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Abstract

This article presents a holistic compound Poisson regression model framework

to forecast number of corner kicks taken in association football. Corner kick

taken events are often decisive in the match outcome and inherently arrive in

batch with serial clustering pattern. Providing parameter estimates with intu-

itive interpretation, a class of compound Poisson regression including a Bayesian

implementation of geometric-Poisson distribution is introduced. With a varying

shape parameter, the corner counts serial correlation between matches is han-

dled naturally within the Bayesian model. In this study, information elicited

from cross-market betting odds was used to improve the model predictability.

Margin application methods to adjust market inefficiency in raw odds is also

discussed.

Keywords: Bayesian hierarchical models, compound Poisson distribution,

corner kick, geometric-Poisson distribution, football, negative binomial

distribution

1. Introduction

Association football is the most popular sport in the world with billions of

followers. The sport drives significant contribution to the economy from the
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global television revenues (Roberts et al., 2016), tourism income from exten-

sive travels (Allmers & Maennig, 2009) and sponsorship from betting operators

(Deutscher et al., 2019). Thanks to the rapid development of broadcasting and

big data technology, a considerable amount of information from different sources

allows forecasting the sport outcomes more accessible.

Forecasting the likelihood of football match outcomes is a timely research

topic within the statistics and econometrics community in the past decades.

There are at least 40,000 articles in JSTOR and 3,700 entries in Econ Lit that

refer to sports events modelling and related factors (Stekler et al., 2010). Quanti-

fying uncertainty of the association football outcomes first attracts the attention

from statisticians. The seminal paper by Maher (1982) utilises a bivariate Pois-

son distribution to capture teams’ inherent attacking and defensive strengths

factors. Dixon & Coles (1997) elaborate Maher’s work to exploit the betting

market inefficiency. Koopman & Lit (2019) provide a dynamic forecasting model

with time-varying coefficients that generates a significant positive return over

the bookmaker’s odds. Angelini & De Angelis (2017) use a Poisson autoregres-

sion with exogenous covariates (PARX) developed by econometricians to model

the football matches outcomes. Ley et al. (2019) provide 10 different meth-

ods to rank football teams based on their historical performance. Baboota &

Kaur (2019) adopt a gradient boosting to determine English Premier League

results. A binary dynamic time-series model is introduced in Mattera (2021)

for forecasting two-way football outcomes such as red cards occurrence, total

goals over/under (O/U) and goal/no goal events. Hierarchical Bayes framework

is often used in modelling football which can naturally handle the relations

between unobserved variables and componentise a model into different parts.

Rue & Salvesen (2000) perform a Bayesian predictive and retrospective study

in the evolution of football team strengths by incorporating dynamic attack-

ing and defensive factors. Baio & Blangiardo (2010) develop a Bayesian model

to formulate home advantage and latent team effects. In Karlis & Ntzoufras

(2009), goal supremacy is adequately described with a Bayesian Skellam regres-

sion model.
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Several attempts have been made to extract information from the pre-match

betting market and expert pundits. Clarke et al. (2017) study the forecasting

ability after adjusting bookmaker’s odds to allow for overround. Cain et al.

(2000) study a high odds overvaluation phenomenon termed favourite-longshot

bias in the UK football betting market. Deschamps & Gergaud (2007) find a

negative favourite-longshot bias on draw odds in the home-away-draw (HAD)

market. Pundits and experts information are often considered by the general

public. However, Forrest et al. (2005) discover that subjective forecasting is

inferior to model-based forecast. Forecasts from statistical model often contain

the information that the betting market not taken into account (Pope & Peel,

1989; Goddard & Asimakopoulos, 2004; Dixon & Pope, 2004). Sung & Johnson

(2007) illustrate that combining probabilities from statistical models and instant

market odds with a simple statistical model improves the accuracy probabilistic

forecast.

Apart from the simple HAD prediction, corners kicks are also of both sport

analytics and betting interest. Corner kicks are considered to be a reasonable

goal-scoring opportunity. Pulling et al. (2013) study the tactical behaviour when

defending corner kicks. Casal et al. (2015) provide a thorough analysis on the

factors to increase the likelihood of shot-on-goal from corner kicks. Fitt et al.

(2006) give a valuation framework on the most commonly traded football spread

bets including the total number of corners betting option. Corner counts market

is one of the most popular sidebet markets offered by sports bookmakers. A

more advanced understanding on the statistical properties of the corner counts

distribution helps the bookmakers to manage risk through setting the odds more

adequately. Number of corners taken is also an important match statistics that

never available prior to the match. Along with other match statistics such as

number of shots and number of interceptions throughout the game, if these

match statistics can be forecasted prior to the match start, it contributes more

information for predicting match outcomes (Wheatcroft, 2021).

