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Abstract

Fosdick and Raftery (2012) revisited the classical problem of inference for a bivariate normal
correlation coefficient p when the variances are known. They considered several frequentist and
Bayesian estimators, the former including the maximum likelihood estimator (MLE), but did not
obtain the standard errors of these estimators or confidence intervals for p. Here we present a
new variance-stabilizing transformation y for the MLE in the known-variance case. Adjusting y
appropriately according to the sample size n produces a “confidence-stabilizing” transformation
yn that provides more accurate interval estimates for p than the MLE, as does Fisher’s classical z
transformation for the MLE in the unknown-variance case. Interestingly, the z transform applied
to the MLE for the unknown-but-equal-variance case performs well in the known-variance case
for smaller values of p. Both these methods are also useful for comparing two or more correlation

coefficients in the known-variance case; hypothesis testing in this case is also discussed.



1. Introduction

Let (z;,vy;),7=1,...,n, beii.d. observations from a bivariate normal distribution with correlation

2

coefficient p and variances o3

and 02. We consider the following three increasingly restrictive

covariance models:

Model 1: 02 and o7 both unknown;

Model 2: 02/ 05 = ac?, a known, o2 unknown;
Model 3: o2 and o}, both known.

Without essential loss of generality we assume throughout that the means are both 0, that a =1
(so 02 = 0} = ¢°) in Model 2, and that 02 = o = 1 in Model 3.
These well-known models form the basis for many textbook examples and exercises. Models

1 and 2 are full exponential families with complete sufficient statistics Wi = (s2, sz, Say) and

Wy = (s2 + 332;7 Szy) Tespectively, where

si:%Zﬁ, 532%2%2’ Sxy:%inyi' (1)

Both Models 1 and 2 admit explicit maximum likelihood estimators (MLE) for their unknown
parameters:

Model 1: p=ry, 6%=s
Model 2: p =1y, 0% = %(s3+s2);

where

Sy 25,
n=_—r r= s (2)
SzSy Sz + 5y

The geometric mean of s3 and 7, in ry is replaced by the arithmetic mean in 7y, so |ra| < [r].

Model 3 is a curved exponential family with log likelihood function

n(sy +5,) | npssy

20—p?) 1 )

n
In(p) = ¢ — 5 log(1 = p?) =

cf. Stuart and Ord (1991, Ch. 18). Here W5 is minimal sufficient but not complete; note that



W5 is two-dimensional while the unknown parameter p is one-dimensional. The MLE p is rs, the

maximizing root of the cubic equation

p(1—p?) = p(ss +s55) + (1 + p?)suy = 0. (4)

In this paper we focus on Model 3, which is less amenable to exact analysis but was recently
encountered by Fosdick and Raftery (2012) when comparing fertility rate forecast errors between
developed and undeveloped countries. They considered several variants of three frequentist esti-
mators for p, as well as several Bayesian estimators. The frequentist estimators were 71, r3, and

the “empirical estimator”

T4 = Sy (5)

s truncated to lie in [—1, 1], where the estimated standard deviation estimates s, and s, in 7 and
ry are replaced by the known values 1. However, Fosdick and Raftery did not discuss the standard
errors of their estimators.

It is well known' that as n — oo,

Vn(ri—p) — N(0,(1-p%?) under Model 1, (6)

Vn(rs—p) — N(0,(1-p%)?) under Model 2, (7)
(1—p")?

Vn(rs—p) — N[0, Ti 2 under Model 3, (8)

Vn(ra—p) — N(0,1+ p?) under Model 3. 9)

Because Model 3 is regular (sufficiently smooth), the MLE r3 is asymptotically optimal for this
model, that is, has smallest asymptotic variance among all asymptotically normal estimators.
Whereas the MLE rj3 is optimal for large samples sizes under Model 3, Fosdick and Raftery’s

interest was in the case of small and moderate sample sizes. In Table 1 the mean-squared errors

'E.g. Lehmann (1983, (19) p.441, Problems 6.2.20 and 6.5.9), Stuart and Ord (1991, Ch. 18)). The result (7)
follows from (6) because ro — 71 = Op(n~!) under Model 2 by a standard Taylor expansion argument.



of 1, 79, 73, and r4 have been obtained*? by simulation. Here 73 performs best unless p? is
small, where 7, may be somewhat better, while r4 performs poorly in most cases. These effects
become more marked as the sample size n increases, which is in agreement with the ordering of
the asymptotic variances in (6)—(9).

Table 1: Root MSE (x1000); r4 truncated to [-1,1]. (largest standard error of estimates is 0.4).

