is a non-failed configuration, we have that Cf

r 6= false

Now, let A′ ∈ Q2 such that chr(A′) = chr(A). Note that such atoms there exist,

since by construction A are atoms in the body of clr.

By definition, since A are atoms in the body of clr, dom(θ) ⊆ Fv(H ′
1, H

′
2) ⊆

Fv(clv), by (A12), (A9) and (A10), we have that

CT |= Cf
r → ((chr(A1, A2) = (H ′

1, H
′
2)) ∧Dv)θ

and therefore, since dom(θ) ⊆ Fv(clv), we have that

CT |= Cf
r → ∃clv ((chr(A1, A2) = (H ′

1, H
′
2)) ∧Dv).

Then, since by hypothesis clv rewrites the atom A = (A1, A2) such that chr(A′) =

chr(A′
1, A

′
2) = chr(A1, A2) = chr(A), we have that

σv = 〈(Q3, Cv), D
′, T5〉m1

,

where

• Q3 = (F1, F3,K
′, A′

1, P2),

• D′ = (chr(A1, A2) = (H ′
1, H

′
2) ∧Dv ∧ Cr ∧ chr(F1, F2) = (H1, H2) ∧Dr ∧ C),

• inst(P, Tv, j +m) = (P2, T
′
v,m1) and T5 = T4 ∪ T ′

v ∪ {v@id(k′′)}.

Finally, by definition, we have that σf
v = 〈Q3, C

f
v , T5〉m1

, where

CT |= Cf
v ↔ (Cv ∧D′).

If Cf
v = false then the proof is analogous to the previous case and hence it is

omitted.

Otherwise, the proof is analogous to that given for Proposition 6 and hence it is

omitted.
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Proposition 8

Let σ0 = 〈F, c, T 〉m be a built-in configuration and let cl be an annotated CHR rule

such that the following holds.

a) cl = r@H1\H2 ⇔ D |A;T . where (H1, H2) = (h1, . . . , hn),

b) there exists (K1,K2) = (k1, . . . , kn) ⊆ F such that r@id(K1,K2) 6∈ T and

CT |= c → ∃cl((chr(K1,K2) = (H1, H2)) ∧D),

c) there exist l ∈ {1, . . . , n} and (K ′
1,K

′
2) = (k′1, . . . , k

′
n) ⊆ F such that kl = k′l,

r@id(K ′
1,K

′
2) 6∈ T and CT |= c ∧ chr(kl) = hl → (chr(K ′

1,K
′
2) = (H1, H2)),

d) σ0 −→ω′

t
σ is an Apply’ transition step which uses the clause cl, rewrites the

atoms (K1,K2) and such that σ = 〈((F \ K1) ⊎ A′), C, T ′〉m′ , where C is the

constraint (chr(K1,K2) = (H1, H2)) ∧D ∧ c.

Then, there exists an Apply’ transition step σ0 −→ω′

t
σ′ which uses the clause cl,

rewrites the atoms (K ′
1,K

′
2) and such that σ′ = 〈((F \K ′

1) ⊎A′), C′, T ”〉m′ , where

C′ is the constraint (chr(K ′
1,K

′
2) = (H1, H2)) ∧D ∧ c and

1. CT |= ((chr(F \K1) ∧ A′) ∧ C) ↔ ((chr(F \K ′
1) ∧ A′) ∧ C′),

2. T ′′ = (T ′ \ {r@id(K1,K2)}) ∪ r@id(K ′
1,K

′
2).

Proof

First of all, by definition of Apply’ transition step and since, by hypothesis c),

r@id(K ′
1,K

′
2) 6∈ T , we have to prove that

CT |= c → ∃cl((chr(K
′
1,K

′
2) = (H1, H2)) ∧D).

By hypothesis b) and since Fv(c) ∩ Fv(cl) = ∅, we have that CT |= c → ∃cl(c ∧

(chr(kl) = hl) ∧D). Hence the thesis follows by hypothesis c).

Now, we have to prove 1. By hypothesis b), we have that CT |= c → ∃cl(chr(K1,K2) =

(H1, H2)). Therefore, there exists a substitution ϑ such that dom(ϑ) = Fv(H1, H2)

and

CT |= c → (chr(K1,K2) = (H1, H2)ϑ). (A13)

By hypothesis c) and since dom(ϑ) ∩ Fv(c,K1,K2) = ∅, we have that

CT |= (c ∧ (chr(kl) = hlϑ)) → (chr(K ′
1,K

′
2) = (H1, H2)ϑ)

and by (A13), CT |= c → (chr(kl) = (hl)ϑ).