Data provenance is a crucial component of an accurate forecasting system.

Data collected in football has lately become a concern due to novel sensor modal-
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ities, with potentially high commercial and research interest (Stein et al., 2017).

Hutchins (2016) discuss that the infrastructure and resources necessary to gen-

erate real-time data are contributing to rising disparities between top ’data-rich’

sports and comparatively poor ’data-poor’ sports.

The remainder of this article is organised as follows. Section 2 discusses the

data and the information extraction issues. Section 3 introduces the family of

compound Poisson distributions and model development. Section 4 implements

the algorithm and performs betting simulation. A detailed discussion of the

model implications and future work is provided in Section 5.

2. Data acquisition and information extraction

2.1. Data acquisition

Football match information were collected from the Hong Kong Jockey Club

(HKJC) website (www.hkjc.com) which includes 20,190 matches with corner

over-under market offered from 1st August 2016 to 10 June 2021 across 90

leagues and cup games. Pre-match HAD, total goals scored over-under and total

corner over-under market odds are recorded. On the other hand, post-match

information including scorelines and number of corners are also obtained. The

HKJC set the market odds at least a day before the match starts. All the prices

collected are the odds just before the match start.

The integrated dataset used in this study (Table 1) also consists of an alter-

native data source with extra match information from seven elite leagues (i.e.:

English Premier League, Scottish Premier League, German Bundesliga, Italian

Serie A, Spanish La Liga, French Ligue 1 and Dutch Eredivisie) including num-

ber of shots, number of shot-on-goals, number of fouls and number of cards given

and number of the corner kicks taken by each team. These can be downloaded

from www.football-data.co.uk. A mild correlation (9.68%/17.37%) between

the number of shots/shot-on-goals and the number of corner counts is found.

In order to estimate parameters more accurately and construct useful co-

variates from bookmaker odds in the model, utilising a proper overdispersed
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distribution due to clustered counts (not due to excess of zeros and attack-

ing/defensive tactics) is crucial in the information extraction process which will

be discussed in the following subsections.

Table 1: Top 15 competitions with total corner over-under market odds offered by HKJC from

1st August 2016 to 10 June 2021

Competitions Number of corner

markets offered

Extra match

statistics available

Italian Serie A 1863 Yes

English Premier League 1849 Yes

Spanish La Liga 1784 Yes

USA Major League Soccer 1766 No

German 2. Bundesliga 1517 No

German Bundesliga 1503 Yes

Japanese J-League 1494 No

French Ligue 1 1066 Yes

Europa Cup 942 No

Australian A-League 722 No

European Champions League 675 No

Russian Premier League 475 No

Japanese J-League 2 305 No

Asian Champions League 300 No

Korean K-league 282 No

Other 75 leagues and competitions 3647 No

Total 20190

2.2. Overdispersed behaviour of the total goals scored and corner kicks taken

Overdispersion in Poisson models occurs when the response variance exceeds

the mean (Hilbe, 2011). Apart from attributing to the excess of zero counts in

the statistical distribution (Lambert, 1992) or the dependency to another vari-

able (Kocherlakota, 1988; Kocherlakota & Kocherlakota, 2001; i Morata, 2009;

5



Sengupta et al., 2016), it also arises from serial correlation between events or

counts of event are clustered that violates the distributional assumption of Pois-

son random variable. Weak overdispersion occurs in association football total

goals scored (Rodŕıguez-Avi & Olmo-Jiménez, 2017) whilst this statistical prop-

erty can also be found in many other sports such as basketball, baseball, hockey

(Higgs & Stavness, 2021) in varying degrees. Unlike some American sports that

the scores depending on numbers of factor brought out extra variation (Pollard,

1973), the nature of the overdispersion in football total goals scored is inherently

different. Maher (1982) asserts that Poisson distribution is a better model than

the overdispersed negative binomial distribution due to its close-to-one variance-

to-mean ratio. Dixon & Coles (1997) introduce a low scoring modification on

a bivariate Poisson to handle teams’ changing tactics when two teams are one

goal apart. Contrast to the overdispersed behaviour of the total goals scored,

modelling overdispersed corner kicks taken counts is a relatively under-explored

area that no known literature has ever discussed it.