- p
no Bstimator |00 08T 05 07 0.9
10 " 316 202 239 182 117 43
Ty 301 281 236 184 122 46
ra 339 311 239 156 79 23
ry 314 314 303 286 273 272
20 " 224 204 163 120 74 26
ro 218 200 162 121 76 27
rs 938 208 147 94 52 16
ry 9224 232 237 226 210 202
40 ) 158 144 113 82 50 17
ry 156 142 113 83 51 17
ry 165 141 99 65 36 11
ry 158 166 177 176 162 149

In addition to its large MSE the estimator r4 sometimes falls outside the admissible range
[—1,1], while the Bayesian estimators are not amenable to frequentist interval estimation; these
will not be discussed further here.

As is the case for 71, convergence to normality is also slow for 7 and 73, so for small or
moderate sample sizes the asymptotic variances in (6)—(8) do not provide good approximations
for their standard errors (Table 2). Fisher’s celebrated z transformation greatly improves the
normal approximation to the distribution of r; under Model 1 so is invaluable for inference about
p in this case — see §2.1. Interestingly, the ezact distribution of z(ry) is easy to specify under Model
2 (see §2.2) and therefore under Model 3, where it provides estimates and tests that perform well

for smaller values of p (see §2.4 and Section 3).

2The MSE is shown for a uniform range of p? values rather than p values, because it is p? rather than |p| that
indicates the strength of the relationship between x and y.

3Using the formulas for r3 given in F&R, 0.0003% of estimates did not satisfy the cubic equation in (4) within
+1e—8. For these simulations, the default ‘optimize’ procedure in R was used to obtain the estimate r3 that
maximizes the likelihood.



Table 2: Ratio of empirical variance to asymptotic variance.

. 0
no BEstimator |00 080 g5 07 09
0 100 1.05 1.17 132 150 1.1
v 0901 098 1.14 135 165 2.11
- 115 131 152 147 118 1.02
0 100 1.03 1.09 115 123 1.32
r 0.05 099 1.08 118 1.30 145
- 113 118 1.15 1.05 1.0l 1.00
0 7 100 1.02 1.04 1.08 11l 115
r 008 1.00 104 109 114 1.20
- 109 1.08 104 1.01 1.00 1.00

For Model 3, a new variance-stabilizing transformation y for the MLE r3 is presented in §2.3.
Unlike the z-transform, the y-transform must be adjusted for the sample size n to stabilize the
confidence coverage of r3. When this is done the resulting “confidence-stabilized” transformation
Yn(r3) provides more precise confidence intervals under Model 3 than intervals based on r and 79
for moderate and large values of p. For small values, intervals based on z(ry) are preferable. This
is demonstrated via simulation in §2.4.

The use of z(r3), y(r3), and y,(rs) for comparing two or more correlation coefficients under
Model 3 is outlined in Section 3.

F&R also considered the problem of testing Hy : p = 0 (independence) vs. the one-sided
alternative Hy : p > 0 under Model 3. They considered the tests that reject Hy for large values of
r1, r3, and r4 and their variants, as well as several Bayes tests, and approximated the significance
levels of these tests by Monte Carlo simulation. It is well known that the r; test is exact for
this problem. In Section 4 we note that the ro test is also exact and has an interesting although
limited optimality property. Also we show that the r4 test is locally most powerful for alternatives
p 4 0 and derive the asymptotically most powerful test (also exact) for alternatives p 7 1. On the
basis of numerical power comparisons, the ry (resp., r3) test is recommended if small (resp., large)

alternative values of |p| are expected.

2. Confidence intervals for p under Model 3.



2.1. Confidence intervals based on the Model 1 MLE r;. Let g, denote the upper ~-

quantile of the standard normal = Gaussian distribution. From (6), for sufficiently large n

1—1?
+ [ —L ) 9. 10
T (m)g/Z ( )

is an approximate 1 —a confidence interval* for p under the unrestricted Model 1, hence for Models
2 and 3.

Unfortunately the sample size required for the accuracy of the normal approximation (6) de-
pends on the unknown p, but this is remedied by Fisher’s celebrated z-transformation for r; (cf.

Anderson (1984, §4.2.3)), given by the indefinite integral

) = [ 2= o G%g) | (11)

This is a variance-stabilizing transformation that satisfies

Vi —2[z(r1) = z(p)] = N(0,1) (12)

with faster convergence to normality than (6) (see Table 3). This provides the approximate 1 — «

confidence interval for p given by

oL (z(rl) + %) , (13)

valid for Model 1 hence for Models 2 and 3. (Note that z~!(r) = tanh(r).)

An ezact confidence interval for p under Model 2 and therefore Model 3 is readily obtained
from the classical Student ¢-distribution of the sample regression coefficient of y; given x; (e.g.