Then CT |= c → (chr(K ′
1,K

′
2) = chr(K1,K2)) and then the thesis.

The proof of 2 is obvious by definition of Apply’ transition step.

Proposition 9

Let σ0 = 〈F, c, T 〉m be a built-in configuration such that there exists a normal

terminating derivation δ starting from σ which ends in a configuration σ. Assume

that δ uses an annotated CHR rule cl such that the following holds.

a) cl = r@H1\H2 ⇔ D |A;T

b) there exists (K1,K2) ⊆ F such that cl rewrites the atoms (K1,K2) in δ and

CT |= c → ∃cl((chr(K1,K2) = (H1, H2)) ∧D)
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Then, there exists a normal terminating derivation δ′ starting from σ0 such that

• δ′ uses at most the same clauses of δ and uses the rule cl in the first Apply′

transition step, in order to rewrite the atoms (K1,K2),

• δ′ ends in a configuration σ′ such that σ ≃ σ′.

Proof

The proof is obvious by definition of derivation.

Hence we have the following result.

Theorem 1

Let P be an annotated program, cl be a rule in P such that cl can be safely replaced

in P according to Definition 11. Assume also that

P ′ = (P \ {cl}) ∪ UnfP (cl).

Then QA′
P (G) = QA′

P ′(G) for any arbitrary goal G.

Proof

By using a straightforward inductive argument and by Proposition 2, we have that

QA′
P (G) = QA′

P ′′(G) where

P ′′ = P ∪ UnfP (cl),

for any arbitrary goal G.

Then, to prove the thesis, we have only to prove that

QA′
P ′(G) = QA′

P ′′(G).

In the following, we assume that cl is of the form r@H1\H2 ⇔ D |A;T . We prove

the two inclusions separately.

(QA′
P ′(G) ⊆ QA′

P ′′(G)) The proof is by contradiction. Assume that there exists

Q ∈ QA′
P ′(G) \ QA′

P ′′(G). By definition there exists a derivation

δ = 〈I(G), true, ∅〉m →∗
ω′

t

〈K, d, T 〉n 6→ω′

t

in P ′, such that Q = ∃−Fv(G)(chr(K) ∧ d). Since P ′ ⊆ P ′′, we have that there

exists the derivation

〈I(G), true, ∅〉m →∗
ω′

t

〈K, d, T 〉n

in P ′′. Moreover, since P ′′ = P ′ ∪ {cl} and Q 6∈ QA′
P ′′(G), we have that there

exists a derivation step 〈K, d, T 〉n →ω′

t
〈K1, d1, T1〉n1

by using the rule cl.

Since cl can be safely replaced in P , we have that there exists an unfolded rule

cl′ ∈ UnfP (cl) such that cl′ is of the form

r@H1\H2 ⇔ D′ |A′;T ′,

CT |= D ↔ D′ and by construction cl′ ∈ P ′.

Then, there exists a derivation step 〈K, d, T 〉n →ω′

t
〈K2, d2, T2〉n2

in P ′ (by using

the rule cl′) and then we have a contradiction.
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(QA′
P ′′(G) ⊆ QA′

P ′(G)) First of all, observe that by Proposition 5, QA′
P ′′ (G)

can be calculated by considering only non-failed normal terminating derivations.

Then, for each non-failed normal terminating derivation δ in P ′′, which uses the

rule cl after the application of cl, we obtain the configuration σ1 and then a non-

failed built-in free configuration σf
1 . Now, let C be the built-in constraint store

of σf
1 .

Since by hypothesis cl can be safely replaced in P , following Definition 11, we

have there exists at least an atom k ∈ A, such that there exists a corresponding

atom (in the obvious sense) k′ which is rewritten in δ by using a rule cl′ in P .

