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Abstract

Fosdick and Raftery (2012) revisited the classical problem of inference for a bivariate normal

correlation coefficient ρ when the variances are known. They considered several frequentist and

Bayesian estimators, the former including the maximum likelihood estimator (MLE), but did not

obtain the standard errors of these estimators or confidence intervals for ρ. Here we present a

new variance-stabilizing transformation y for the MLE in the known-variance case. Adjusting y

appropriately according to the sample size n produces a “confidence-stabilizing” transformation

yn that provides more accurate interval estimates for ρ than the MLE, as does Fisher’s classical z

transformation for the MLE in the unknown-variance case. Interestingly, the z transform applied

to the MLE for the unknown-but-equal-variance case performs well in the known-variance case

for smaller values of ρ. Both these methods are also useful for comparing two or more correlation

coefficients in the known-variance case; hypothesis testing in this case is also discussed.



1. Introduction

Let (xi, yi), i = 1, . . . , n, be i.i.d. observations from a bivariate normal distribution with correlation

coefficient ρ and variances σ2
x and σ2

y. We consider the following three increasingly restrictive

covariance models:

Model 1: σ2
x and σ2

y both unknown;

Model 2: σ2
x/σ

2
y ≡ aσ2, a known, σ2 unknown;

Model 3: σ2
x and σ2

y both known.

Without essential loss of generality we assume throughout that the means are both 0, that a = 1

(so σ2
x = σ2

y = σ2) in Model 2, and that σ2
x = σ2

y = 1 in Model 3.

These well-known models form the basis for many textbook examples and exercises. Models

1 and 2 are full exponential families with complete sufficient statistics W1 ≡ (s2x, s
2
y, sxy) and

W2 ≡ (s2x + s2y, sxy) respectively, where

s2x =
1

n

∑
x2i , s2y =

1

n

∑
y2i , sxy =

1

n

∑
xiyi. (1)

Both Models 1 and 2 admit explicit maximum likelihood estimators (MLE) for their unknown

parameters:

Model 1: ρ̂ = r1, σ̂2
x = s2x, σ̂2

y = s2y;

Model 2: ρ̂ = r2, σ̂2 = 1
2
(s2x + s2y);

where

r1 =
sxy
sxsy

, r2 =
2sxy
s2x + s2y

. (2)

The geometric mean of s2x and s2y in r1 is replaced by the arithmetic mean in r2, so |r2| < |r1|.

Model 3 is a curved exponential family with log likelihood function

ln(ρ) = c− n

2
log(1− ρ2)−

n(s2x + s2y)

2(1− ρ2)
+
nρsxy
1− ρ2

, (3)

cf. Stuart and Ord (1991, Ch. 18). Here W2 is minimal sufficient but not complete; note that
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W2 is two-dimensional while the unknown parameter ρ is one-dimensional. The MLE ρ̂ is r3, the

maximizing root of the cubic equation

ρ(1− ρ2)− ρ(s2x + s2y) + (1 + ρ2)sxy = 0. (4)

In this paper we focus on Model 3, which is less amenable to exact analysis but was recently

encountered by Fosdick and Raftery (2012) when comparing fertility rate forecast errors between

developed and undeveloped countries. They considered several variants of three frequentist esti-

mators for ρ, as well as several Bayesian estimators. The frequentist estimators were r1, r3, and

the “empirical estimator”

r4 = sxy (5)

s truncated to lie in [−1, 1], where the estimated standard deviation estimates sx and sy in r1 and

r2 are replaced by the known values 1. However, Fosdick and Raftery did not discuss the standard

errors of their estimators.

It is well known1 that as n→∞,

√
n(r1 − ρ) → N

(
0, (1− ρ2)2

)
under Model 1, (6)

√
n(r2 − ρ) → N

(
0, (1− ρ2)2

)
under Model 2, (7)

√
n(r3 − ρ) → N

(
0,

(1− ρ2)2

1 + ρ2

)
under Model 3, (8)

√
n(r4 − ρ) → N

(
0, 1 + ρ2

)
under Model 3. (9)

Because Model 3 is regular (sufficiently smooth), the MLE r3 is asymptotically optimal for this

model, that is, has smallest asymptotic variance among all asymptotically normal estimators.

Whereas the MLE r3 is optimal for large samples sizes under Model 3, Fosdick and Raftery’s

interest was in the case of small and moderate sample sizes. In Table 1 the mean-squared errors

1E.g. Lehmann (1983, (19) p.441, Problems 6.2.20 and 6.5.9), Stuart and Ord (1991, Ch. 18)). The result (7)
follows from (6) because r2 − r1 = Op(n−1) under Model 2 by a standard Taylor expansion argument.
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of r1, r2, r3, and r4 have been obtained2,3 by simulation. Here r3 performs best unless ρ2 is

small, where r2 may be somewhat better, while r4 performs poorly in most cases. These effects

become more marked as the sample size n increases, which is in agreement with the ordering of

the asymptotic variances in (6)–(9).

Table 1: Root MSE (×1000); r4 truncated to [-1,1]. (largest standard error of estimates is 0.4).

n Estimator
ρ2

0 0.1 0.3 0.5 0.7 0.9
10 r1 316 292 239 182 117 43

r2 301 281 236 184 122 46
r3 339 311 239 156 79 23
r4 314 314 303 286 273 272

20 r1 224 204 163 120 74 26
r2 218 200 162 121 76 27
r3 238 208 147 94 52 16
r4 224 232 237 226 210 202

40 r1 158 144 113 82 50 17
r2 156 142 113 83 51 17
r3 165 141 99 65 36 11
r4 158 166 177 176 162 149

In addition to its large MSE the estimator r4 sometimes falls outside the admissible range

[−1, 1], while the Bayesian estimators are not amenable to frequentist interval estimation; these

will not be discussed further here.