Stuart and Ord (1987, eqn. 16.92)):

r— ()
Vi —1 (ﬁ) ~ b, (14)

4As is well known for (13), using n — 2 rather than n results in a coverage probability somewhat closer to the
nominal value 1 — a.




This provides the exact 1 — o confidence interval®

Sy 1—r?
— + th—1:a 15
( ) 1 n—1 Lia/2 (15)

xT

for p under Models 2 and 3, where ¢,,_;., denotes the upper y-quantile of the ¢,,_; distribution.
Although the interval (15) is exact, it is not a function of the minimal sufficient statistic

(s2 + 312/’ Szy) for Model 3 so may be inefficient; this is confirmed in §2.4.

2.2. Confidence intervals based on the Model 2 MLE 7r,. Because 7y has the same

asymptotic normal distribution® as r,

+ (—1 s ) (16)
r a
T\ Vn=1) %

is an approximate 1—« confidence interval for p under Model 2, hence under Model 3. Furthermore,

the z-transformation also applies to ro in this case, yielding the same normal approximation:
vn = 1[z(r2) = 2(p)] = N(0,1); (17)

this gives another approximate 1 — « confidence interval for p under Model 2, hence Model 3:

oL (z(rg) + ﬁ%) . (18)

It is perhaps less well known that Fisher’s z-transformation in fact applies exactly to ro under

Model 2. The orthogonally-transformed random vectors

u; 5 (@i 4 i
_ | ) Ci=1,....n, (19)
Ui \%(Cﬁi—yi)

By regressing z; on y;, a second exact 1 — « confidence interval is obtained by interchanging s, and s, in (15).
6See Footnote 1. Also, the entries for z(ry) in Table 3 show that its variance is approximated much better by
1/(n — 1) than by 1/(n — 2), hence its use in (17).



have the zero-mean bivariate normal distribution with covariance matrix

(1+ p)o? 0 o2 0

Il
—~

[\

(@)
N

Thus u; 1L v;,, i =1,...,n, and

u? = Zu? ~o\2, 2 va ~ o2, (21)

v =
2 1 2 1
w14 (0_) Fyo= (ﬂ) o (22)
oy p

v? 1 —17y

Take logarithms to obtain the ezact relation
1
A1) ~ 2(p) + 5108 Fun = 2(p) + 7, (23)

where Z,, denotes Fisher’s Z distribution with n and n degrees of freedom (cf. Stuart and Ord

(1987, §16.16)). This yields the following exact 1 — a confidence interval for p:
Z_l (Z(T2) + Zn;a/2) ) (24)

valid under Model 2 hence Model 3. Here Z,., denotes the upper y-quantile of Z,,, which can be
expressed in terms of the v-quantile of F,, ,,.

Unlike 71, 75 is a function of the minimal sufficient statistic Wy = (s2 + 55, Szy) for Model 3 so
it may be expected to produce more efficient estimates than r; in this case. This should be most

noticeable when p is small, since |ry| < |ry|; see Tables 1 and 2.

2.3. Confidence intervals based on the Model 3 MLE r3. From (8), for sufficiently large n

1—1r2
rq + -3 - 25
3 ( n(1+r§)>g/2 ( )

is an approximate 1 — « confidence interval for p under Model 3. As for r;, however, the normal

approximation (8) for r3 is inaccurate unless the sample size is large (see Table 2). This suggests



seeking a variance-stabilizing tranformation y for r3 under Model 3.

Starting from (8) and applying Mathematica we obtain

y(p) =

[, (26)
(1+p) (x/ﬁerHp)
1—

1

\/§O

—1lo <\/1+ 2+ ),
V2/1+p2+1—p & e

so that

vn—2[y(rs) —y(p)] = N(0,1) asn — oc. (27)

Thus an approximate 1 — « confidence interval for p valid under Model 3 is given by’

y~ (y(rs) + \/%) : (28)

It follows from (26) that y(0) = 0, y(p) = —y(—p) (antisymmetry), and y'(p) > 1 so y is
strictly increasing on (—1,1). In fact y'(p) > 2'(p) by comparing (26) and (11), so y increases
faster than z. This is most marked in the tails, as seen from Figure 1: y(p) ~ z(p) for 0 < |p| < .5,
while 1 < y(p)/z(p) T in |p| for |p| > .5. This form of y is needed to stabilize the variance of 73
because its asymptotic variance is smaller than that of r; for larger values of |pl, cf. (6) and (8).