In the HKJC dataset recorded matches from 2016-2021, the sample variance-

to-mean ratio for the number of total goals scored has a value of 1.0396 which

agrees with the suggestion in Maher (1982) that the scoreline exhibits a Poisson

distribution. On the other hand, the ratio for the number of corner kicks taken

is 1.1856 which indicates a fairly significant overdispersion. The corner kick

clusters are arisen from “parent” corners or offensive duels which produces one or

more “offsprings” through multiple clearances off the goal line that last touched

a player of the defending team (for schematic illustration, see Fig. 1). A cluster

of corner kicks is understood as a few corners occurring in a short time span.

In other words, corners from open play might be a Poisson, but the number of

total corners kicks taken rather follows an overdispersed distribution. Failing to

recognise this type of temporal clustering leads to an underestimation of number

of corner kicks taken.
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2.3. Bookmaker odds as forecasters and margin removal methods

Betting odds issued by bookmakers reflect implicit probabilities about sport-

ing outcomes (Stekler et al., 2010; Leitner et al., 2010; Kovalchik, 2016; Clarke

et al., 2017). Some empirical evidences show that the implied probabilities

from betting odds provide moderate accuracy and outperform tipsters predic-

tion (Spann & Skiera, 2009; Stekler et al., 2010; Reade, 2014). The reciprocals

of the bookmaker odds are understood as the bookmaker’s probabilistic belief.

These values sum to more than one. The sum of these probabilities π is known

as the margin of the book which determines how large the edge toward to the

bookmaker. Its inverse 1/π is the payout rate which indicates the expected

value from the bettor point of view. The method to normalise this probabilistic

belief is called margin removal method.

It is found that the market often overvalues low probability events. Cain

et al. (2000) examine that there is a favourite-longshot bias in the football fixed-

odds betting market. One explanation is that there are well-informed insiders

in the market and the bookmakers maximises their profits through applying less

percentage of margin to a particular selection in the book (Shin, 1992, 1993).

Another popular interpretation is that the bias come from amateur bettors’

risk-loving behaviour who overvalue longshot selections.

2.3.1. Multiplicative margin removal

The multiplicative margin removal method, also known as basic method,

normalise the inverse odds proportionally and divided by its booksum π. Most

studies has widely adopt this method due to simplicity (Štrumbelj, 2014). Let

o = (o1, o2, . . . , ol) be the quoted decimal odds for a football match with l ≥ 2

possible outcomes and the inverse odds are Π = (π1, π2, . . . , πl). Four popular

margin removal methods are considered in this article. The implied probability

derived from the multiplicative margin removal method is:

pi = πi/π,

where π =
∑l

i πi is the booksum.
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2.3.2. Odds ratio margin removal

Implemented in the R package implied (Lindstrøm, 2021), the odds ratio

margin removal method fixes the ratio between the implied probability and the

raw probability with margin π on all possible outcomes. The odds ratio (OR)

is defined as:

OR =
pi(1− πi)

πi(1− pi)
,

where OR is selected so that
∑l

i pi = 1. The implied probability can be calcu-

lated with the following equation:

pi =
πi

OR+ πi − (OR× πi)
.

In spite of its mathematical elegance and the ability to capture the favourite-

longshot bias, this method is relatively unknown to academic community.

2.3.3. Shin’s method

Shin’s method handles the information asymmetry for bookmakers as less-

informed price-setters who face a group of insiders with superior information.

Štrumbelj (2014) finds that the implied probabilities derived from the betting

odds using Shin’s method are more accurate than those derived from other

simple methods. The formula of taking out margin from the raw probability is

given in Jullien & Salanié (1994):

pi =

√
z2 + 4 (1− z)

π2
i

π − z

2 (1− z)
,

where z can be numerically estimated by an iterative method starting at z0 = 0:

z =

∑l
i=1

√
z2 + 4(1− z)

π2
i

π − 2

l − 2
.

In the special case of l = 2, Clarke et al. (2017) show that it is equivalence to a

rarely used additive method that does not guarantee a positive probability for

l > 2 and has a tractable analytic solution:

z =
(π+ − 1)(π2

− − π+)

π+(π2
− − 1)

,

where π+ = π1 + π2 and π− = π1 − π2.
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2.3.4. Power margin removal

The power method is originally described in Vovk & Zhdanov (2009) and fur-

ther developed in Clarke (2016) and Clarke et al. (2017). The power parameter

k scales the inverse odds to the implied probabilities:

pi = π
1/k
i ,

where the parameter k is chosen that
∑l

i pi = 1. The power method outperforms

other marginal removal methods in the ATP men’s singles tennis two-way mar-

ket. It is thought that the method is commonly used by bookmakers through

empirical evidence (Clarke et al., 2017).