As is the case for r1, convergence to normality is also slow for r2 and r3, so for small or

moderate sample sizes the asymptotic variances in (6)–(8) do not provide good approximations

for their standard errors (Table 2). Fisher’s celebrated z transformation greatly improves the

normal approximation to the distribution of r1 under Model 1 so is invaluable for inference about

ρ in this case – see §2.1. Interestingly, the exact distribution of z(r2) is easy to specify under Model

2 (see §2.2) and therefore under Model 3, where it provides estimates and tests that perform well

for smaller values of ρ (see §2.4 and Section 3).

2The MSE is shown for a uniform range of ρ2 values rather than ρ values, because it is ρ2 rather than |ρ| that
indicates the strength of the relationship between x and y.

3Using the formulas for r3 given in F&R, 0.0003% of estimates did not satisfy the cubic equation in (4) within
±1e−8. For these simulations, the default ‘optimize’ procedure in R was used to obtain the estimate r3 that
maximizes the likelihood.
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Table 2: Ratio of empirical variance to asymptotic variance.

n Estimator
ρ2

0 0.1 0.3 0.5 0.7 0.9
10 r1 1.00 1.05 1.17 1.32 1.51 1.81

r2 0.91 0.98 1.14 1.35 1.65 2.11
r3 1.15 1.31 1.52 1.47 1.18 1.02

20 r1 1.00 1.03 1.09 1.15 1.23 1.32
r2 0.95 0.99 1.08 1.18 1.30 1.45
r3 1.13 1.18 1.15 1.05 1.01 1.00

40 r1 1.00 1.02 1.04 1.08 1.11 1.15
r2 0.98 1.00 1.04 1.09 1.14 1.20
r3 1.09 1.08 1.04 1.01 1.00 1.00

For Model 3, a new variance-stabilizing transformation y for the MLE r3 is presented in §2.3.

Unlike the z-transform, the y-transform must be adjusted for the sample size n to stabilize the

confidence coverage of r3. When this is done the resulting “confidence-stabilized” transformation

yn(r3) provides more precise confidence intervals under Model 3 than intervals based on r1 and r2

for moderate and large values of ρ. For small values, intervals based on z(r2) are preferable. This

is demonstrated via simulation in §2.4.

The use of z(r2), y(r3), and yn(r3) for comparing two or more correlation coefficients under

Model 3 is outlined in Section 3.

F&R also considered the problem of testing H0 : ρ = 0 (independence) vs. the one-sided

alternative H1 : ρ > 0 under Model 3. They considered the tests that reject H0 for large values of

r1, r3, and r4 and their variants, as well as several Bayes tests, and approximated the significance

levels of these tests by Monte Carlo simulation. It is well known that the r1 test is exact for

this problem. In Section 4 we note that the r2 test is also exact and has an interesting although

limited optimality property. Also we show that the r4 test is locally most powerful for alternatives

ρ ↓ 0 and derive the asymptotically most powerful test (also exact) for alternatives ρ ↑ 1. On the

basis of numerical power comparisons, the r2 (resp., r3) test is recommended if small (resp., large)

alternative values of |ρ| are expected.

2. Confidence intervals for ρ under Model 3.
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2.1. Confidence intervals based on the Model 1 MLE r1. Let gγ denote the upper γ-

quantile of the standard normal ≡ Gaussian distribution. From (6), for sufficiently large n

r1 ±
(

1− r21√
n− 2

)
gα/2 (10)

is an approximate 1−α confidence interval4 for ρ under the unrestricted Model 1, hence for Models

2 and 3.

Unfortunately the sample size required for the accuracy of the normal approximation (6) de-

pends on the unknown ρ, but this is remedied by Fisher’s celebrated z-transformation for r1 (cf.

Anderson (1984, §4.2.3)), given by the indefinite integral

z(ρ) =

∫
dρ

1− ρ2
=

1

2
log

(
1 + ρ

1− ρ

)
. (11)

This is a variance-stabilizing transformation that satisfies

√
n− 2 [z(r1)− z(ρ)]→ N(0, 1) (12)

with faster convergence to normality than (6) (see Table 3). This provides the approximate 1−α

confidence interval for ρ given by

z−1
(
z(r1)±

gα/2√
n− 2

)
, (13)

valid for Model 1 hence for Models 2 and 3. (Note that z−1(r) = tanh(r).)

An exact confidence interval for ρ under Model 2 and therefore Model 3 is readily obtained

from the classical Student t-distribution of the sample regression coefficient of yi given xi (e.g.

Stuart and Ord (1987, eqn. 16.92)):

√
n− 1

(
r1 − ( sx

sy
)ρ√

1− r21

)
∼ tn−1. (14)

4As is well known for (13), using n − 2 rather than n results in a coverage probability somewhat closer to the
nominal value 1− α.
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This provides the exact 1− α confidence interval5

(
sy
sx

)r1 ±
√

1− r21
n− 1

tn−1;α/2

 (15)

for ρ under Models 2 and 3, where tn−1;γ denotes the upper γ-quantile of the tn−1 distribution.