Therefore, without loss of generality, we can assume that

δ = 〈I(G), true, ∅〉m →∗
ω′

t

σ →ω′

t
σ1 →∗

ω′

t

σf
1 →∗

ω′

t

σ2 →ω′

t
σ3 →∗

ω′

t

σ4 6→∗
ω′

t

where the transition step s1 = σ →ω′

t
σ1 is the first Apply’ transition step which

uses the clause cl and s2 = σ2 →ω′

t
σ3 is the first Apply’ transition step which

rewrites an atom k′, corresponding to an atom k in the body of cl introduced

by s1. Since by hypothesis cl can be safely replaced in P and by Proposition 8

we can assume that cl′ rewrites in s2 only atoms corresponding (in the obvious

sense) to atoms in A. Moreover, since by hypothesis cl can be safely replaced in

P and by Proposition 9, we can assume that s2 is the first Apply’ transition step

after s1. Then, the thesis follows since by hypothesis cl can be safely replaced in

P , by Proposition 7 and by a straightforward inductive argument.

A.4 Termination and confluence

We first prove the correctness of unfolding w.r.t. termination.

Proposition 3 (Normal Termination)

Let P be a CHR program and let P0, . . . , Pn be an U-sequence starting from

Ann(P ). P satisfies normal termination if and only if Pn satisfies normal termi-

nation.

Proof

By Lemma 1, we have that P is normally terminating if and only if Ann(P ) is

normally terminating. Moreover from Proposition 6 and Proposition 7 and by using

a straightforward inductive argument, we have that for each i = 0, . . . , n − 1, Pi

satisfies normal termination if and only if Pi+1 satisfies the normal termination too

and then the thesis.

The following lemma relates the ≈, ≃ and ≡V equivalences.

Lemma 2

Let σ, σ′ be final configurations in Conft , σ1, σ2, σ
′
1, σ

′
2 ∈ Conf ′

t
and let V be a set

of variables.
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• If σ1 ≈ σ, σ′
1 ≈ σ′ then σ1 ≡V σ′

1 if and only if σ ≡V σ′.

• If σ1 ≃ σ2, σ
′
1 ≃ σ′

2 and σ1 ≡V σ′
1 then σ2 ≡V σ′

2.

Proof

The proof of the first statement follows by definition of ≈ and by observing that if

σ is a final configuration in Conft , then σ has the form 〈G,S, false, T 〉n or it has

the form 〈∅, S, c, T 〉n.

The proof of the second statement is straightforward, by observing that if σ1 ≃ σ2,

then σ1 ≡V σ2 for each set of variables V .

Theorem 2 (Confluence)

Let P be a CHR program and let P0, . . . , Pn be an NRU-sequence starting from

P0 = Ann(P ). P satisfies confluence if and only if Pn satisfies confluence too.

Proof

By Lemma 1, we have that P is confluent if and only if Ann(P ) is confluent.

Moreover, by Proposition 6 Now, we prove that for each i = 0, . . . , n − 1, Pi is

confluent if and only if Pi+1 = (Pi \ {cl
i}) ∪ UnfPi

(cli) is confluent too. Then, the

proof follows by a straightforward inductive argument.

• Assume that Pi is confluent and let us assume by contrary that Pi+1 does not

satisfies confluence. By definition, there exists a state σ = 〈(K,D), C, T 〉o and

two derivations σ −→∗
ω′

t

σ1 and σ −→∗
ω′

t

σ2 in Pi+1 such that there are no two

derivations σ1 7→∗ σ′
1 and σ2 7→∗ σ′

2 in Pi+1 where σ′
1 ≡Fv(σ) σ′

2. Without loss

of generality, we can assume that σ1 and σ2 are built-in free states. Therefore,

by Proposition 6, there exist two derivations σ −→∗
ω′

t

σ3 and σ −→∗
ω′

t

σ4 in Pi,

such that σ1 ≃ σ3 and σ2 ≃ σ4. Moreover, since Pi is confluent, there exist two

derivations δ = σ3 −→∗
ω′

t

σ′
3 and δ′ = σ4 −→∗

ω′

t

σ′
4 in Pi such that σ′

3 ≡Fv(σ) σ′
4.

Moreover, without loss of generality, we can assume that σ′
3 and σ′

4 are built-in free.

Analogously to Theorem 1, since by hypothesis cli can be safely replaced in Pi and

by using Proposition 7, we can counstruct two new derivations γ = σ1 −→∗
ω′

t

σ5 and

γ′ = σ2 −→∗
ω′

t

σ6 in Pi ∪ UnfPi
(cli) such that σ5 and σ6 are built-in free, σ5 ≃ σ′

3,

σ6 ≃ σ′
4 and such that if γ and γ′ use the clause cli, then no atoms introduced (in

the obvious sense) by cli is rewritten by using (at least) one rule in Pi ∪ UnfPi
(cli).