Table 3 shows, however, that when the sample size n is small or moderate, y is not entirely
successful at stabilizing the variance of r3 for p near 0. For example, when n = 10 and p = 0,
the actual variance of y(rs) is 33% greater than the asymptotic approximation 1/(n —2) given by
(27). Furthermore, in Table 5 it is seen that the coverage probability of the confidence interval
(28) based on y(r3) may deviate noticeably from the nominal value 1 — « for @ = .05 when |p| is

small. This suggests making a multiplicative adjustment

Yn(p) = ma(p) y(p) (29)

of the y-transformation such that m,,(p) < 1 for |p| near 0 so that y,(p) will increase slower than

y(p) for p in that region, while m,(p) ~ 1 for larger values of |p|.

"Like Var(z(r1)), Var(y(rs)) is better approximated by — than by 1 see Table 3.

8



Table 3: Empirical variance x (n — 2).

n  Estimator

0 01 03 05 07 09
10 z(r) 099 099 099 098 098 097
2(ry) | 088 0.89 0.89 0.89 0.89 0.89
y(rs) | 1.33 1.30 1.19 1.05 0.95 0.93
yn(rs) | 089 0.95 1.00 0.99 0.97 0.99
20 z(r1) |1.00 1.00 1.00 099 0.99 0.99
2(ry) | 0.95 095 095 095 095 0.95
y(rs) | 1.22 117 1.06 0.99 0.98 0.97
yn(rs) | 096 098 098 097 0.99 1.00
40  z(r) |1.00 1.00 1.00 1.00 1.00 0.99
2(ry) 098 0.98 097 098 098 0.97
y(rs) | 1.13 1.08 1.02 1.00 0.99 0.99
yn(rs) | 098 0.99 098 099 0.99 1.00

This can be accomplished by an ad hoc choice for m,,(p) of the form

ma(p) = <1 - (n/almeb'y(ﬂ)'“) , (30)

where a, b, and ¢ are positive constants chosen as described below. Like y, 4,(0) = 0 and y,(p)
is antisymmetric and strictly increasing on (—1,1). It is seen in Figure 1 that as desired, y,(p)

increases slower than y(p) for p near 0 and y,(p) = y(p) outside that region.

Transformations Transformations neg=0 Transformations fop = 0.5

-2

-4
05 1.0 1.5 2.0 25 3.0 35 4.0

-6

Figure 1: Transformations z, y, and v,,.



Because y,,(13) —y(r3) = Op(n™1), yn(r3) has the same asymptotic distribution as y(r3), namely

vV —2[yn(rs) —yn(p)] = N(0,1) as n — oo, (31)

SO

it (sl £ 22 3

is also an approximate 1 — a confidence interval for p under Model 3. We choose a, b, and ¢ to
minimize the maximum difference between the empirical coverage probabilities of (32) and the
nominal values 1 — « across the ranges of n, a, and p? considered in Table 4.

Specifically, we search for the triple (a, b, ¢) that satisfies

(a,b,c) = argmin max

)
abe MEN,a€L, p?€R

(1—a)—Pr [yn<p> € yn(rs) £ ffﬁ]

where N = {10,20,40}, L = {.01,.05,.1}, and R = {0,.1,.3,.5,.7,.9}. Due to the non-convexity
of the optimization problem, first we chose the best three triples (a,b, ¢) on the grid A x B x C,
where A = B =C = {.1,.2,...,2.9,3.0}. Next, three improved triples were obtained using the
Nelder-Mead (1965) optimization procedure initialized at each of the first three chosen triples.
The best of the three improved triples was selected for y,,: a = 0.403, b = 1.091, and ¢ = 0.775.
(See the Appendix for further details).

With this choice of (a, b, ¢) for y,, Table 4 shows that the coverage probabilities for the 1 — «
confidence interval (32) using y,(r3) are acceptably close to the nominal value 1 — « for o € A,
even though its variance remains somewhat below the nominal value 1/(n —2) when p = 0 (Table
3). For this reason y, might better be called a “confidence-stabilizing” transformation, rather

than “variance-stabilizing”.

2.4. Comparison of the interval estimators for p. Table 5 shows the coverage probabilities
for the nine 1 — « confidence intervals for p presented in §2.1, §2.2, and §2.3 when o = 0.05, i.e.,
95% confidence. Only five of these, marked by %, attain or adequately approximate the nominal

95% level: the exact intervals (15) based on r; and (24) based on z(rs), and the approximate

10



Table 4: Coverage probabilities for the (1 — «)-confidence intervals based on ¥, (r3).