Although the interval (15) is exact, it is not a function of the minimal sufficient statistic

(s2x + s2y, sxy) for Model 3 so may be inefficient; this is confirmed in §2.4.

2.2. Confidence intervals based on the Model 2 MLE r2. Because r2 has the same

asymptotic normal distribution6 as r1,

r2 ±
(

1− r22√
n− 1

)
gα/2 (16)

is an approximate 1−α confidence interval for ρ under Model 2, hence under Model 3. Furthermore,

the z-transformation also applies to r2 in this case, yielding the same normal approximation:

√
n− 1 [z(r2)− z(ρ)]→ N(0, 1); (17)

this gives another approximate 1− α confidence interval for ρ under Model 2, hence Model 3:

z−1
(
z(r2)±

gα/2√
n− 1

)
. (18)

It is perhaps less well known that Fisher’s z-transformation in fact applies exactly to r2 under

Model 2. The orthogonally-transformed random vectors

ui
vi

 =

 1√
2
(xi + yi)

1√
2
(xi − yi)

 , i = 1, . . . , n, (19)

5By regressing xi on yi, a second exact 1−α confidence interval is obtained by interchanging sx and sy in (15).
6See Footnote 1. Also, the entries for z(r2) in Table 3 show that its variance is approximated much better by

1/(n− 1) than by 1/(n− 2), hence its use in (17).
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have the zero-mean bivariate normal distribution with covariance matrix(1 + ρ)σ2 0

0 (1− ρ)σ2

 ≡
σ2

u 0

0 σ2
v

 . (20)

Thus ui ⊥⊥ vi, i = 1, . . . , n, and

u2 ≡
∑

u2i ∼ σ2
uχ

2
n, v2 ≡

∑
v2i ∼ σ2

vχ
2
n, (21)

u2

v2
=

1 + r2
1− r2

∼
(
σ2
u

σ2
v

)
Fn,n ≡

(
1 + ρ

1− ρ

)
Fn,n. (22)

Take logarithms to obtain the exact relation

z(r2) ∼ z(ρ) +
1

2
logFn,n ≡ z(ρ) + Zn, (23)

where Zn denotes Fisher’s Z distribution with n and n degrees of freedom (cf. Stuart and Ord

(1987, §16.16)). This yields the following exact 1− α confidence interval for ρ:

z−1
(
z(r2)± Zn;α/2

)
, (24)

valid under Model 2 hence Model 3. Here Zn;γ denotes the upper γ-quantile of Zn, which can be

expressed in terms of the γ-quantile of Fn,n.

Unlike r1, r2 is a function of the minimal sufficient statistic W2 ≡ (s2x + s2y, sxy) for Model 3 so

it may be expected to produce more efficient estimates than r1 in this case. This should be most

noticeable when ρ is small, since |r2| < |r1|; see Tables 1 and 2.

2.3. Confidence intervals based on the Model 3 MLE r3. From (8), for sufficiently large n

r3 ±

(
1− r23√
n(1 + r23)

)
gα/2 (25)

is an approximate 1− α confidence interval for ρ under Model 3. As for r1, however, the normal

approximation (8) for r3 is inaccurate unless the sample size is large (see Table 2). This suggests
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seeking a variance-stabilizing tranformation y for r3 under Model 3.

Starting from (8) and applying Mathematica we obtain

y(ρ) =

∫ √
1 + ρ2

1− ρ2
dρ (26)

=
1√
2

log

[(
1 + ρ

1− ρ

)(√
2
√

1 + ρ2 + 1 + ρ
√

2
√

1 + ρ2 + 1− ρ

)]
− log

(√
1 + ρ2 + ρ

)
,

so that
√
n− 2 [y(r3)− y(ρ)]→ N(0, 1) as n→∞. (27)

Thus an approximate 1− α confidence interval for ρ valid under Model 3 is given by7

y−1
(
y(r3)±

gα/2√
n− 2

)
. (28)

It follows from (26) that y(0) = 0, y(ρ) = −y(−ρ) (antisymmetry), and y′(ρ) ≥ 1 so y is

strictly increasing on (−1, 1). In fact y′(ρ) ≥ z′(ρ) by comparing (26) and (11), so y increases

faster than z. This is most marked in the tails, as seen from Figure 1: y(ρ) ≈ z(ρ) for 0 ≤ |ρ| ≤ .5,

while 1 < y(ρ)/z(ρ) ↑ in |ρ| for |ρ| > .5. This form of y is needed to stabilize the variance of r3

because its asymptotic variance is smaller than that of r1 for larger values of |ρ|, cf. (6) and (8).

Table 3 shows, however, that when the sample size n is small or moderate, y is not entirely

successful at stabilizing the variance of r3 for ρ near 0. For example, when n = 10 and ρ = 0,

the actual variance of y(r3) is 33% greater than the asymptotic approximation 1/(n− 2) given by

(27). Furthermore, in Table 5 it is seen that the coverage probability of the confidence interval

(28) based on y(r3) may deviate noticeably from the nominal value 1− α for α = .05 when |ρ| is

small. This suggests making a multiplicative adjustment

yn(ρ) ≡ mn(ρ) y(ρ) (29)

of the y-transformation such that mn(ρ) < 1 for |ρ| near 0 so that yn(ρ) will increase slower than

y(ρ) for ρ in that region, while mn(ρ) ≈ 1 for larger values of |ρ|.
7Like Var(z(r1)), Var(y(r3)) is better approximated by 1

n−2 than by 1
n ; see Table 3.
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Table 3: Empirical variance × (n− 2).

