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ABSTRACT

Motivation: Gene regulatory networks underlying temporal
processes, such as the cell cycle or the life cycle of an organism,
can exhibit significant topological changes to facilitate the
underlying dynamic regulatory functions. Thus, it is essential
to develop methods that capture the temporal evolution of the
regulatory networks. These methods will be an enabling first step for
studying the driving forces underlying the dynamic gene regulation
circuitry and predicting the future network structures in response to
internal and external stimuli.
Results: We introduce a kernel-reweighted logistic regression
method (KELLER) for reverse engineering the dynamic interactions
between genes based on their time series of expression
values. We apply the proposed method to estimate the latent
sequence of temporal rewiring networks of 588 genes involved
in the developmental process during the life cycle of Drosophila
melanogaster. Our results offer the first glimpse into the temporal
evolution of gene networks in a living organism during its full
developmental course. Our results also show that many genes exhibit
distinctive functions at different stages along the developmental
cycle.
Availability: Source codes and relevant data will be made available
at http://www.sailing.cs.cmu.edu/keller
Contact: epxing@cs.cmu.edu

1 INTRODUCTION
Many biological networks bear remarkable similarities in terms
of global topological characteristics, such as scale-free and small-
world properties, to various other networks in nature, such as social
networks, albeit with different characteristic coefficients (Barabasi
and Albert, 1999). Furthermore, it was observed that the average
clustering factor of real biological networks is significantly larger
than that of random networks of equivalent size and degree
distribution (Barabasi and Oltvai, 2004); and biological networks
are characterized by their intrinsic modularities (Vászquez et al.,
2004), which reflect presence of physically and/or functionally
linked molecules that work synergistically to achieve a relatively
autonomous functionality. These studies have led to numerous
advances towards uncovering the organizational principles and
functional properties of biological networks, and even identification
of new regulatory events (Basso et al., 2005).

However, most such results are based on analyses of static
networks, i.e. networks with invariant topology over a given
set of molecules. One example is a protein–protein interaction
(PPI) network over all proteins of an organism, regardless of the
conditions under which individual interactions may take place.
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Another example is a single-gene network inferred from microarray
data even though the samples may be collected over a time course
or multiple conditions. A major challenge in systems biology is to
understand and model, quantitatively, the dynamic topological and
functional properties of cellular networks, such as the rewiring of
transcriptional regulatory circuitry and signal transduction pathways
that control behaviors of a cell.

Over the course of a cellular process, such as a cell cycle or an
immune response, there may exist multiple underlying ‘themes’ that
determine the functionalities of each molecule and their relationships
to each other, and such themes are dynamical and stochastic.
As a result, the molecular networks at each time point are context-
dependent and can undergo systematic rewiring rather than being
invariant over time, as assumed in most current biological network
studies. Indeed, in a seminal study by Luscombe et al. (2004), it
was shown that the ‘active regulatory paths’ in a gene-regulatory
network of Saccharomyces cerevisiae exhibit dramatic topological
changes and hub transience during a temporal cellular process, or
in response to diverse stimuli. However, the exact mechanisms
underlying this phenomena remain poorly understood. We refer
to this time- or condition-specific ‘active parts’ of the biological
circuitry as the active time-evolving network, or simply, time-varying
network. Our goal is to recover the latent time-evolving network of
gene interactions from microarray time course.

What prevents us from an in-depth investigation of the
mechanisms that drive the temporal rewiring of biological networks
during various cellular and physiological processes? A key technical
hurdle we face is the unavailability of serial snapshots of the time-
evolving rewiring network during a biological process. Current
technology does not allow for experimentally determining a series
of time-specific networks, for a realistic dynamic biological system,
based on techniques such as yeast two-hybrid or ChIP-chip systems;
on the other hand, use of computational methods, such as structural
learning algorithms for Bayesian networks, is also difficult because
we can only obtain a few observations of gene expressions at each
time point which leads to serious statistical issues in the recovered
networks.

How can one derive a temporal sequence of time-varying
networks for each time point based on only one or at most a few
measurements of node-states at each time point? If we follow the
naive assumption that each temporal snapshot of gene expressions is
from a completely different network, this task would be statistically
impossible because our estimator (from only the observations at
the time point in question) would suffer from extremely high
variance due to sample scarcity. Previous methods would instead
pool observations from all time points together and infer a single
‘average’ network (Basso et al., 2005; Friedman et al., 2000;
Ong, 2002), which means they choose to ignore network rewiring
and simply assume that the observations are independently and
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identically distributed. To our knowledge, no method is currently
available for genome-wide reverse engineering of time-varying
networks underlying biological processes, with temporal resolution
up to every single time point based on measurements of gene
expressions.