2.4. Cross-market information

Market odds from HAD and O/U provides information of how the market

view the intensities of goals in a football match. It is generally understood that

the expected number of total goals scored and the relative strength between

home and away teams play a strong role in explaining number of corners. In

order to incorporate such an information, implied expected number of goal scores

by both teams can be extracted from the double independent Poisson model

proposed by (Maher, 1982):

fX1,X2
(x1, x2|λ1, λ2) =

λx1
1 e−λ1

x1!
× λx2

2 e−λ2

x2!
.

The implied expected total goals scored TGi and home team’s relative goal

supremacy SUPi of match i can be reparameterised from the implied values of

λ̂1 and λ̂2:

TGi = λ̂1 + λ̂2,

SUPi = λ̂1 − λ̂2.

A variant of the limited memory Broyden–Fletcher–Goldfarb–Shanno algo-

rithm (L-BFGS-B; Bryd et al., 1995) is used to optimise the square loss function

of λ̂1 and λ̂2 for each match with implied probabilities from HAD and total goals

scored O/U odds after removing bias. The implied parameters TGi and SUPi

from the market odds are used to reflect how the market account for the match
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expected total goals scored and goal supremacy between two teams. Therefore,

the L-BFGS-B algorithm is used to minimise the following loss function:

(pH − p′H)
2
+ (pD − p′D)

2
+ (pL − p′L)

2
,

where pH , pD, pL are the implied probabilities from the match HAD home,

HAD draw, O/U under odds respectively. The model HAD home, HAD draw

and O/U under probabilities p′H , p′D, p′L are derived from the Equation (2.4).

2.5. Competition-dependent factor and team-level historical records

Over 90 leagues or cup competitions being offered the total number of cor-

ners taken O/U market by the HKJC during the period 2016-2021. Table 2

shows the average corner counts in some competitions are higher and inher-

ently more volatile with a higher variance-to-mean ratio which is estimated by

maximising the log-likelihood of a negative binomial generalised linear model.

Target encoding techniques transform categorical variables to a numerical co-

variate by a statistic computed using the predictors. The following equation

generalises the target encoding technique proposed by Micci-Barreca (2001) to

replace the categorical variable by a numerical value x̂i
k of match i that belong

to competition k:

x̂i
k =

ni
k · θ̂k + θ̂m

ni
k +m

,

where ni
k is the number of matches in competition k, θ̂ is the statistic of interest

such as logarithm of average corner counts and maximum likelihood estimator

of the shape parameter, θ̂k is the statistic of interest on competition k and m is

a hyperparameter that set to a reasonable sample size that makes an estimator.

Although target leakage problem is a common cause of overfitting in many

machine learning algorithms (Zhang et al., 2013; Prokhorenkova et al., 2017),

this problem is negligible in this study since the covariates encoded x̂i
k via the

target encoding method is obtained from a pre-training period of 2016-2018 only

which is not a part of the data in the fitted model.
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Table 2: Average number of corner kicks taken and estimated variance-to-mean ratio D by

competition using the glm.nb function in R for the leagues with sample size greater than 500

during the study period of 2016-2021

Competitions Average number of corners D̂

Australian A-League 11.04 1.20

Italian Serie A 10.43 1.25

English Premier League 10.38 1.14

USA Major League Soccer 10.18 1.12

German 2. Bundesliga 10.00 1.16

UEFA Champions League 9.73 1.30

Japanese J-League 9.70 1.11

French Ligue 1 9.65 1.13

German Bundesliga 9.58 1.19

UEFA Europa League 9.40 1.23

Spanish La Liga 9.39 1.10

3. Model development

3.1. Discrete compound Poisson distribution

The discrete compound Poisson (DCP) distribution is a broad family of

distributions widely used in modelling contagious disease attacks, repeated ac-

cidents (Greenwood & Yule, 1920; Feller, 1943), bacteria spawn (Neyman, 1939)

and batch arrival counts (Adelson, 1966). It is a reasonable model to consider

a Poisson process for each cluster of counts and it also captures the intensity

varied from cluster to cluster. With Poisson distribution as its special case, it

enjoys a great flexibility for overdispersed count data. Suppose the number of

clusters N whose distribution is given as:

N ∼ Poisson(λ).