n Estimator
ρ2

0 0.1 0.3 0.5 0.7 0.9
10 z(r1) 0.99 0.99 0.99 0.98 0.98 0.97

z(r2) 0.88 0.89 0.89 0.89 0.89 0.89
y(r3) 1.33 1.30 1.19 1.05 0.95 0.93
yn(r3) 0.89 0.95 1.00 0.99 0.97 0.99

20 z(r1) 1.00 1.00 1.00 0.99 0.99 0.99
z(r2) 0.95 0.95 0.95 0.95 0.95 0.95
y(r3) 1.22 1.17 1.06 0.99 0.98 0.97
yn(r3) 0.96 0.98 0.98 0.97 0.99 1.00

40 z(r1) 1.00 1.00 1.00 1.00 1.00 0.99
z(r2) 0.98 0.98 0.97 0.98 0.98 0.97
y(r3) 1.13 1.08 1.02 1.00 0.99 0.99
yn(r3) 0.98 0.99 0.98 0.99 0.99 1.00

This can be accomplished by an ad hoc choice for mn(ρ) of the form

mn(ρ) =

(
1− a

(n/10)
e−b|y(ρ)|

c

)
, (30)

where a, b, and c are positive constants chosen as described below. Like y, yn(0) = 0 and yn(ρ)

is antisymmetric and strictly increasing on (−1, 1). It is seen in Figure 1 that as desired, yn(ρ)

increases slower than y(ρ) for ρ near 0 and yn(ρ) ≈ y(ρ) outside that region.
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−
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−
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0
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4
6

Transformations
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y10
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5
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0
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0
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ρ

zR
H

O
A

LL

Figure 1: Transformations z, y, and yn.
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Because yn(r3)−y(r3) = Op(n
−1), yn(r3) has the same asymptotic distribution as y(r3), namely

√
n− 2 [yn(r3)− yn(ρ)]→ N(0, 1) as n→∞, (31)

so

y−1n

(
yn(r3)±

gα/2√
n− 2

)
(32)

is also an approximate 1 − α confidence interval for ρ under Model 3. We choose a, b, and c to

minimize the maximum difference between the empirical coverage probabilities of (32) and the

nominal values 1− α across the ranges of n, α, and ρ2 considered in Table 4.

Specifically, we search for the triple (a, b, c) that satisfies

(a, b, c) = argmin
a,b,c

max
n∈N, α∈L, ρ2∈R

∣∣∣∣(1− α)− Pr

[
yn(ρ) ∈ yn(r3)±

gα/2√
n− 2

]∣∣∣∣ ,
where N = {10, 20, 40}, L = {.01, .05, .1}, and R = {0, .1, .3, .5, .7, .9}. Due to the non-convexity

of the optimization problem, first we chose the best three triples (a, b, c) on the grid A× B × C,

where A = B = C = {.1, .2, . . . , 2.9, 3.0}. Next, three improved triples were obtained using the

Nelder-Mead (1965) optimization procedure initialized at each of the first three chosen triples.

The best of the three improved triples was selected for yn: a = 0.403, b = 1.091, and c = 0.775.

(See the Appendix for further details).

With this choice of (a, b, c) for yn, Table 4 shows that the coverage probabilities for the 1− α

confidence interval (32) using yn(r3) are acceptably close to the nominal value 1 − α for α ∈ A,

even though its variance remains somewhat below the nominal value 1/(n− 2) when ρ = 0 (Table

3). For this reason yn might better be called a “confidence-stabilizing” transformation, rather

than “variance-stabilizing”.

2.4. Comparison of the interval estimators for ρ. Table 5 shows the coverage probabilities

for the nine 1− α confidence intervals for ρ presented in §2.1, §2.2, and §2.3 when α = 0.05, i.e.,

95% confidence. Only five of these, marked by ?, attain or adequately approximate the nominal

95% level: the exact intervals (15) based on r1 and (24) based on z(r2), and the approximate
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Table 4: Coverage probabilities for the (1− α)-confidence intervals based on yn(r3).

α n
ρ2

0 0.1 0.3 0.5 0.7 0.9
.10 10 .912 .906 .908 .912 .911 .908

20 .906 .906 .907 .908 .906 .903
40 .904 .903 .905 .904 .903 .901

.05 10 .949 .944 .943 .949 .951 .949
20 .947 .946 .950 .952 .951 .949
40 .948 .949 .951 .951 .950 .950

.01 10 .983 .981 .978 .982 .984 .984
20 .984 .983 .986 .987 .987 .987
40 .986 .987 .988 .988 .988 .988

intervals (13) based on z(r1), (18) based on z(r2), and (31) based on the modified y-transform

yn(r3) (but not the approximate interval (28) based on y(r3) itself).

The average half-widths of these five interval estimators are shown in Table 6 for α = .10, .05, .01.

Of these five, (18) and (24), both based on z(r2), are most precise for small values of ρ while (31)

based on yn(r3) is most precise for intermediate and large values of ρ. The range of ρ values for

which (31) is preferable to (18) and (24) expands as the sample size n increases, in accordance

with the smaller asymptotic variance of r3 except at ρ = 0, as seen in (7) and (8).