Moreover, by hypothesis and by Lemma 2, σ5 ≡Fv(σ) σ6.

Let l the number of the Apply’ transition steps in δ and δ′, which use the rule cli

and whose body is not rewritten by using (at least) one rule in Pi ∪ UnfPi
(cli).

The proof is by induction on l.

(l = 0) In this case, γ = σ1 −→∗
ω′

t

σ5 and γ′ = σ2 −→∗
ω′

t

σ6 are derivations in Pi+1.

By hypothesis and by Lemma 2, we have that σ5 ≡Fv(σ) σ6 and then we have a

contradiction.

(l > 0) Let us consider the last Apply’ transition step in γ and γ′, which use (a

renamed version of) the rule cli = ri@H1\H2 ⇔ D |K,C;T , whose body is not

rewritten by using (at least) one rule in Pi ∪ UnfPi
(cli) and where C is the

conjunction of all the built-in constraints in the body of cli. Without loss of
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generality, we can assume that such an Apply’ transition step is in γ. Now, we

have two possibilities

— σ5 is a failed configuration. By definition of ≡Fv(σ), we have that σ is also a

failed configuration. In this case, it is easy to check that, by using Lemma 7,

we can substitute each Apply’ transition steps in δ and δ′, which use the

rule cli and whose body is not rewritten by using (at least) one rule Pi,

with an Apply’ transition step which uses a rule in UnfPi
(cli) ⊆ Pi+1.

Then, analogously to the case (l = 0), it is easy to check that there exist

the derivations γ1 = σ1 −→∗
ω′

t

σ′
5 and γ′

1 = σ2 −→∗
ω′

t

σ′
6 in Pi+1 such that σf

3

and σf
4 are both failed configurations and then we have a contradiction.

— σ5 is not a failed configuration. Then σ5 is of the form 〈S5, C5, T5〉n5
, where

chr(K) ⊆ chr(S5). Moreover, since cli can be non-recursively safely replaced

in Pi, there exists a clause clv in Pi \ {cli} such that cli can be unfolded by

using clv. Therefore, by definition of non-recursive safe unfolding, there exists

a new derivation γ1 = σ1 −→∗
ω′

t

σ5 −→∗
ω′

t

σ′
5, where σ′

5 is obtained from σ5

first by an Apply’ transition step, which uses the rule clv and rewrites atoms

in the body of cli and then some Solve’ transition steps. By definition of

≡Fv(σ) and since σ5 ≡Fv(σ) σ6, we have that there exists also a new derivation

γ′
1 = σ2 −→∗

ω′

t

σ6 −→∗
ω′

t

σ′
6, where σ′

5 is obtained from σ5 first by an Apply’

transition step, which uses the rule clv and rewrites atoms in the body of cli

and then some Solve’ transition steps.

Since by hypothesis σ5 ≡Fv(σ) σ6, we have that σ′
5 ≡Fv(σ) σ

′
6. Moreover the

number of the Apply’ transition steps in δ2 and δ′2, which use the rule cli

whose body is not rewritten by using (at least) one rule in Pi is strictly less

than l and then the thesis.

• Assume that Pi+1 is confluent and let us assume by contrary that Pi does not

satisfies confluence. The proof is analogous to the previous case and hence it is

omitted.

A.5 Weak safe rule replacement

Finally, we provide the proof of Proposition 4. We first need of the following lemma,

which provides an alternative characterization of confluence for normally terminat-

ing programs.

Lemma 3

Let P be a CHR [annotated] normally terminating program. P is confluent if and

only if for each pair of normal derivations σ 7→∗ σf
1 67→∗ and σ 7→∗ σf

2 67→∗, we have

that σf
1 ≡Fv(σ) σ

f
2 .

Proof

(Only if) The proof is straightforward by definition of confluence.