A DCP random variable Y is defined by the form:

Y =

N∑
i=1

Xi, (1)
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where X1, X2, . . . , XN are independent identically distributed discrete random

variables. A random variable Y is said to be a DCP random variable (Wimmer

& Altmann, 1996) when its probability generating function (pgf) G(s) has a

form:

GY (s) = exp

{ ∞∑
i=1

αiλ
(
si − 1

)}
, s ∈ R, (2)

where α = (α1, α2, . . .) ∈ R∞ is the probability set describing a discrete random

variable Xi with the sum
∑∞

i=1 αi = 1. Thus, the DCP random variable Y is

denoted by:

Y ∼ DCP(λ,α).

The pgf in the Equation (2) is used to study the characteristics of DCP dis-

tribution that includes many widely-used models such as Poisson, Hermite

(Kemp & Kemp, 1965), Neyman Type A (Neyman, 1939), negative binomial

and geometric-Poisson (Pólya, 1930). The following subsections provide the key

characteristics of a few popular DCP distributions including Poisson, negative

binomial and geometric-Poisson distributions. These three distributions refer

to three plausible cases of “no clustering”, “logarithmic distributed clustering”,

“geometric distributed clustering” respectively.

3.1.1. Poisson distribution

Poisson distribution is the trivial case of DCP distribution where the random

variables Xi in the Equation (1) is a degenerated distribution with probability

mass function (pmf):

pXi
(xi) =

1, xi = 1

0, otherwise.

Therefore, the parameter α is set to a unit vector of α1 = 1. Thus, the pgf of

the Poisson random variable Y is

GY (s) = exp (λ(s− 1)) .
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3.1.2. Negative binomial distribution

Negative binomial distribution is proven to be a DCP distribution with a

logarithmically distributed counts of each cluster (Quenouille, 1949). The pmf

of the logarithmic distribution is given by:

pX(x) =
−1

log(1− p)

px

x
, x = 1, 2, . . . ,

where 0 < p < 1. The pgf of the negative binomial distribution can be derived

by considering a composition function of the pgf of Poisson distribution and the

pgf of logarithmic distribution (Johnson et al., 2005). The composition function

of the GN (s) = exp (λ(s− 1)) and GX(s) = log(1− ps)/ log(1− p) is given by:

GY (s) = GN (GX(s)) =

(
p

1− (1− p)s

)− λ
log p

.

A parameterisation used by Gelman et al. (1995) is adopted in this paper with

a pmf:

pY (y) =

(
y + κ− 1

y

)(
λ

λ+ κ

)y (
κ

λ+ κ

)κ

.

The expectation, variance and variance-to-mean ratio are E[Y ] = λ, V ar[Y ] =

λ+ λ2/κ and D = 1 + λ/κ respectively. The pgf is given by:(
κ

λ(1− s) + κ

)κ

.

The distribution also includes Poisson model as a limiting case, i.e.:

lim
κ→∞

GY (s) = lim
κ→∞

(
1 +

λ(1− s)

κ

)−κ

= exp {λ(s− 1)} .

3.1.3. Geometric-Poisson distribution

An alternative approach to account for clustered counts in the Poisson model

is to place a geometric distribution on each cluster count. A geometric-Poisson

random variable is defined on a DCP random variable with a zero-truncated

geometric random variable within clusters. Özel & Inal (2010) derive the mass

function as:

pY (y) =

e−λ, y = 0

e−λ
∑y

k=1
λk

k!

(
y−1
k−1

)
θk(1− θ)y−k, y = 1, 2, 3, . . .
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where λ > 0, 0 < θ < 1. The expectation, variance and variance-to-mean ratio

are E[Y ] = λ/θ, V ar[Y ] = λ(2− θ)/θ2 and D = (2− θ)/θ respectively. The pgf

is given by

GY (s) = exp

{
−λ

[
1− (1− θ)s

1− θs

]}
,

which is clearly a pgf of the DCP distribution in the Equation (2).

3.2. Compound Poisson regression

Consider a regression model with the following covariates:

log λi = β0 + β1 log(TGi) + β2 log(|SUP|i + 0.01) + β3TCTargeti+

β4 log(HomeAvg3i + 0.01) + β5 log(AwayAvg3i + 0.01)+

β6 log(HomeShotOnGoalAvg3i + 0.01)+

β7 log(AwayShotOnGoalAvg3i + 0.01),

where HomeAvg3i and AwayAvg3i are the home and away team’s average

counts in their previous 3 matches imputed by the overall league average if

lack of the previous match information. The covariate TCTargeti generated

from the target encoding method in the Equation (2.5) handles the adjusted

mean corner count. HomeShotOnGoalAvg3i and AwayShotonGoalAvg3i are

the home and away team’s number of shots in their previous 3 matches. If

the team has not competed previously, the counts are imputed by the league-

dependent value encoded in the Equation (2.5) and by the grand mean if no

league information is available. Adding a small positive constant to a covariate

is a popular approach to tackle the log transformation of values that include

zero (Bellego et al., 2021).