In this article, we propose kernel-reweighted logistic regression
(KELLER), a new machine learning algorithm for recovering time-
varying networks on a fixed set of genes from time series of
expression values. KELLER stems from the acronym KERWLLOR,
which stands for KErnel ReWeighed l1-regularized LOgistic
Regression. Our key assumption is that the time-evolving networks
underlying biology processes vary smoothly across time, therefore
temporally adjacent networks are likely to share more common
edges than temporally distal networks. This assumption allows us
to aggregate observations from adjacent time points by reweighting
them, and to decompose the problem of estimating time-evolving
networks into one of estimating a sequence of separate and static
networks. Extending the highly scalable optimization algorithms of
�1-regularized logistic regression, we are able to apply our method
to reverse engineer a genome-wide interactions with a temporal
resolution up to every single time point.

It is worth emphasizing that earlier algorithms, such as the
structure learning algorithms for dynamic Bayesian network
(DBN) (Ong, 2002), learns a time-homogeneous dynamic system
with fixed node dependencies, which is entirely different from
our approach, which aims at snapshots of rewiring network. Our
approach is also very different from earlier approaches which
start from a priori static networks and then trace time-dependent
activities. For example, the trace-back algorithm (Luscombe et al.,
2004) that enables the revelation of network changes over time in
yeast is based on assigning time labels to the edges in a priori static
summary network. The Achilles’ heel of this approach is that edges
that are transient over a short period of time may be missed by the
summary static network in the first place. The DREM program (Ernst
et al., 2007) reconstructs dynamic regulatory maps by tracking
bifurcation points of a regulatory cascade according to the ChIP-chip
data over short time course. This is also different from our method,
because KELLER aims at recovering the entire time-varying
networks, not only the interactions due to protein–DNA binding,
from long time series with arbitrary temporal resolution. One related
approach is the Tesla algorithm by Ahmed et al. (2008). However,
Tesla aims at recovering bursty rather than smoothly varying
networks.

We apply our method to reverse engineer the time-evolving
network between 588 genes involved in the developmental process
during the life cycle of Drosophila melanogaster. These genes
are a subset of the 4028 genes whose expression values are
measured in a 66-step time series documented in Arbeitman et al.
(2002). We validate the biological plausibility of the estimated time-
evolving network from various aspects, ranging from the activity
of functionally coherent gene sets, to previous experimentally
verified interactions between genes, to regulatory cascade involved
in nervous system development, and to gene functional enrichment.
More importantly, the availability of time-evolving networks gives
us the opportunity to further study the rich temporal phenomena
underlying the biological processes that is not attainable using the
traditional static network. For instance, such a downstream analysis
can be a latent functional analysis of the genes in the time-evolving
network appeared in Fu et al. (2008).

The remainder of the article is structured as follows. In Section
2, we will introduce our kernel reweighted method. In Section 3,
we will use synthetic data and a time series of gene expression
data collected during the life cycle of D.melanogaster to show the
advantage as well as biological plausibility of estimating a dynamic
network. We conclude the article with a discussion and outlook on
future work in Section 4.

2 METHODS
First, we introduce our time-evolving network model for gene expression
data, then explain our algorithm for estimating the time-evolving network and
finally discuss the statistical property and parameter tuning for our algorithm.

2.1 Modeling time series of gene expression
Microarray profiling can simultaneously measure the abundance of
transcripts from tens of thousands of genes. This technology provides a
snapshot into the cell at a particular time point in a genome-wide fashion.
However, microarray measurements are far from the exact values of the
expression levels. First, the samples prepared for microarray experiments
are usually a mixture of cells from different tissues and, possibly, at different
points of a cell cycle or developmental stage. This means that microarray
measurements are only rough estimates of the average expression levels
of the mixture. Other sources of noise can also be introduced into the
microarray measurements, e.g. during the stage of hybridization, digitization
and normalization. Therefore, it is more robust if we only consider the
qualitative level of gene expression rather than its actual value. That is we
model gene expression as either being upregulated or downregulated. For
this reason, we binarize the gene expression levels into X :={−1,1} (−1 for
downregulated and 1 for upregulated). For instance, for cDNA microarray,
we can simply threshold at 0 the log ratio of the expression levels to those of
the reference, above which a gene is declared to be upregulated and otherwise
downregulated.

At a particular time point t, we denote the microarray measurements for
p genes as a vector of random variables X (t) := (X (t)

1 ,...,X (t)
p )�∈X p, where

we have adopted the convention that the subscripts index the genes and the
bracketed superscripts index the time point. We model the distribution of
the expression values for these p genes at any given time point t as a binary
pair-wise Markov Random Field (MRF):

Pθ (t) (X (t)) := 1

Z(θ (t))
exp

⎛
⎝ ∑

(u,v)∈E(t)

θ (t)
uv X (t)

u X (t)
v

⎞
⎠, (1)

where θ
(t)
uv =θ

(t)
vu ∈R is the parameter indicating the strength of undirected

interaction between genes u and v; and a θ
(t)
uv =0 means that the expression

values for genes u and v are conditionally independent given the values of
all other genes. Therefore, a MRF is also associated to a network G(t) with
a set of nodes V and a set of edges E (t): V corresponds to the invariant
set of genes and hence without the superscript for time; each edge in E (t)

corresponds to an undirected interaction between two genes (and a non-zero
θ

(t)
uv ). The difference between E (t) and θ

(t)
uv can be viewed as follows: E (t) only

codes the structure of the model while θ
(t)
uv contains all information about the

model. Finally, the partition function Z(θ (t)) in a MRF normalizes the model
to a distribution.