0 01 03 05 07 09
10 101912 906 .908 912 911 .908
20 | 906 .906 .907 .908 .906 .903
40 | .904 903 .905 .904 .903 .901
05 10 1.949 944 943 949 951 .949
20 | 947 946 950 .952 .951 .949
40 | 948 949 951 .951 .950 .950
01 10].983 981 .978 .982 .984 .984
20 | .984 983 986 .987 .987 987
40 | 986 987 988 988 988 .988

intervals (13) based on z(r1), (18) based on z(r2), and (31) based on the modified y-transform
Yn(r3) (but not the approximate interval (28) based on y(rs) itself).

The average half-widths of these five interval estimators are shown in Table 6 for « = .10, .05, .01.
Of these five, (18) and (24), both based on z(rs), are most precise for small values of p while (31)
based on y,(r3) is most precise for intermediate and large values of p. The range of p values for
which (31) is preferable to (18) and (24) expands as the sample size n increases, in accordance

with the smaller asymptotic variance of r5 except at p = 0, as seen in (7) and (8).

3. Comparing two or more correlations when the variances are known.

Suppose that samples of sizes n®, k =1, ..., ¢, are drawn from ¢ bivariate normal distributions

(!) and known variances. Just as the z-transformation z(r;)

with unknown population correlations p
is useful for combining or comparing two or more sample correlation coefficients under Models 1
and 2 (cf. Snedecor and Cochran (1967, §7.7)), the y-transform y(r3) or its modification y,(r3)

can be used for these purposes under Model 3, the known-variance case. The z-transform z(rs)

can also be used, especially if small values of the correlations are expected.

(i) Suppose that p!) = ... = pl@ = p and that it is desired to estimate this common p. If
the sample sizes n®) are large, we can weight the y-transforms of the Model 3 MLEs r:(,,l), e ,réq)

according to their asymptotic inverse variances nt")—2, ..., n{@ —2 to obtain the following weighted

11



Table 5: Coverage probabilities of 95% confidence intervals for p (largest standard error 0.0004).
The intervals marked * have exact or approximate 95% coverage for all three samples sizes.

2

n Confidence Interval 0 01 0 3/) 05 07 09
10 o+ (%) Ga 2 893 891 .889 .885 .879 .871
w2l (z(rl)i j;%) 049 949 950 .950 .951 .952

X (i) <r1j: ﬁ:ftn_l;a/?) 950 .950 950 .950 .950 .950
ro /2 g, 911 912 914 914 912 .909

2! (z(rz)j: jj%) 049 949 949 949 .949 .949

w2 (2(r0) £ Zyayo) 950 950 950 .950 .950 .950

rs + (&é@) o 828 842 869 884 888 .887

y (y(rs) + ggg) 907 911 .929 .946 .953 .954

X ynléyn(rg):t j%) 049 944 943 949 951 .949

20 i+ ( ii) Ga2 921 920 .917 914 .910 .905
. 2! (z(rl):lz *"g/_g) 949 949 949 950 .950 .950

~ (2) (rli zjtnhm) 950 950 950 951 .950 .950
ro /2 g0 929 929 929 929 928 .926

. ozl (z(rg)ij%) 049 949 949 950 .949 .949
27 (2(r2) £ Zyap2) 950 .950 .950 .950 .949 .950

ry + (@a@) Gojp 879 892 908 913 913 912

vt (y(rs) £ gzg) 921 929 943 950 .952 .952
.yl Eyn(rg):t 9;@) 047 946 950 952 .951 .949

40 o+ ( 1;152) G2 935 934 933 931 .929 .927
. ozl (z(rl):lz 9;122) 049 949 950 .950 .950 .950

" (i) <r1j: 171_T1%tn—1;a/2> 950 .950 950 .950 .950 .950
ro /2 g0 038 .939 939 939 .939 .938

1 (2r2) + 22) 949 949 950 949 949 950

* 27 (2(r2) £ Znsay2) 950 950 .950 .950 .950 .950

rs + (@M) Gajp 012 920 928 930 930 .931

y ! (y(rs) 9:‘/_2) 933 .939 947 950 .951 .951

*x oy (yn(rs) £ g:/_22> 948 949 951 .951 .950 .950

12



Table 6: Average half-width of the five (1 — «a)-confidence intervals marked x in Table 5 (largest
standard error 0.0002). The smallest half-width for each combination of n, p and « is in bold.