3.3. Regression on the shape parameters

On the grounds that the flexibility of Bayesian hierarchical model, an addi-

tional regression structure can be added to the negative binomial and geometric-

Poisson shape parameters κi and θi. The regression components on the shape

parameter are defined as:

negative binomial regression: log(κi) = α0 + α1 log(|SUPi|+ 0.01)

geometric-Poisson regression: logit(θi) = α0 + α1 log(|SUPi|+ 0.01).

14



Apart from using the implied goal supremacy considered above as regression co-

variate, target encoding method can be incorporated in the shape component.

The maximum likelihood estimates of the shape parameters for each competi-

tion according to the target encoding method in Equation (2.5) can be used as

the covariate. For estimating the dispersion parameter κ of negative binomial

distribution, Levin & Reeds (1977) prove the existence of unique solution pro-

vided that s2 > ȳ. The same treatment is also applied to the geometric-Poisson

model. However, some of the league-dependent shape parameter estimates give

large standard errors. The covariate log(|SUPi| + 0.01) is a reasonable choice

for capturing the heterogeneity of corner counts between matches.

4. Model performance, diagnostics and betting simulation

The existence of favourite-longshot bias in the corner O/U, HAD and number

of total goals scored O/U markets are examined by a negative mean logarithmic

scoring rule (Gneiting & Raftery, 2007). The R package implied (Lindstrøm,

2021) offers an implementation of popular margin removal methods to calculate

implied probabilities of betting odds namely multiplicative method, odds ratio

method, power method and Shin method (Shin, 1993; Clarke et al., 2017). Ex-

cept the multiplicative method allocates margin proportionally to the odds, all

other methods penalise longshot and apply less margin on favourite selections.

The corner O/U bet-type is defined as the total number of corners taken being

higher or lower than the number specified. Table 3 shows that the multiplica-

tive method provides optimal predictability on corner O/U and the number of

total goals scored O/U markets whilst Shin’s method offers the best predic-

tion by discounting longshot probabilities. Therefore, the Shin method and the

multiplicative method are used for handling TG and SUP covariates.

Five candidate models are considered here, namely näıve Poisson, negative

binomial and geometric-Poisson regression models; negative binomial model

and geometric Poisson models with varying shape parameters. The result of

the preliminary fitted models shows that only TG,TCTarget, HomeAvg3 and

15



Table 3: Performance comparison of margin removal methods

Negative mean logarithmic scoring rule

Method Corner O/U HAD Total goals O/U

Multiplicative 14187.07 19618.98 14465.44

Odds ratio 14209.67 19614.28 14522.77

Power 14219.82 19633.16 14548.68

Shin 14207.74 19612.15 14517.71

AwayAvg3 are significantly associated with the number of the total corner kicks

taken. Although non-significant covariates SUP, HomeShotOnGoalAvg3 and

AwayShotOnGoalAvg3 with 95% credible interval of covariate estimates cover-

ing zero do not provide a good insight to the mean value of corner count. They

are able to capture the variation of the distribution’s higher moment hence

the predictability. For example, a high absolute value of goal supremacy can

be translated to a more unpredictable corner count. The models are fitted by

Markov chain Monte Carlo (MCMC) algorithms via No U-turn sampler (Hoff-

man et al., 2014) implemented in Stan language (Carpenter et al., 2017) with

4000 iterations of each. The overall fit of each model is summarised in Table

4. To check whether all candidate models are well-specified, the Pareto K is

examined that all estimates are less than 0.5. It shows all fitted models have

high reliability and exhibit convergence. Leave-one-out expected log pointwise

predictive density (elpd loo) is used for model comparison (Vehtari et al., 2017).

The geometric-Poisson regression model has the highest elpd loo which fits the

data better than other models. However, an additional regression component

on the shape parameter does not improve the goodness-of-fit of the geometric

Poisson regression model since it has an even smaller elpd loo whilst the nega-

tive binomial regression model with varying shape parameter has a significantly

higher elpd loo value (the se diff between two models is 5.7 which is not shown

in the Table 4 than its fixed shape parameter counterpart.