The dynamic interactions between genes underlying temporal biological
processes are reflected in the change of the magnitude of parameter θ

(t)
uv

across time. In particular, increased values of θ
(t)
uv indicate strengthened

or emerging interaction between gene u and v, and decreased values
indicate weakened or disappearing interaction. Furthermore, we assume
that the dynamic interactions between genes vary smoothly across time.
Mathematically, this means that the change of θ

(t)
uv is small across time, i.e.

the difference |θ (t)
uv −θ

(t+1)
uv | is upper bounded by a small constant Cθ . In other
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words, the networks at adjacent time points, G(t) and G(t+1) are very similar,
i.e. |E (t)∩E (t+1)|/|E (t)| is lower bounded by a large constant CE (here, we
used |·| to denote the cardinality of a set).

Given time series of gene expression data measured at n time points,
D :={x(t1),...,x(tn)}, our goal is to estimate a temporal sequence of networks
G :={G(t1),...,G(tn)} with each network for 1 time point. Note that, we will
focus on estimating the structures of the interactions between genes (G(t))
rather than the detailed strength of these interactions (θ (t)). We hope by
restricting our attention to estimating the structure, we can obtain better
guarantees in terms of the ability of our algorithm to recover the true
underlying interactions between genes. In Sections 2.2 and 2.4, we will
provide further explanation on the advantage of focusing on G(t).

Another important point of clarification is that the interactions between
genes we are modeling are the statistical dependencies between their
expression levels. This is a common choice for many existing methods,
such as the methods by Friedman et al. (2000) and Ong (2002). Note that
statistical dependency is different from causality, which focuses on directed
statistical relations between random variables. In other words, it is more
appropriate to view networks from our model as the co-regulation relations
between genes. That is, if there is an edge between two genes in the dynamic
network at time point t, then the changes of the expression levels of these
two genes are likely to be regulated by the same biological process.

2.2 Estimating time-varying network
Two questions need to be addressed when we estimate a time-evolving
network. First, what is the objective to optimize and second, what is the
algorithmic procedure for the estimation? The first question is addressed in
this section and it concerns both the consistency and efficiency of our method
while the second question only concerns the efficiency of the algorithm,
which we will discuss more in Section 2.3.

First, estimating the parameter vector θ (t) by maximizing log-likelihood is
not practically feasible since the evaluation of the partition function Z(θ (t))
involves a summation of exponential number of terms. Another approach to
address this problem is to use a surrogate likelihood function, which can be
tractably optimized. However, there is no statistical guarantee on how close
an estimate obtained through maximization of a surrogate likelihood is to the
true parameter (Banerjee et al., 2008). Therefore, we adapt the neighborhood
selection procedure of Wainwright et al. (2006) to estimate the time-evolving
network G(t) instead.

Overall, we have designed a method that decomposes the problem of
estimating the time-evolving network along two orthogonal axes. The first
axis is along the time, where we estimate the network for each time point
separately by reweighting the observations accordingly; and the second axis
is along the set of genes, where we estimate the neighborhood for each gene
separately and then joining these neighborhoods to form the overall network.
The additional benefit of such decomposition is that the estimation problem is
reduced to a set of identical atomic optimization tasks in Equation (3). In the
next section, we will discuss our procedure to solve this atomic optimization
task efficiently.

In this new approach, estimating the network G(t) is equivalent to
recovering, for each gene u∈V , its neighborhood of genes that u is
interacting with, i.e. N (t)(u) :={v∈V|(u,v)∈E (t)}. It is intuitive that if we
can correctly estimate the neighborhood for all genes u in V , we can recover
the network G(ti) by joining these neighborhoods. In this alternative view,
we can decompose the joint distribution in Equation (1) into a product of
conditional distributions, Pθ (t) (X

(t)
u |X (t)

\u ), each of which is the distribution
of the expression value of gene u conditioned on the expression values
of all other genes (we use \u to denote the set of genes except gene u,
i.e. \u :=V−{u}). In particular, Pθ (t) (X

(t)
u |X (t)

\u ) takes the form of a logistic
regression:

P
θ

(t)
\u

(X (t)
u |X (t)

\u )=
exp

(
2X (t)

u

〈
θ

(t)
\u ,X (t)

\u
〉)

exp
(

2X (t)
u

〈
θ

(t)
\u ,X (t)

\u
〉)
+1

, (2)

where 〈a,b〉=a�b denotes inner product and θ
(t)
\u :={θ (t)

uv | v∈\u} is the
(p−1)-dimensional sub-vector of parameters associated with gene u. The
neighborhood N (t)(u) can be estimated from the sparsity pattern of the
sub-vector θ

(t)
\u . Therefore, estimating the network G(t) at time point t can

be decomposed into p tasks, each for the sub-vector θ
(t)
\u corresponding to a

gene. For later exposition, we denote the log-likelihood of an observation x

under Equation (2) as γ (θ (t)
\u ;x)= logP

θ
(t)
\u

(xu|x\u).