3. Comparing two or more correlations when the variances are known.

Suppose that samples of sizes n(k), k = 1, . . . , q, are drawn from q bivariate normal distributions

with unknown population correlations ρ(k) and known variances. Just as the z-transformation z(r1)

is useful for combining or comparing two or more sample correlation coefficients under Models 1

and 2 (cf. Snedecor and Cochran (1967, §7.7)), the y-transform y(r3) or its modification yn(r3)

can be used for these purposes under Model 3, the known-variance case. The z-transform z(r2)

can also be used, especially if small values of the correlations are expected.

(i) Suppose that ρ(1) = · · · = ρ(q) ≡ ρ and that it is desired to estimate this common ρ. If

the sample sizes n(k) are large, we can weight the y-transforms of the Model 3 MLEs r
(1)
3 , . . . , r

(q)
3

according to their asymptotic inverse variances n(1)−2, . . . , n(q)−2 to obtain the following weighted
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Table 5: Coverage probabilities of 95% confidence intervals for ρ (largest standard error 0.0004).
The intervals marked ? have exact or approximate 95% coverage for all three samples sizes.

n Confidence Interval
ρ2

0 0.1 0.3 0.5 0.7 0.9

10 r1 ±
(

1−r21√
n−2

)
gα/2 .893 .891 .889 .885 .879 .871

? z−1
(
z(r1)±

gα/2√
n−2

)
.949 .949 .950 .950 .951 .952

?
(
sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.950 .950 .950 .950 .950 .950

r2 ±
√

1−r22
n−2 gα/2 .911 .912 .914 .914 .912 .909

? z−1
(
z(r2)±

gα/2√
n−1

)
.949 .949 .949 .949 .949 .949

? z−1
(
z(r2)± Zn;α/2

)
.950 .950 .950 .950 .950 .950

r3 ±
(

1−r23√
(n−2)(1+r23)

)
gα/2 .828 .842 .869 .884 .888 .887

y−1
(
y(r3)±

gα/2√
n−2

)
.907 .911 .929 .946 .953 .954

? y−1n

(
yn(r3)±

gα/2√
n−2

)
.949 .944 .943 .949 .951 .949

20 r1 ±
(

1−r21√
n−2

)
gα/2 .921 .920 .917 .914 .910 .905

? z−1
(
z(r1)±

gα/2√
n−2

)
.949 .949 .949 .950 .950 .950

?
(
sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.950 .950 .950 .951 .950 .950

r2 ±
√

1−r22
n−2 gα/2 .929 .929 .929 .929 .928 .926

? z−1
(
z(r2)±

gα/2√
n−1

)
.949 .949 .949 .950 .949 .949

? z−1
(
z(r2)± Zn;α/2

)
.950 .950 .950 .950 .949 .950

r3 ±
(

1−r23√
(n−2)(1+r23)

)
gα/2 .879 .892 .908 .913 .913 .912

y−1
(
y(r3)±

gα/2√
n−2

)
.921 .929 .943 .950 .952 .952

? y−1n

(
yn(r3)±

gα/2√
n−2

)
.947 .946 .950 .952 .951 .949

40 r1 ±
(

1−r21√
n−2

)
gα/2 .935 .934 .933 .931 .929 .927

? z−1
(
z(r1)±

gα/2√
n−2

)
.949 .949 .950 .950 .950 .950

?
(
sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.950 .950 .950 .950 .950 .950

r2 ±
√

1−r22
n−2 gα/2 .938 .939 .939 .939 .939 .938

? z−1
(
z(r2)±

gα/2√
n−1

)
.949 .949 .950 .949 .949 .950

? z−1
(
z(r2)± Zn;α/2

)
.950 .950 .950 .950 .950 .950

r3 ±
(

1−r23√
(n−2)(1+r23)

)
gα/2 .912 .920 .928 .930 .930 .931

y−1
(
y(r3)±

gα/2√
n−2

)
.933 .939 .947 .950 .951 .951

? y−1n

(
yn(r3)±

gα/2√
n−2

)
.948 .949 .951 .951 .950 .950
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Table 6: Average half-width of the five (1 − α)-confidence intervals marked ? in Table 5 (largest
standard error 0.0002). The smallest half-width for each combination of n, ρ and α is in bold.

α n Confidence Interval
ρ2

0 0.1 0.3 0.5 0.7 0.9

.10 10 z−1
(
z(r1)±

gα/2√
n−2

)
.483 .450 .377 .294 .195 .074(

sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.565 .520 .429 .336 .237 .119

z−1
(
z(r2)±

gα/2√
n−1

)
.463 .433 .366 .288 .194 .075

z−1
(
z(r2)± Zn;α/2

)
.461 .431 .365 .287 .193 .075

y−1n

(
yn(r3)±

gα/2√
n−2

)
.532 .494 .397 .276 .151 .046

20 z−1
(
z(r1)±

gα/2√
n−2

)
.353 .324 .263 .196 .124 .044(

sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.395 .369 .313 .248 .175 .085

z−1
(
z(r2)±

gα/2√
n−1

)
.345 .318 .259 .195 .124 .044

z−1
(
z(r2)± Zn;α/2

)
.345 .317 .259 .195 .124 .044

y−1n

(
yn(r3)±

gα/2√
n−2

)
.377 .337 .251 .168 .093 .029

40 z−1
(
z(r1)±

gα/2√
n−2

)
.255 .232 .184 .135 .083 .028(

sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.270 .256 .224 .184 .133 .064