Table 5 shows that implied number of total goals scored has a positive effect
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Table 4: Model performance by the expected log-pointwise predictive density (elpd loo) and

LOO information criterion (looic) of all candidate models, where p loo is the estimated effec-

tive number of parameters of the model, se diff is the standard error of the difference in the

elpd estimate to the one for geometric-Poisson model with varying shape parameter

Model elpd loo (criterion) p loo (penalty) se diff

(A) Geometric-Poisson −30856.4 10.0 0.0

(B) Geometric-Poisson + shape reg −30856.8 11.5 1.4

(C) Negative binomial + shape reg −30858.4 11.6 1.7

(D) Negative binomial −30871.4 9.1 5.3

(E) Poisson −30877.2 10.1 6.9

on the number of corner kicks. For each of the expected goal, the expected

corner count is increased by 16.70% for the model A. Previous corner kicks

taken and conceded by the same home and away teams also play a crucial role.

The league average corner counts exerts a negative effect on the number of corner

kicks taken. It can be seen as an adjustment to a stronger effect of previous

corner kicks taken and conceded. The median of the posterior distribution of

model A’s shape parameters θ is 0.9577. It indicates that a single corner induces

additional 0.0423 corners and also implies that the variance-to-mean ratio has

an estimate of 1.0883.

The betting simulation is performed for 2057 matches offered by the HKJC

in 2021 from 1st January to 10th June in 2021 (Figure 2). Although average

overall margin taken by the operator is 7.61% (payout rate 92.38%). However,

the payout rate on the “over” selection is 85.71% whilst the “under” selection

one is 98.24%. It indicates that, empirically, the market has a bias in favour of

the “under” selection.

A bet of 100 dollars is placed on each of the selection when the model ex-

pected value is positive. With the five candidate models considered in Table 6

along with a blind betting strategy on all “under” outcomes, cumulative return

is calculated for the simulated period. Sharpe ratio (Sharpe, 1966) is calculated

from the ratio of aggregated daily profit and its sample standard deviation an-
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Table 5: Parameter estimates of all candidate models A-E

Parameter Model

(A) Geometric-Poisson (B) GP + shape (C) NB + shape

β0 0.711(0.0219, 1.4154) 0.788(0.0938, 1.4654) 0.7782(0.0562, 1.5142)

β1 0.1545(0.1046, 0.2069) 0.1688(0.1216, 0.2231) 0.1573(0.099, 0.2109)

β2 −0.001(−0.007, 0.0049) −0.0018(−0.0072, 0.0037) −0.001(−0.0068, 0.0047)

β3 −0.6168(−0.9374,−0.2813) −0.6588(−1.0025,−0.3218) −0.6206(−0.9676,−0.2577)

β4 0.5957(0.53, 0.6625) 0.6092(0.5436, 0.6725) 0.5957(0.5326, 0.6628)

β5 0.6052(0.5405, 0.6652) 0.609(0.5417, 0.6754) 0.5996(0.537, 0.6659)

β6 −0.0024(−0.0084, 0.0033) −0.0029(−0.0086, 0.0033) −0.0022(−0.0084, 0.0037)

β7 −0.0019(−0.0088, 0.0043) −0.0025(−0.0088, 0.0042) −0.002(−0.009, 0.0039)

θ 0.9577(0.9441, 0.9705)

α0 3.7470(2.9766, 4.8491) 4.7198(4.3913, 5.1212)

α1 −0.1978(−0.7523, 0.1141) 36.3012(−12.0218, 91.3719)

Model

(D) Negative binomial (E) Poisson

β0 0.7575(0.0924, 1.4591) 0.7438(0.0774, 1.4203)

β1 0.1559(0.1045, 0.2028) 0.156(0.1032, 0.2041)

β2 −0.001(−0.0066, 0.0049) −0.0009(−0.0061, 0.0045)

β3 −0.607(−0.9541,−0.2698) −0.6048(−0.9345,−0.2794)

β4 0.5931(0.5273, 0.6607) 0.5959(0.532, 0.6686)

β5 0.5974(0.5343, 0.6664) 0.6043(0.5434, 0.6659)

β6 −0.0024(−0.0082, 0.0043) −0.0023(−0.0081, 0.004)

β7 −0.0019(−0.0089, 0.0044) −0.0021(−0.0088, 0.0039)

κ 59.8998(52.2233, 68.2215)

nualised by the square root of the total 364 trade days (Sharpe, 1966; Lo, 2002).

The negative binomial regression model with match varying shape parameter

outperforms other candidates and gives the best final profit of $6578 and Sharpe

ratio 3.065. The Table (5) shows that the location level regression parameter es-
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timates (β0−β7) of the negative binomial model with match varying parameter

(model C) are almost identical to those in model (A). The estimate of the pa-

rameter α1 indicates that the variance-to-mean ratio D has a weak but notable

relationship with the magnitude of the implied goal supremacy SUPi.