Recall that we assume that the time-evolving network varies smoothly
across time. This assumption allows us to borrow information across
time by reweighting the observations from different time points and then
treating them as if they were i.i.d. observations. Intuitively, the weighting
should place more emphasis on observations at or near time point t with
weights becoming smaller as the observations move further away from time
point t. Such reweighting technique has been employed in other tools for
time series analyses, such as the short-time Fourier transformation where
observations are reweighted before applying the Fourier transformation
to capture transient frequency components (Nawab and Quatieri, 1987).
In our case, at a given time point t, the weighing is defined as w(t)(ti) :=
Khn (t− ti)/

∑n
i=1 Khn (t− ti), where Khn (·) :=K(·/hn) is a symmetric non-

negative kernel and hn is the kernel bandwidth. We used the Gaussian RBF
kernel, Khn (t)=exp(−t2/hn), in our later experiments. Note that multiple
measurements at one time point can be trivially handled by assigning them the
same weight. We consider multiple measurements to be i.i.d. observations.

Additionally, we will assume that the true network is sparse, or that the
interactions between genes can be approximated with a sparse model. This
sparsity assumption holds well in most cases. For example, a transcription
factor only controls a small fraction of target genes under a specific
condition (Davidson, 2001). Then, given a time series of gene expression
data measured at n time points, D={x(t1),...,x(tn)}, we can estimate θ

(t)
\u or

the neighborhood of N (t)(u) of gene u at time point t using an �1 penalized
log-likelihood maximization. Equivalently the estimator θ̂

(t)
\u is the solution

of the following minimization problem:

θ̂
(t)
\u = argmin

θ
(t)
\u ∈Rp−1

(
−

n∑
i=1

w(t)(ti)γ (θ (t)
\u ;x(ti))+λ

∥∥∥θ (t)
\u
∥∥∥

1

)
, (3)

where λ≥0 is a regularization parameter specified by user that controls
the size of the estimated neighborhood, and hence the sparsity of the
network. Then, the neighborhood for gene u can be estimated as N̂ (t)(u)=
{v∈V | θ̂

(t)
uv 	=0}, and the network can be estimated by joining these

neighborhoods:

Ê (t)=
{

(u,v)|v∈N̂ (t)(u) or u∈N̂ (t)(v)
}
. (4)

2.3 Efficient optimization
Estimating time-evolving networks using the decomposition scheme
described in previous section requires solving a collection of optimization
problems given in Equation (3). In a genome-wide reverse engineering task,
there are tens of thousands of genes and hundreds of time points, so one
can easily have a million optimization problems. Therefore, it is essential to
develop an efficient algorithm for solving the atomic optimization problem in
Equation (3), which can then be trivially parallelized across different genes
and different time points.

The optimization problem in Equation (3) is an �1 penalized logistic
regression with observation reweighting. This optimization problem has
been an active research area in the machine learning community and various
methods have been developed, including interior point methods (Koh et al.,
2007), trust region newton methods (Lin et al., 2008) and projected gradient
methods (Duchi et al., 2008). In this article, we employed a projected gradient
method due to its simplicity and efficiency.
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The optimization problem in (3) can be equivalently written in a
constrained form:

θ̂
(t)
\u = argmin∥∥∥θ (t)

\u
∥∥∥

1
≤Cλ

(
−

n∑
i=1

w(t)(ti)γ (θ (t)
\u ;x(ti))

)
, (5)

where Cλ is an upper bound for the �1 norm of θ
(t)
\u and defines a region �

in which the parameter lies. There is an one-to-one correspondence between
Cλ in Equation (5) and λ in Equation (3). In this formulation, the objective
L(θ (t)
\u ) is a smooth and convex function, and its gradient with respect to θ

(t)
\u

can be computed simply as ∇(t) :=∂L(θ (t)
\u )=−∑n

i=1 w(t)(ti)∂γ (θ (t)
\u ).

The key idea of a projected gradient method is to update the parameter
along the negative gradient direction. After the update, if the parameter lies
outside the region �, it is projected back into the region �, otherwise, we
move to the next iteration. The essential step in the algorithm is the efficiency
with which we can project the parameter into the region �:

θ
(t)
\u←��

(
θ

(t)
\u −η∇(t)

)
, (6)

where ��(a) :=argminb{‖a−b‖|b∈�} is the Euclidean projection of a
vector a onto a region �. We employed an approach by Duchi et al. (2008)
which involves only simple operations such as sorting and thresholding for
this projection step.

Algorithm 1 gives a summary of the projected gradient method for the
optimization problem in Equation (3). Note that the projected gradient
algorithm has several internal parameters α, ε and σ , which, in our
experiments, we set to typical values given in the literature (Bertsekas, 1999).