0

0 0.1 0.3 0.5 0.7 0.9

« n  Confidence Interval

10 10 2! (z(rl)i 9;/2) 483 450 377 204 195 074
(—y) 1+ ﬁtn_l;aﬂ) 565 520 420 336 .237  .119

P (z(rg):lz 93121) 463 433 366 288  .194 075

27 (2(r2) £ Zoy2) .461 .431 .365 287  .193 .075

yo! (yn(rg) + %) 532 494 307 .276 .151 .046

20 ! (z(rl):l: 93122) 353 324 263 106 124 .044
(S—y) <7~1i ij’"ftn_l;aﬂ) 395 369 313 248 175 .085
21 (z(rg):l: 9;[1) 345 318 259 105  .124 .044

27 (2(r2) £ Znoy2) 345  .317 259 195 124 .044

vt () = 5212 377 337 .251 .168 .093 .029

40 2! (z(rl):lz 9;@3) 255 232 184 135  .083 .028
(%) 1+ %tn_l;aﬂ) 270 256 224 .184 133 .064

P (z(rg):l: ng1> 252 229 183 134  .083 .029
27 (2(r2) £ Zoy2) 251 .229 183 134  .083 .029

Yl (yn(rg) + %) 265 231 .168 .112 .063 .020

05 10 27! (z(rl):l: ng2> 558 522 444 351 239 004
(—U) <r1ﬂ: ﬁj’"ftn_l;aﬂ) 670 615 507 398 282  .143
21 (z(rg):lz 9;/_21> 536 .504 .431 345 237 .004
27 (2(r2) £ Zoy2) 538 506 433 346 238  .095

Yl yn(rg):l:j%) 600 565 471 .340 .190 .057

20 271 (z(r)+ 9;/_22> 414 381 312 235 150  .054

(iy) <r1i ﬁtn_l;a/2> AT6 442 370 291 204 .100

2(rg) £ 9a/2> 405 .374 308 234 150 .054

n—1

27 (2(r2) £ Zoy2) 406 .375 309 235 151 .055

13



y ! yn(rg)j:ga/Q) 436 395 .301 .203 .114 .035

o2
40 2! (z(rl)j: gzg) 301 274 219 161 100 .034
(g) <r1i ﬁljftnl;aﬂ) 324 307 267 217 155 075
o1 (z(rg)i ggfl) 297 271 218 161 100 .035
2 (2(r2) £ Zyay2) 298 272 218 161  .100 .035
Yl (yn(rg)j: j;%) 311 274 .200 .134 .075 .024
01 10 27! (z(rl)j: "gg) 681 646 565 464 332 141
(g) <r1i ﬁtnl;aﬂ) 843 783 657 523 377 .197
P (z(rg)j: ggfl) 659 .626 .550 .454 326 .139
27 (2(r2) £ Zyay2) 671 639 563 466 337  .146
Yl (yn(rg):t j;%) 707 679 599 468 .280 .084
20 2! (z(rl)j: "Z/_QQ) 522 485 405 313 205 .076
(4«') <r1i ﬁtnl;am) 637 583 476 369 259  .129
21 (z(rg):lz ggfl) 512 .477 400 310 205 077
27 (2(r2) £ Znsay2) 518 483 405 315 .208 .078
Yl (yn(rg):t 52%) 538 499  .308 .278 .157 .049
40 2 (z(rl)j: "jl/_??) 387 354 287 213 .134 .047
(i) <r1i ﬁtnl;a/2> 433 409 350 278 .195 .094
1 (z(rg):lz ggfl) 382 .351 285 213 134 047
2 (2(r2) £ Ziyay2) 385 354 287 215 135 .048
v () = 222 395 354 .266 .180 .101 .032

estimator for y(p):
4 () — 2)gy(rtk) 1
Yu(13) = klél(n(k) )_yé)g ) ~ N (?J(P)a 2:1 (n(k’) — 2)) : (33)

This provides an approximate 1 — « confidence interval for y(p), which is then inverted to obtain

14



an approximate 1 — a confidence interval for p:

-1 Ja/2 4
! ( Yoy —m) )

If the sample sizes are small or moderate, however, then %, (r3) should be replaced by

- k T(k)
naw(rs) = 2 k= % k:1(ni>:u_n<2>)(s )%N(yn,w(p), ; <$<’“>—2))’ (35)

k=1

where

H n(k) — m,, (k
Iral) = () y(p) = | ZEG =S, (36)

Then (35) provides an approximate 1 —a confidence interval for 4, .,(p), which is strictly increasing

in p hence can be inverted to provide an approximate 1 — « confidence interval for p:

T n,w T3 ga/2 37
%W<y L —m) 0

If the sample sizes are equal, i.e., n(!) = ... = nl@ = n, then (35) and (37) simplify to

%vazéZhA&UzN(%@x—i—), (38)

— q(n —2)

' (yn(rs) + %> : (39)

q(n —2)

Lastly, if it is expected that the common p is small, then the findings in §2.4 suggest that
y(rs (k) ) be replaced by the z-transforms z(r2 ) of the Model 2 MLEs to obtain a more precise
estimate of p. Thus (33) would be replaced by (recall (17))