48 M. Gabbrielli, M.C. Meo, P. Tacchella and H. Wiklicky

(If) The proof is by contradiction. Assume that P is not confluent. Then, there

exists a state σ such that σ 7→∗ σ1 and σ 7→∗ σ2 and for each pair of states

σ′
f and σ′′

f such that σ1 7→∗ σ′
f and σ2 7→∗ σ′′

f , we have that σ′
f 6≡Fv(σ) σ′′

f . In

particular, since P is normally terminating, we have that there exists σ′
f and σ′′

f

such that σ1 7→∗ σ′
f 67→∗, σ2 7→∗ σ′′

f 67→∗ and σ′
f 6≡Fv(σ) σ′′

f . Then, it is easy to

check that there exist two normal derivation σ 7→∗ σ′
1 67→∗ and σ 7→∗ σ′

2 67→∗ such

that σ′
f ≃ σ′

1 and σ′′
f ≃ σ′

2. Since σ′
f 6≡Fv(σ) σ′′

f , by definition of ≃, we have that

σ′
1 6≡Fv(σ) σ′

2 and then we have a contradiction.

Then, we have the desired result.

Proposition 4

Let P be an annotated CHR program and let cl ∈ P such that cl can be weakly

safely replaced (by its unfolded version) in P . Moreover let

P ′ = (P \ {cl}) ∪ UnfP (cl).

If P is normally terminating then P ′ is normally terminating. Moreover, if P is

normally terminating and confluent then P ′ is confluent too.

Proof

First, we prove that if P is normally terminating then P ′′ is normally terminating

too, where

P ′′ = P ∪ UnfP (cl).

Then, we prove that if P ′′ is normally terminating then P ′ is normally terminating.

Analogously if P is normally terminating and confluent and then the thesis.

• Assume that P is normally terminating. The proof of the normal termination of

P ′′ follows by Proposition 6.

• Now, assume that P is normally terminating and confluent and by the contrary

that P ′′ does not satisfy confluence.

By Lemma 3 and since by the previous result P ′′ is normally terminating, there

exist a state σ and two normal derivations

σ −→∗
ω′

t

σ′
f 6−→ω′

t
and σ −→∗

ω′

t

σ′′
f 6−→ω′

t

in P ′′ such that σ′
f 6≡Fv(σ) σ

′′
f .

Then, by using arguments similar to that given in Proposition 6 and since P ⊆ P ′′,

we have that there exist two normal derivations

σ −→∗
ω′

t

σf
1 6−→ω′

t
and σ′ −→∗

ω′

t

σf
2 6−→ω′

t

in P , where σ′
f ≃ σf

1 and σ′′
f ≃ σf

2 . Since by hypothesis P is confluent, we have that

σf
1 ≡Fv(σ) σ

f
2 . Therefore, by Lemma 2 we have a contradiction to the assumption

that there exist two states σ′
f and σ′′

f as previously defined.

Now, we prove that if P ′′ is normally terminating then P ′ is normally terminating.

Moreover we prove that if P ′′ is normally terminating and confluent then P ′ is

confluent too and then the thesis.
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• If P ′′ is normally terminating then, since P ′ ⊆ P ′′, we have that P ′ is normally

terminating too.

• Now, assume that P ′′ is normally terminating and confluent and by the con-

trary that P ′ does not satisfy confluence. Moreover, assume that cl is of the form

r@H1\H2 ⇔ D |A;T . By Lemma 3 and since by the previous result P ′ is normally

terminating, there exist a state σ and two normal derivations

σ −→∗
ω′

t

σf
1 6−→ω′

t
and σ −→∗

ω′

t

σf
2 6−→ω′

t

in P ′ such that σf
1 6≡Fv(σ) σ

f
2 .

Since P ′ ⊆ P ′′, we have that there exist two normal derivations

σ −→∗
ωt

σf
1 and σ′ −→∗

ωt
σf
2

in P ′′. Then, since P ′′ is confluent and P ′′ = P ′ ∪ {cl} there exists i ∈ [1, 2] such

that σf
i −→ω′

t
σ′ in P ′′ by using the rule cl ∈ (P ′′ \ P ′). In this case, by definition

of weak safe replacement, there exists an unfolded rule cl′ ∈ UnfP (cl) such that cl′

is of the form

r@H1\H2 ⇔ D′ |A′;T ′

with CT |= D ↔ D′ and by construction cl′ ∈ P ′. Therefore σf
i −→ω′

t
σ′′ in P ′, by

using the rule cl′, and then we have a contradiction.
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