Algorithm 1 Projected Gradient Method for Equation (5)

Input: A time series D={x(t1),...,x(tn)}, an upper bound Cλ

Output: θ̂
(t)
\u

1: Initialize θ̂
(t)
\u , θ̃

(t)
\u , set α=0.1, ε=10−6, σ =10−2

2: repeat

3: θ̂
(t)
\u← θ̃

(t)
\u , η←1.0

4: repeat

5: θ̃
(t)
\u←��

(
θ

(t)
\u −η∇(t)

)
, η←αη

6: until L(θ̃ (t)
\u )−L(θ̂ (t)

\u )≤σ∇(t)(θ̃ (t)
\u − θ̂

(t)
\u )

7: until ‖θ̂ (t)
\u − θ̃

(t)
\u ‖≤ε

8: θ̂
(t)
\u← θ̃

(t)
\u

2.4 Statistical property
The main topic we discuss here is whether the algorithm described in
Section 2.2 can estimate the true underlying time-evolving network correctly.
In order to study the statistical guarantees of our algorithm, we need to take
three aspects into account. First, a genome-wide reverse engineering task
can involve tens of thousands of genes while the number of observations in
time series can be quite limited (hundreds at most). Therefore, it is important
to study the case in which the dimension p scales with respect to the sample
size n, but still allows for recovery of networks. Second, the time-evolving
nature of networks adds extra complication to the estimation problem,
so, we have to take the amount of change between adjacent networks,
Cθ :=maxuv‖θ (t)

uv −θ
(t+1)
uv ‖, into account. Third, the intrinsic properties of

the interactions between genes will also affect the correct recovery of the
networks. Intuitively, the more complicated interactions the more difficult it
is to recover networks, e.g. each gene interacts with a large fraction of other
genes. In other words, the maximum size of the neighborhood for a gene
CN :=maxu∈V N (u) is also a deciding factor. To our knowledge, none of
the earlier methods (Basso et al., 2005; Friedman et al., 2000; Ong, 2002)

provide a statistical guarantee for recovered networks or are amenable to
such analysis.

In contrast, the method we presented in Section 2.2 is highly amenable
to a rigorous statistical analysis. Statistical guarantees have been provided
for estimating static networks under the model in Equation (1) (Wainwright
et al., 2006) and we can extend them to the time-varying case. A detailed
proof of a similar result for our approach is beyond the scope of this article
and deserves a full treatment in a separate paper. At a high level, we can show
that under a set of suitable conditions over the model, Cθ , CN , hn and λ, with
high probability, we can recover the true underlying time-evolving network
even when the number of genes p is exponential in size of the number of
observations n [for details of the proof, see M.Kolar and E.Xing (submitted
for publication)]. A different analysis have been provided for time-varying
Gaussian graphical models (Zhou et al., 2008), in which the consistency of
the interaction strengths is addressed, but not the consistency of the network
topology.

2.5 Parameter tuning
The regularization parameter λ controls the sparsity of the estimated
networks. Large values of λ result in sparse networks, while small values
result in a dense networks that have higher log-likelihood, but more degrees
of freedom. We employ the Bayesian Information Criterion (BIC) for
choosing λ that trades off between the fit to the data and the model
complexity. More specifically, we use an average of the BIC score defined
below for each time point t and for each gene u:

BIC(t,u) :=
n∑

i=1

w(t)(ti)γ (θ̂ (t)
\u ;x(ti))− log(n)

2
Nz(θ̂ (t)

\u ) (7)

where Nz(·) counts the number of non-zero entries in θ̂
(t)
\u . Then the final

score is BIC :=1/n|V|∑u∈V
∑n

j=1 BIC(tj,u). A larger BIC score implies a
better model.

The bandwidth parameter hn controls the smoothness of the change in
the time-evolving networks. Using wide bandwidths effectively incorporate
more observations for estimating each network snapshot, but it also risks
missing sharp changes in the network; using narrow bandwidths makes the
estimate more sensitive to sharp changes, but this also makes the estimation
subject to larger variance due to the reduced effective sample size. In this
article, we use a heuristic for tuning the initial scale of the bandwidth
parameter hn: we first form a matrix (dij) with its entries dij := (ti−tj)2

(i={1,...,n}). Then the scale of the bandwidth parameter is set to the
median of the entries in (dij). Intuitively, the bandwidth parameter reflects the
characteristic interval between time points. In our simulation experiments,
we find that this heuristic provides a good initial guess for hn, and it is quite
close to the value obtained via more exhaustive search.

3 EXPERIMENTS
In this section, we use synthetic data to demonstrate the advantage
of estimating a time-evolving network, and we used data collected
from Drosophila to show that our method, KELLER, can estimate
a biologically plausible time-evolving network and reveal some
interesting properties of the dynamic interactions between genes.

3.1 Recovering synthetic networks
In this section, we compare KELLER with structural learning
of DBN (Friedman et al., 2000) and �1-regularization logistic
regression for static network estimation using synthetic networks.
Note that �1-regularization logistic regression can be obtained from
KELLER: we only need to apply a uniform weight w(ti)=1/n to all
observations and estimate a single network using the same objective
as Equation (5).
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Fig. 1. As we increase the number of i.i.d. samples at each time point,
KELLER estimating a time-evolving network clearly outperforms DBN and
�1-regularized logistic regression for estimating a static network. Subplot (a)
displays the performances for the overall networks, while (b) and (c) display
the performance for the static edges and dynamic edges, respectively.