z−1
(
z(r2)±

gα/2√
n−1

)
.252 .229 .183 .134 .083 .029

z−1
(
z(r2)± Zn;α/2

)
.251 .229 .183 .134 .083 .029

y−1n

(
yn(r3)±

gα/2√
n−2

)
.265 .231 .168 .112 .063 .020

.05 10 z−1
(
z(r1)±

gα/2√
n−2

)
.558 .522 .444 .351 .239 .094(

sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.670 .615 .507 .398 .282 .143

z−1
(
z(r2)±

gα/2√
n−1

)
.536 .504 .431 .345 .237 .094

z−1
(
z(r2)± Zn;α/2

)
.538 .506 .433 .346 .238 .095

y−1n

(
yn(r3)±

gα/2√
n−2

)
.600 .565 .471 .340 .190 .057

20 z−1
(
z(r1)±

gα/2√
n−2

)
.414 .381 .312 .235 .150 .054(

sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.476 .442 .370 .291 .204 .100

z−1
(
z(r2)±

gα/2√
n−1

)
.405 .374 .308 .234 .150 .054

z−1
(
z(r2)± Zn;α/2

)
.406 .375 .309 .235 .151 .055
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y−1n

(
yn(r3)±

gα/2√
n−2

)
.436 .395 .301 .203 .114 .035

40 z−1
(
z(r1)±

gα/2√
n−2

)
.301 .274 .219 .161 .100 .034(

sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.324 .307 .267 .217 .155 .075

z−1
(
z(r2)±

gα/2√
n−1

)
.297 .271 .218 .161 .100 .035

z−1
(
z(r2)± Zn;α/2

)
.298 .272 .218 .161 .100 .035

y−1n

(
yn(r3)±

gα/2√
n−2

)
.311 .274 .200 .134 .075 .024

.01 10 z−1
(
z(r1)±

gα/2√
n−2

)
.681 .646 .565 .464 .332 .141(

sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.843 .783 .657 .523 .377 .197

z−1
(
z(r2)±

gα/2√
n−1

)
.659 .626 .550 .454 .326 .139

z−1
(
z(r2)± Zn;α/2

)
.671 .639 .563 .466 .337 .146

y−1n

(
yn(r3)±

gα/2√
n−2

)
.707 .679 .599 .468 .280 .084

20 z−1
(
z(r1)±

gα/2√
n−2

)
.522 .485 .405 .313 .205 .076(

sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.637 .583 .476 .369 .259 .129

z−1
(
z(r2)±

gα/2√
n−1

)
.512 .477 .400 .310 .205 .077

z−1
(
z(r2)± Zn;α/2

)
.518 .483 .405 .315 .208 .078

y−1n

(
yn(r3)±

gα/2√
n−2

)
.538 .499 .398 .278 .157 .049

40 z−1
(
z(r1)±

gα/2√
n−2

)
.387 .354 .287 .213 .134 .047(

sy
sx

) (
r1 ±

√
1−r21
n−1 tn−1;α/2

)
.433 .409 .350 .278 .195 .094

z−1
(
z(r2)±

gα/2√
n−1

)
.382 .351 .285 .213 .134 .047

z−1
(
z(r2)± Zn;α/2

)
.385 .354 .287 .215 .135 .048

y−1n

(
yn(r3)±

gα/2√
n−2

)
.395 .354 .266 .180 .101 .032

estimator for y(ρ):

ȳw(r3) =

∑q
k=1(n

(k) − 2)y(r
(k)
3 )∑q

k=1(n
(k) − 2)

≈ N

(
y(ρ),

1∑q
k=1(n

(k) − 2)

)
. (33)

This provides an approximate 1− α confidence interval for y(ρ), which is then inverted to obtain

14



an approximate 1− α confidence interval for ρ:

y−1

(
ȳw(r3)±

gα/2√∑q
k=1(n

(k) − 2)

)
. (34)

If the sample sizes are small or moderate, however, then ȳw(r3) should be replaced by

ȳn,w(r3) =

∑q
k=1(n

(k) − 2)yn(k)(r
(k)
3 )∑q

k=1(n
(k) − 2)

≈ N

(
ȳn,w(ρ),

1∑q
k=1(n

(k) − 2)

)
, (35)

where

ȳn,w(ρ) = m̄n,w(ρ) y(ρ) ≡
[∑q

k=1(n
(k) − 2)mn(k)(ρ)∑q

k=1(n
(k) − 2)

]
y(ρ). (36)

Then (35) provides an approximate 1−α confidence interval for ȳn,w(ρ), which is strictly increasing

in ρ hence can be inverted to provide an approximate 1− α confidence interval for ρ:

ȳ−1n,w

(
ȳn,w(r3)±

gα/2√∑q
k=1(n

(k) − 2)

)
. (37)

If the sample sizes are equal, i.e., n(1) = · · · = n(q) ≡ n, then (35) and (37) simplify to

ȳn(r3) =
1

q

q∑
k=1

yn(r
(k)
3 ) ≈ N

(
yn(ρ),

1

q(n− 2)

)
, (38)

ȳ−1n

(
ȳn(r3)±

gα/2√
q(n− 2)

)
. (39)

Lastly, if it is expected that the common ρ is small, then the findings in §2.4 suggest that

y(r
(k)
3 ) be replaced by the z-transforms z(r

(k)
2 ) of the Model 2 MLEs to obtain a more precise

estimate of ρ. Thus (33) would be replaced by (recall (17))

z̄w(r2) =

∑q
k=1(n

(k) − 1)z(r
(k)
2 )∑q

k=1(n
(k) − 1)

≈ N

(
z(ρ),

1∑q
k=1(n

(k) − 1)

)
, (40)

which provides an approximate 1 − α confidence interval for z(ρ) that is then inverted to obtain
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an approximate 1− α confidence interval for ρ:

z−1

(
z̄w(r2)±

gα/2√∑q
k=1(n

(k) − 1)

)
. (41)

Of course, if the underlying bivariate normal data is available from the q populations, then

these data should be combined into a single sample of size n(1) + · · · + n(q) from which a more

efficient estimate of the common ρ can be obtained by the methods of Section 2. However, the

weighted estimates obtained here would still be useful for testing homogeneity of the ρ(k) as now

described.