S W = 1)) 1
ra(r) = ST = N (20 ) 10

which provides an approximate 1 — a confidence interval for z(p) that is then inverted to obtain

15



an approximate 1 — a confidence interval for p:

—1 _ Ja/2
Z (Z“’(”) L 1>> | W

Of course, if the underlying bivariate normal data is available from the ¢ populations, then

these data should be combined into a single sample of size n(Y + --. 4+ n(? from which a more
efficient estimate of the common p can be obtained by the methods of Section 2. However, the

weighted estimates obtained here would still be useful for testing homogeneity of the p*) as now

described.
(ii) The homogeneity hypothesis Hy : p) = --- = p@ is equivalent to homogeneity of the y-
transforms: y(p(V)) = -+ = y(p@). To test this against the general alternative, if the sample sizes

are large we may reject H for large values of the weighted chi-square statistic

Ty =30 0 =2) (404) ~ ) (42)

k=1

distributed approximately as Xg—l under Hy.

If the samples sizes are not large but equal, i.e., n(!) = ... = n@ = n, then Hy is equivalent to
homogeneity of the modified y transforms, i.e., y,(pM) = - -+ = y,(p'?), so T, can be replaced
by the statistic

q k _ 2
Ty = (=20 (3rf?) = galrs)) (43)

distributed approximately as X3_1 under Hy. However, if the sample sizes are not equal then Hy

is not equivalent to homogeneity of 1,1, (p™M), ..., Y@ (p'?), so the weighted test statistic

2

Ty = > (0% = 2) (5,0 (47) = G (73)) (44)

k=1

is not necessarily appropriate for testing H.

Finally, if it is expected that p™, ..., p@ are small, then we would reject Hy for large values
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of the weighted chi-square statistic

T =30 0® 1) (208) ~ 2(r2)) (45)

also distributed approximately as XZ—I under H,.

4. Testing p = 0 (bivariate independence) under Model 3.

Fosdick and Raftery (2012) also discussed the problem of testing p = 0 vs. p > 0 in a single
bivariate normal population with known variances. They considered tests that reject Hy for large
values of r1, r3, and 4 and their variants, as well as several Bayes tests, determining the critical
of these tests by Monte Carlo simulation. Here we add a few observations about these tests and
some others for this testing problem.

Exact tests for independence are well known for Models 1 and 2. Under Model 1 the test that
rejects p = 0 for large values of r; is the uniformly most powerful unbiased (UMPU) test for p =0

vs. p> 0 (Lehmann (1986, §5.15)). When p = 0 it follows from (14) that

from which the exact null distribution of this test is readily obtained.

Vn—1 (T—1> ~tni, (46)

Under Model 2 the problem of testing p = 0 vs. p > 0 is equivalent to the problem of comparing
two normal variances, i.e., testing 02 = 02 vs. 02 > o2 (recall (22)). The F-test that rejects p = 0
if if—g = Z—; > Fona is UMPU level o under Model 2 (Lehmann (1986, §5.3)). Therefore this test
is exact for testing p = 0 vs. p > 0 under Model 3 as well, and should perform reasonably well
there. (Note that 02 4+ 02 = 2 under Model 3.)

Under Model 3, it follows from (3) that the pdf of (z;,y;) does not have monotone likelihood
ratio (MLR) and that no uniformly most powerful (UMP) test exists for p = 0 vs. p > 0. In fact,
for a fixed alternative p; > 0 the most powerful level « test rejects p = 0 iff

pi(ss + 5@2,)

5 + co (47)

Suy >
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where ¢, is chosen to attain size a. Thus the locally most powerful (LMP) level «a test for
alternatives p; | 0 rejects Hy iff 4 = s,, > ¢, whereas the asymptotically most powerful (AMP)
level o test for alternatives p; 1 1 rejects Hy iff 254, — 55 — 57 > cq, equivalently, iff v* < x7,
(recall (19) and (21)). Since these two tests are different, no UMP test exists under Model 3.
The exact test based on ry has an interesting albeit limited optimality property under Model
3. If we set ¢, = 0 in (47), it follows that the test that rejects p = 0 if 75 > p; is the MP test of

its size for the fixed alternative p; > 0. By (23) this size is given by

a(pr) =Prlrs>p1 | p=0]

=1- Fn,n (62z(p1)) ) (48)

where F, ,,(-) denotes the cdf of the F,,,, distribution. Values of a(p;) are shown in Table 7.

Table 7: Size a(p;) of the MP test of p = 0 vs p = p; that rejects when o > p;.