Starting at time t1, we generate an Erdös–Rényi random graph

G(t1) of p=50 nodes with an average degree of 2. The parameter θ
(t1)
uv

for the non-zero edges is chosen uniformly random from the range
[1,2]. Then, we randomly select 15 edges and gradually decrease
their weights to zero in 200 time points. Starting from t1, we also
chose 15 new edges and gradually increase their weights to a random
target value between [1,2] in 200 time points. Therefore, in the first
200 discrete time steps, 15 existing edges are deleted, 15 new edges
are added and the final network maintains an overall size of 50
edges. We call these 30 time-evolving edges as dynamic edges and
the remaining 35 edges as static edges. Then from time point 200,
we start the second cycle of deleting 15 edges and adding 15 edges.
This cycle is repeated five times, which results in a smooth time-
evolving network with n=1000 time point. Furthermore, we draw
10 i.i.d. observations from the network at each time point and study
how the performance of different methods scales with the number
of i.i.d. observations at each time point.

We evaluate the estimation procedures using an F1
score, which is the harmonic mean of precision (Pre) and
recall (Rec), i.e. F1 :=2∗Pre∗Rec/Pre+Rec. Precision
is calculated as 1/n

∑n
i=1 |Ê (ti)∩E (ti)|/|Ê (ti)|, and recall as

1/n
∑n

i=1 |Ê (ti)∩E (ti)|/|E (ti)|. The F1 score is a natural choice of
the performance measure as it tries to balance between precision
and recall; only when both precision and recall are high can F1
be high. Furthermore, we use an initial bandwidth parameter
hn as explained in Section 2.5, then searched over a grid of
parameters (10[−0.5:0.1:0.5] for λ and hn×[0.5,1,2,5,10,50] for
the bandwidth), and finally chose one that optimizes the BIC
criterion defined in Section 2.5. When estimating the static network,
we use the same range to search for λ.

The recovery results for the overall time-evolving network, the
dynamic and static edges, are presented, respectively, in Figure 1.
From the plots, we can see that estimating a static network does
not benefit from increasing number of i.i.d. observations at all.
In contrast, estimating a time-varying network always obtains a
better performance and the performance also increases as more
observations are available. Note that these results are not surprising
since our time-varying network model fits better the data generating
process. As time-evolving networks occur very often in biological
systems, we expect our method will also have significant advantages
in practice.

3.2 Recovering time-evolving interactions between
genes in D.melanogaster

Over the developmental course of D.melanogaster, there exist
multiple underlying ‘themes’ that determine the functionalities of

each gene and their relationships to each other, and such themes are
dynamical and stochastic. As a result, the gene-regulatory networks
at each time point are context-dependent and can undergo systematic
rewiring, rather than being invariant over time. In this section, we
use KELLER to reverse engineer the dynamic interactions between
genes from D.melanogaster based on a time series of expression
data measured during its full life cycle.

We use microarray gene expression measurements collected
by Arbeitman et al. (2002) as our input data. In such an experiment,
the expression levels of 4028 genes are simultaneously measured at
various developmental stages. Particularly, 66 time points are chosen
during the full developmental cycle of D.melanogaster, spanning
across four different stages, i.e. embryonic (1–30 time point), larval
(31–40 time point), pupal (41–58 time points) and adult stages
(59–66 time points). In this study, we focused on 588 genes that
are known to be related to developmental process based on their
gene ontologies. We use a regularization parameter of 10−2, and a
bandwidth parameter of 0.5×hn in this experiment (hn is the median
distance as explained in Section 2.5).

In Figure 3a, we plot two different statistics of the reversed
engineered gene-regulatory networks as a function of the
developmental time point (1–66). The first statistic is the network
size as measured by the number of edges; the second is the
average local clustering coefficient as defined by Watts and Strogatz
(1998). The first statistic measures the overall connectedness of
the networks, while the latter measures the average connectedness
of the neighborhood local to each gene. For comparison, we
normalize both statistics to the range between [0,1]. It can be seen
that the network size and its local clustering coefficient follow
very different trajectories during the developmental cycle. The
network size exhibits a wave structure featuring two peaks at mid-
embryonic stage and the beginning of pupal stage. Similar pattern
of gene activity has also been observed by Arbeitman et al. (2002).
In contrast, the clustering coefficients of the time-evolving networks
drop sharply after the mid-embryonic stage, and they stay low until
the start of the adult stage. One explanation is that at the beginning of
the developmental process, genes have a more fixed and localized
function, and they mainly interact with other genes with similar
functions; however, after mid-embryonic stage, genes become more
versatile and involved in more diverse roles to serve the need of rapid
development; as the organism turns into an adult, its growth slows
down and each gene may be restored to its more specialized role.