(ii) The homogeneity hypothesis H0 : ρ(1) = · · · = ρ(q) is equivalent to homogeneity of the y-

transforms: y(ρ(1)) = · · · = y(ρ(q)). To test this against the general alternative, if the sample sizes

are large we may reject H0 for large values of the weighted chi-square statistic

Ty,w =
∑q

k=1
(n(k) − 2)

(
y(r

(k)
3 )− ȳw(r3)

)2
, (42)

distributed approximately as χ2
q−1 under H0.

If the samples sizes are not large but equal, i.e., n(1) = · · · = n(q) ≡ n, then H0 is equivalent to

homogeneity of the modified y transforms, i.e., yn(ρ(1)) = · · · = yn(ρ(q)), so Ty,w can be replaced

by the statistic

Tyn = (n− 2)
∑q

k=1

(
yn(r

(k)
3 )− ȳn(r3)

)2
, (43)

distributed approximately as χ2
q−1 under H0. However, if the sample sizes are not equal then H0

is not equivalent to homogeneity of yn(1)(ρ(1)), . . . , yn(q)(ρ(q)), so the weighted test statistic

Tyn,w =
∑q

k=1
(n(k) − 2)

(
yn(k)(r

(k)
3 )− ȳn,w(r3)

)2
(44)

is not necessarily appropriate for testing H0.

Finally, if it is expected that ρ(1), . . . , ρ(q) are small, then we would reject H0 for large values
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of the weighted chi-square statistic

Tz,w =
∑q

k=1
(n(k) − 1)

(
z(r

(k)
2 )− z̄w(r2)

)2
, (45)

also distributed approximately as χ2
q−1 under H0.

4. Testing ρ = 0 (bivariate independence) under Model 3.

Fosdick and Raftery (2012) also discussed the problem of testing ρ = 0 vs. ρ > 0 in a single

bivariate normal population with known variances. They considered tests that reject H0 for large

values of r1, r3, and r4 and their variants, as well as several Bayes tests, determining the critical

of these tests by Monte Carlo simulation. Here we add a few observations about these tests and

some others for this testing problem.

Exact tests for independence are well known for Models 1 and 2. Under Model 1 the test that

rejects ρ = 0 for large values of r1 is the uniformly most powerful unbiased (UMPU) test for ρ = 0

vs. ρ > 0 (Lehmann (1986, §5.15)). When ρ = 0 it follows from (14) that

√
n− 1

(
r1√

1− r21

)
∼ tn−1, (46)

from which the exact null distribution of this test is readily obtained.

Under Model 2 the problem of testing ρ = 0 vs. ρ > 0 is equivalent to the problem of comparing

two normal variances, i.e., testing σ2
u = σ2

v vs. σ2
u > σ2

v (recall (22)). The F -test that rejects ρ = 0

if 1+r2
1−r2 ≡

u2

v2
> Fn,n;α is UMPU level α under Model 2 (Lehmann (1986, §5.3)). Therefore this test

is exact for testing ρ = 0 vs. ρ > 0 under Model 3 as well, and should perform reasonably well

there. (Note that σ2
u + σ2

v = 2 under Model 3.)

Under Model 3, it follows from (3) that the pdf of (xi, yi) does not have monotone likelihood

ratio (MLR) and that no uniformly most powerful (UMP) test exists for ρ = 0 vs. ρ > 0. In fact,

for a fixed alternative ρ1 > 0 the most powerful level α test rejects ρ = 0 iff

sxy >
ρ1(s

2
x + s2y)

2
+ cα (47)
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where cα is chosen to attain size α. Thus the locally most powerful (LMP) level α test for

alternatives ρ1 ↓ 0 rejects H0 iff r4 = sxy > cα, whereas the asymptotically most powerful (AMP)

level α test for alternatives ρ1 ↑ 1 rejects H0 iff 2sxy − s2x − s2y > cα, equivalently, iff v2 < χ2
n;1−α

(recall (19) and (21)). Since these two tests are different, no UMP test exists under Model 3.

The exact test based on r2 has an interesting albeit limited optimality property under Model

3. If we set cα = 0 in (47), it follows that the test that rejects ρ = 0 if r2 > ρ1 is the MP test of

its size for the fixed alternative ρ1 > 0. By (23) this size is given by

α(ρ1) ≡ Pr[r2 > ρ1 | ρ = 0]

= 1− Fn,n
(
e2z(ρ1)

)
, (48)

where Fn,n(·) denotes the cdf of the Fn,n distribution. Values of α(ρ1) are shown in Table 7.