3

0+ 0.1 0.3 0.5 0.7 0.9
10 1 0.5 0.1583 0.0326 0.0051  3.5e-4  1.3e-6
20 1 0.5 0.0758 0.0042 0.0001  6.1e-7 <le-10
40 | 0.5 0.0207 8.7e-5 8.3e-8 <le-10 <le-10

Under Model 3 the powers of the size .05 tests for p = 0 vs. p > 0 based on ry, r9, r3, r4 (the
LMP test) and v? (the AMP test) are compared via simulation® in Table 8. The LMP (AMP) test
is dominated in power by the other three tests for all except very small (very large) values of the
alternative p;, so is not recommended. The r; test is dominated by the ry test but only slightly,
which suggests that for testing purposes not much power is gained from the knowledge that the
variances are equal.

For sample size n = 10 the ry test dominates the r3 test for p? < .3 while the reverse is
true when p? > .5. For sample sizes 20 and 40 this crossover occurs for p? € (.1,.3). Thus we

recommend either the ro or r3 test under Model 3, depending on whether small values or large

8The size .05 critical values for the tests based on 73 and r4 also were obtained by simulation, whereas the exact
critical values were used for the other three tests.
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Table 8: Power when testing p = 0 vs p > 0 for various alternatives p; at the a = 0.05 significance
level.

2

. - o7
n Test Rejection Criterion | o, 05 g1 03 05 07 09
10 \/n—l(\/?—2)>tn_1;a 0.088 0.164 0.250 0.580 0.843 0.975 1.000

-
ED 0.088 0.166 0.252 0.585 0.847 0.976 1.000
rs > Can 0.076 0.130 0.195 0.518 0.860 0.996 1.000
P4 > Con 0.093 0171 0.247 0.482 0.651 0.769 0.850
V< X2 0.072 0.114 0.166 0.440 0.800 0.993 1.000
20 \/n—l(\/:l_Q)>tn_1;a 0.113 0255 0.413 0.851 0.985 1.000 1.000
-

L2 s o 0.113 0255 0.414 0.853 0.986 1.000 1.000
ra > Can 0.100 0218 0.365 0.859 0.996 1.000 1.000
r4 > Can 0.115 0252 0.390 0.751 0.911 0.971 0.991
v <2, 0.086 0.168 0.275 0.757 0.989 1.000 1.000
10 \/n—l( ;12)>tn_1;a 0.154 0410 0.656 0.986 1.000 1.000 1.000
2> Fona 0.154 0.411 0.656 0.986 1.000 1.000 1.000
ry > Can 0.143 0386 0.641 0.992 1.000 1.000 1.000
ra > Con 0.155 0398 0.619 0.959 0.997 1.000 1.000
v < X2 0.110 0269 0474 0.971 1.000 1.000 1.000

values of the alternative p; are of most interest. Because the 7y test is exact, it is easier to apply

than the r3 test, so the ry test might be recommended for Model 3 on this basis.

Remark. Under Model 3, E,(s2 + 33) = 2 for all p, but s2 + 332/ is not an ancillary statistic.
Nonetheless it might be of interest to consider the conditional test based on the conditional

distribution of s, given s2 + s7. O
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Appendix: Choosing a, b, and c¢ for y,

The y,(p) transformation has the form

yn(p) = <1 — W"lme—bly@)lj y(p)-

The constants a, b, and ¢ are defined as

(a,b,c) = argmin f(a, b, c), where

a,b,c
fla,b,c) = max (1 —a) —Pr|ya.(p) € yu(rs) £ Jo/2 :
neN, acL, p2cR vn—2

N = {10,20,40}, L = {0.01,0.05,0.1}, and R = {0,0.1,0.3,0.5,0.7,0.9}. The procedure used to

search for (a, b, c) is outlined below; the results associated with each step are also included.

1. Find the three triples (@,b,¢) on the grid A x B x C that result in the smallest values of

f(@,b,¢), where A= B=C={0.1,0.2,....,2.9,3.0}.

a b ¢ | f@abe)
08 1.8 0.5 0.012626
04 1.1 0.8]0.012646
1.3 2.3 04 ]0.012835
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2. Initialize the Nelder-Mead optimization algorithm in R at each of the (a, b, ¢) triples found

in Step 1 and obtain three improved triples (a, b, c).

Irgitial}/aluejs Improved Values fla,b, )
a b c a b c

0.8 1.8 0.5 0.797 1.800 0.500 | 0.012461
04 1.1 0.8 0.403 1.091 0.775 | 0.012348
1.3 23 0.4 1.304 2.304 0.403 | 0.012567

3. From the three improved triples obtained in Step 2, select that which results in the smallest

value of f(a,b,c).

(a,b,¢) = (0.403,1.091,0.775)
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