To illustrate how the network properties change over time, we
visualize two networks from mid-embryonic stage (time point 15)
and mid-pupal stage (time point 45) in Figure 3b and 3c respectively.
Although the size of the two networks are comparable, we can see
that there are much clearer local clusters of interacting genes during
mid-embryonic stage. To provide a better view of the evolving nature
of these clusters, we cluster genes based on the network at time point
1 using spectral clustering, and visualize the gradual disappearance
of these clusters in Figure 2. Note that our visualization does not
indicate that genes do not form clusters in later developmental stage.
Genes may cluster under different groupings, but these clusters
cannot be revealed by the visualization since the positions of the
genes have been fixed in the visualization.

To judge whether the learned networks make sense biologically,
we zoom into three groups of genes functionally related to
different stages of development process. In particular, the first group
(30 genes) is related to embryonic development; the second group

i132



[09:52 15/5/2009 Bioinformatics-btp192.tex] Page: i133 i128–i136

KELLER: estimating time-varying networks

(a) t = 1 (b) t = 8 (c) t = 16 (d) t = 24 (e) t = 35 (f) t = 47 (g) t = 62

Fig. 2. (a–g) Circular plots of the networks (left or top part of each table cell) and dot plots of the adjacency matrices of the networks (right or bottom part
of each table cell) at 7 time points. Note that we have clustered the genes according to the network connections at time point 1 and used this clustering result
to fix the order of the genes in all plots. In the circular plots, genes are arranged along the outer rim and the colors indicates the boundaries between different
clusters (20 clusters in total). Furthermore, we have added curvature to the edges such that connections within and between clusters can be seen more clearly.

(a) Network statistics (b) Embryonic stage (c) Pupal stage

Fig. 3. Characteristic of the time-evolving networks estimated for the
genes related to developmental process. (a) Plot of two network statistics
as functions of development time line (NS, network size; CC, clustering
coefficient). (b and c) visualization of two example of networks from
different time point. We can see that network size can evolve in a very
different way from the local clustering coefficient.

(a) (b) (c)

Fig. 4. Interactivity of three groups of genes related to (a) embryonic
development; (b) post-embryonic development; and (c) muscle
development. The higher the interactivity, the more active the group
of genes. We see that the interactivity of the three groups is very consistent
with their functional annotation.

(27 genes) is related to post-embryonic development; and the third
group (25 genes) is related to muscle development. (The genes
are assigned to their respective groups according to their ontology
labels.) We used interactivity, which is the total number of edges a
group of genes is connected to, to describe the activity of each group
genes. In Figure 4, we plotted the time courses of interactivity for
the three groups, respectively. For comparison, we normalize all
scores to the range of [0,1]. We see that the time courses have a nice
correspondence with their supposed roles. For instance, embryonic
development genes have the highest interactivity during embryonic
stage, and post-embryonic genes increase their interactivity during
larval and pupal stage. The muscle development genes are less

Table 1. Timeline of 45 known gene interactions

CycE CycA
CycE Rca1
Dp CycE
Gi Go
Hem blow
Ice Ark
Jra dnc
Nf1 dnc
Pak trio
Sb Rho1
Snap Syx1A
Src42A ksr
W nej
brk tkv
brm N
brm shg
btl stumps
cact dl
caps Chi
da Dl
dally sgl
dl Dif
dom E(z)
ea Tl
emc bs
esc E(z)
gl peb
hep p53
mam wg
msn Nrt
msn dock
nej th
numb Rca1
pbl CycE
pbl Src64B
pbl dl
pbl tum
pnr svr
pros Abl
pros pnt
sdt baz
sno Dl
spen ksr
tsh wg
up Mhc

Each cell in the plot corresponds to one gene pair of gene interaction at one specific
time point. The cells in each row are ordered according to their time point, ranging from
embryonic stage (E) to larval stage (L), to pupal stage (P) and to adult stage (A). Cells
colored blue indicate the corresponding interaction listed in the right column is present
in the estimated network; blank color indicates the interaction is absent.

specific to certain developmental stages, since they are needed
across the developmental cycle. However, we see its increased
activity when the organism approaches its adult stage where muscle
development becomes increasingly important.

The estimated networks also recover many known interactions
between genes. In recovering these known interactions, the time-
evolving networks also provide additional information as to when
interactions occur during development. In Table 1, we listed these
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(a) Summary network

(b) Embryonic stage (c) Larval stage

(d) Pupal stage (e) Adult stage

Fig. 5. The largest TFs cascade involving 36 TFs. (a) The summary network
is obtained by summing the networks from all time points. Each node in the
network represents a TF, and each edge represents an interaction between
them. The width of an edge is proportional to the number of the times the
edge is present during the development; the size of a node is proportional to
the sum of its edge weights. During different stages of the development,
the networks are different, (b–e) shows representative networks for the
embryonic (t=15), larval (t=35), pupal (t=49) and adult stage of the
development, respectively (t=62).

recovered known interactions and the precise time when they
occur. This also provides a way to check whether the learned
networks are biologically plausible given the prior knowledge of the
actual occurrence of gene interactions. For instance, the interaction
between genes msn and dock is related to the regulation of
embryonic cell shape and correct targeting of photoreceptor axons.
This is consistent with the timeline provided by the time-evolving
networks. A second example is the interaction between genes sno
and Dl which is related to the development of compound eyes of
Drosophila. A third example is between genes caps and Chi which
are related to wing development during pupal stage. What is most
interesting is that the time-evolving networks provide timelines
for many other gene interactions that have not yet been verified
experimentally. This information will be a useful guide for future
experiments.