Table 6: Out-of-sample betting simulation for the period between 1st Jan 2021 to 10th June

2021 ranked by its Sharpe ratio

Model # of bets profit $ profit % Sharpe ratio

(C) Negative binomial + shape reg 1137 6578 5.785% 3.065

(B) Geometric-Poisson + shape reg 1125 6256 5.561% 2.922

(A) Geometric-Poisson 1123 5308 4.727% 2.427

(D) Negative binomial 1085 4805 4.429% 2.263

(E) Poisson 1156 4283 3.705% 1.519

Blind bet on under 2056 −3530 -1.717% −1.267

5. Discussion

This article presents a Bayesian overdispersed Poisson regression framework

to forecast future corner counts leading to a profitable forecasting model. The

model incorporates multiple sources of match and market information including

previous team’s corner counts, cross-market information and competition-level

statistics. This work could be also extended to accommodate underdispersed

count through the Convey-Maxwell-Poisson (CMP) distribution (Conway &

Maxwell, 1962). The probability mass function is given by:

pY (y) =
λy

(y!)
ν

1

Z(λ, ν)
,

where Z(λ, ν) =
∑∞

j=0
λi

(j!)ν . When ν = 1, the CMP distribution becomes

Poisson distribution; when ν = 0, it becomes geometric distribution. A recent

result in Geng & Xia (2022) shows that a CMP random variable is infinitely

divisible if it is Poisson or geometric. This theoretical result corroborates that

the CMP distribution does not fall into the DCP distribution family. Exploiting

19



the property of exponential family, a generalised linear model (GLM) for CMP

distribution with two link functions on the location and shape parameters can

be applied (e.g.: Guikema & Goffelt 2008), the interpretation is different from

the framework introduced in this paper.

Our study shows that the favourite long-shot bias in the HAD odds is cap-

tured adequately by the Shin’s method. Except the HAD market, the implied

probability of the total goals scored and corner O/U markets can be easily cal-

culated through handling the margin weights proportional to the original odds

with the multiplicative method. The market efficiency of the corner O/U mar-

kets is also biased in favour of the “under” selection. The asymmetry toward the

“under” selection is understood as the market overvalues the “over” selection.

The margin removal methods utilised in this study is unable to capture this

kind of asymmetry. Along with the favourite-longshot bias studied previously,

the O/U asymmetry is an area one should work on.

Our compound Poisson framework allows a complex model structure with

multiple regression equations in the same model. With the application of

MCMC algorithms in Stan language, the model development process can be seen

as iterative and continuous under the hierarchical Bayesian modelling paradigm.

Its flexibility is already proven in other research areas such as epidemiology (for

example, Yip et al., 2022). A possible extension of this model is to expand

the regression component with a multi-level hierarchical structure to adjust the

estimates of data-rich competitions:

log λi = log λ2i +X′
1iα

log λ2i = X′
2iβ,

where the term X2iβ is the regression component on covariates of all compe-

titions and X1iα is the regression component of data-rich competitions such

as inclusion of zonal and player-based statistics. These information can be ob-

tained from OPTA sportsdata (Liu et al., 2013) takes into account of on-pitch

events and player actions with spatial locations. From the betting simulation,

some competitions with a large fan base such as English Premiere League and
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European Champions League are recorded negative profits. Further modelling

on the data-rich elite competitions will need to be developed and experimented.
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Figure 1: Schematic diagram to illustrate how corner events spawned from its “parent” event.
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Casal, C. A., Maneiro, R., Ardá, T., Losada, J. L., & Rial, A. (2015). Analysis

of corner kick success in elite football. International Journal of Performance

Analysis in Sport , 15 , 430–451.

22



Clarke, S., Kovalchik, S., & Ingram, M. (2017). Adjusting bookmaker’s odds to

allow for overround. American Journal of Sports Science, 5 , 45–49.

Clarke, S. R. (2016). Adjusting true odds to allow for vigorish. In Proceedings of

the 13th Australasian Conference on Mathematics and Computers in Sport.

R. Stefani and A. Shembri, Eds (pp. 111–115).

Conway, R. W., & Maxwell, W. L. (1962). A queuing model with state depen-

dent service rates. Journal of Industrial Engineering , 12 , 132–136.

Deschamps, B., & Gergaud, O. (2007). Efficiency in betting markets: evidence

from English football. The Journal of Prediction Markets, 1 , 61–73.
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de l’institut Henri Poincaré, 1 , 117–161.
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