Table 7: Size α(ρ1) of the MP test of ρ = 0 vs ρ = ρ1 that rejects when r2 > ρ1.

n
ρ21

0+ 0.1 0.3 0.5 0.7 0.9
10 0.5 0.1583 0.0326 0.0051 3.5e-4 1.3e-6
20 0.5 0.0758 0.0042 0.0001 6.1e-7 <1e-10
40 0.5 0.0207 8.7e-5 8.3e-8 <1e-10 <1e-10

Under Model 3 the powers of the size .05 tests for ρ = 0 vs. ρ > 0 based on r1, r2, r3, r4 (the

LMP test) and v2 (the AMP test) are compared via simulation8 in Table 8. The LMP (AMP) test

is dominated in power by the other three tests for all except very small (very large) values of the

alternative ρ1, so is not recommended. The r1 test is dominated by the r2 test but only slightly,

which suggests that for testing purposes not much power is gained from the knowledge that the

variances are equal.

For sample size n = 10 the r2 test dominates the r3 test for ρ21 ≤ .3 while the reverse is

true when ρ21 ≥ .5. For sample sizes 20 and 40 this crossover occurs for ρ21 ∈ (.1, .3). Thus we

recommend either the r2 or r3 test under Model 3, depending on whether small values or large

8The size .05 critical values for the tests based on r3 and r4 also were obtained by simulation, whereas the exact
critical values were used for the other three tests.
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Table 8: Power when testing ρ = 0 vs ρ > 0 for various alternatives ρ1 at the α = 0.05 significance
level.

n Test Rejection Criterion
ρ21

0.01 0.05 0.1 0.3 0.5 0.7 0.9

10
√
n− 1

(
r1√
1−r21

)
> tn−1;α 0.088 0.164 0.250 0.580 0.843 0.975 1.000

1+r2
1−r2 > Fn,n;α 0.088 0.166 0.252 0.585 0.847 0.976 1.000

r3 > cα,n 0.076 0.130 0.195 0.518 0.860 0.996 1.000
r4 > cα,n 0.093 0.171 0.247 0.482 0.651 0.769 0.850
v2 < χ2

n;1−α 0.072 0.114 0.166 0.440 0.800 0.993 1.000

20
√
n− 1

(
r1√
1−r21

)
> tn−1;α 0.113 0.255 0.413 0.851 0.985 1.000 1.000

1+r2
1−r2 > Fn,n;α 0.113 0.255 0.414 0.853 0.986 1.000 1.000

r3 > cα,n 0.100 0.218 0.365 0.859 0.996 1.000 1.000
r4 > cα,n 0.115 0.252 0.390 0.751 0.911 0.971 0.991
v2 < χ2

n;1−α 0.086 0.168 0.275 0.757 0.989 1.000 1.000

40
√
n− 1

(
r1√
1−r21

)
> tn−1;α 0.154 0.410 0.656 0.986 1.000 1.000 1.000

1+r2
1−r2 > Fn,n;α 0.154 0.411 0.656 0.986 1.000 1.000 1.000

r3 > cα,n 0.143 0.386 0.641 0.992 1.000 1.000 1.000
r4 > cα,n 0.155 0.398 0.619 0.959 0.997 1.000 1.000
v2 < χ2

n;1−α 0.110 0.269 0.474 0.971 1.000 1.000 1.000

values of the alternative ρ1 are of most interest. Because the r2 test is exact, it is easier to apply

than the r3 test, so the r2 test might be recommended for Model 3 on this basis.

Remark. Under Model 3, Eρ(s
2
x + s2y) = 2 for all ρ, but s2x + s2y is not an ancillary statistic.

Nonetheless it might be of interest to consider the conditional test based on the conditional

distribution of sxy given s2x + s2y. �
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Appendix: Choosing a, b, and c for yn

The yn(ρ) transformation has the form

yn(ρ) =

(
1− a

(n/10)
e−b|y(ρ)|

c

)
y(ρ).

The constants a, b, and c are defined as

(a, b, c) = argmin
a,b,c

f(a, b, c), where

f(a, b, c) = max
n∈N, α∈L, ρ2∈R

∣∣∣∣(1− α)− Pr

[
yn(ρ) ∈ yn(r3)±

gα/2√
n− 2

]∣∣∣∣ ,
N = {10, 20, 40}, L = {0.01, 0.05, 0.1}, and R = {0, 0.1, 0.3, 0.5, 0.7, 0.9}. The procedure used to

search for (a, b, c) is outlined below; the results associated with each step are also included.

1. Find the three triples (ã, b̃, c̃) on the grid A × B × C that result in the smallest values of

f(ã, b̃, c̃), where A = B = C = {0.1, 0.2, ...., 2.9, 3.0}.

ã b̃ c̃ f(ã, b̃, c̃)
0.8 1.8 0.5 0.012626
0.4 1.1 0.8 0.012646
1.3 2.3 0.4 0.012835
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2. Initialize the Nelder-Mead optimization algorithm in R at each of the (ã, b̃, c̃) triples found

in Step 1 and obtain three improved triples (a, b, c).

Initial Values Improved Values
f(a, b, c)

ã b̃ c̃ a b c
0.8 1.8 0.5 0.797 1.800 0.500 0.012461
0.4 1.1 0.8 0.403 1.091 0.775 0.012348
1.3 2.3 0.4 1.304 2.304 0.403 0.012567

3. From the three improved triples obtained in Step 2, select that which results in the smallest

value of f(a, b, c).

(a, b, c) = (0.403, 1.091, 0.775)

21