We further study the relations between 130 transcriptional factors
(TFs). The network contains several clusters of transcriptional
cascades, and we will present in detail the largest TF cascade
involving 36 TFs (Fig. 5). This cascade of TFs is functionally
very coherent, and many TFs in this network play important
roles in the nervous system and eye development. For example,
Zn finger homeodomain 1 (zhf1), brinker (brk), charlatan (chn),
decapentaplegic (dpp), invected (inv), forkhead box, subgroup 0
(foxo), Optix, eagle (eg), prospero (pros), pointed (pnt), thickveins
(tkv), extra macrochaetae (emc), lilliputian (lilli), doublesex (dsx)
are all involved in nervous and eye development. Besides functional

coherence, the networks also reveal the dynamic nature of
gene regulation: some relations are persistent across the full
developmental cycle while many others are transient and specific
to certain stages of development. For instance, five TFs, brk–pnt–
zfh1–pros–dpp, form a long cascade of regulatory relations which
are active across the full developmental cycle. Another example is
gene Optix which is active across the full developmental cycle and
serves as a hub for many other regulatory relations. As for transience
of the regulatory relations, TFs to the right of Optix hub reduce their
activity as development proceeds to later stages. Furthermore, Optix
connects two disjoint cascades of gene regulations to its left and right
side after embryonic stage.

The time-evolving networks also provide an overview of
the interactions between genes from different functional groups.
In Figure 6, we grouped genes according to 58 ontologies and
visualized the connectivity between groups. We can see that large
topological changes and network rewiring occur between functional
groups. Besides expected interactions, the figure also reveals
many seemingly unexpected interactions. For instance, during the
transition from pupa stage to adult stage, Drosophila is undergoing
a huge metamorphosis. One major feature of this metamorphosis is
the development of the wing. As can be seen from Figure 6r and s,
genes related to metamorphosis, wing margin morphogenesis, wing
vein morphogenesis and apposition of wing surfaces are among the
most active groups of genes, and they carry their activity into adult
stage. Actually, many of these genes are also very active during early
embryonic stage (for example, Fig. 6b and c); though the difference
is that they interact with different groups of genes. On one hand,
the abundance of transcripts from these genes at embryonic stage
is likely due to maternal deposit (Arbeitman et al., 2002); on the
other hand, this can also be due to the diverse functionalities of
these genes. For instance, two genes related to wing development,
held out wings (how) and tolloid (td), also play roles in embryonic
development.

4 CONCLUSION
Numerous algorithms have been developed for inferring biological
networks from high-throughput experimental data, such as
microarray profiles (Ong, 2002; Segal et al., 2003), ChIP-chip
genome localization data (Bar-Joseph et al., 2003; Harbison et al.,
2004; Lee et al., 2002) and PPI data (Causier, 2004; Giot et al., 2003;
Kelley et al., 2004; Uetz et al., 2000), based on formalisms such as
graph mining (Tanay et al., 2004), Bayesian networks (Cowell et al.,
1999) and DBN (Friedman et al., 2000; Kanazawa et al., 1995).
However, most of this vast literature focused on modeling static
network or time-invariant networks, and much less has been done
towards modeling the dynamic processes underlying networks that
are topologically rewiring and semantically evolving over time. The
method presented in this article represents a successful and practical
tool for genome-wide reverse engineering dynamic interactions
between genes based on their expression data.

Given the rapid expansion of categorization and characterization
of biological samples and improved data collection technologies, we
expect collections of complex, high-dimensional and feature-rich
data from complex dynamic biological processes, such as cancer
progression, immune response and developmental processes, to
continue to grow. Thus, we believe our new method, KELLER,
is a timely contribution that can narrow the gap between
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(a) Avgerage network. Each color patch denotes an ontological group, and the
position of these ontological groups remain the same from (a) to (u). The annotation
in the outer rim indicates the function of each group.

(b) t = 1 (c) t = 4 (d) t = 8 (e) t = 12

(f) t = 16 (g) t = 20 (h) t = 24 (i) t = 28

(j) t = 32 (k) t = 35 (l) t = 38 (m) t = 41

(n) t = 44 (o) t = 47 (p) t = 50 (q) t = 53

(r) t = 56 (s) t = 59 (t) t = 62 (u) t = 65

Fig. 6. Interactions between gene ontological groups related to developmental process undergo dynamic rewiring. The weight of an edge between two
ontological groups is the total number of connection between genes in the two groups. In the visualization, the width of an edge is proportional to its edge
weight. We thresholded the edge weight at 30 in (b)–(u) so that only those interactions exceeding this number are displayed. The average network in (a) is
produced by averaging the networks underlying (b)–(u). In this case, the threshold is set to 20 instead.

imminent methodological needs and the available data and offer
deeper understanding of the mechanisms and processes underlying
biological networks.
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