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ABSTRACT

Motivation: Probabilistic logic programming offers a powerful
way to describe and evaluate structured statistical models. To
investigate the practicality of probabilistic logic programming for
structure learning in bioinformatics, we undertook a simplified
bacterial gene-finding benchmark in PRISM, a probabilistic dialect of
Prolog.
Results: We evaluate Hidden Markov Model structures for bacterial
protein-coding gene potential, including a simple null model
structure, three structures based on existing bacterial gene finders
and two novel model structures. We test standard versions as well
as ADPH length modeling and three-state versions of the five model
structures. The models are all represented as probabilistic logic
programs and evaluated using the PRISM machine learning system
in terms of statistical information criteria and gene-finding prediction
accuracy, in two bacterial genomes. Neither of our implementations
of the two currently most used model structures are best
performing in terms of statistical information criteria or prediction
performances, suggesting that better-fitting models might be
achievable.
Availability: The source code of all PRISM models, data and
additional scripts are freely available for download at: http://github
.com/somork/codonhmm.
Contact: soer@ruc.dk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Protein coding potential has long been recognized as the most
important signal for automated gene finding (Fickett and Tung,
1992; Staden and McLachian, 1982; Staden, 1984). The introduction
of Hidden Markov Models (HMMs) for gene finding by Krogh
et al. (1994a) sparked the production of a large number of HMM-
based, single-sequence gene finders that capture this signal and other
signals (Besemer et al., 2001; Burge and Karlin, 1997; Henderson
et al., 1997; Korf, 2004; Krogh, 1997; Kulp et al., 1996; Larsen and
Krogh, 2003; Lomsadze et al., 2005; Lukashin and Borodovsky,
1998; Majoros et al., 2003, 2004; Munch and Krogh, 2006; Reese
et al., 2000; Shmatkov et al., 1999).

∗To whom correspondence should be addressed.

Restricting our survey to the simplest case of bacterial gene-
finding, the basic codon structure of protein-coding genes has so
far been modeled using the following structures:

The Ecoparse gene finder introduced by Krogh et al. (1994a)
is based on a standard HMM architecture with a silent state
governing codon distributions via transitions to 64 separate three
state submodels where each state of the codon submodels had
fixed emissions of a single character. Stormo and Haussler (1994)
introduced the Generalized Hidden Markov Model (GHMM), a
type of HMM with duration offering the possibility of emissions
of sequences rather than just characters from each state (Rabiner,
1989). Most single sequence de novo gene finders have since been
based on GHMM’s using either emissions of codons according
to a three-periodic inhomogeneous Markov Chain (Besemer and
Borodovsky, 1999; Borodovsky and McInich, 1993) or using
higher ordered emissions, typically fifth ordered (Lukashin and
Borodovsky, 1998) or variable ordered emissions (Delcher et al.,
1999; Salzberg et al., 1998). The single character emitting HMM
based gene finder models has subsequently been elaborated by also
using higher ordered emissions (Krogh, 1997), as well as using
Acyclic Discrete Phase type length modeling (Bobbio et al., 2003),
in Easygene andAgene (Larsen and Krogh, 2003; Munch and Krogh,
2006).

A large number of different HMM architectures have been
developed during the recent decades including profile-HMMs
(Krogh et al., 1994b), pair-HMMs (Durbin et al., 1998), input–
output HMMs or transducers (Bradley and Holmes, 2007), factorial-
HMMs (Ghahramani and Jordan, 1996) and mixed memory HMMs
(Saul and Jordan, 1999). These models each combine different
numbers of emitted sequences, hidden state chains, delete and insert
states and different conditioning schemes for emission probabilities
and transition probabilities. Employing as efficient model structures
as possible for biological sequence analysis is paramount for coping
with the vast amounts of sequence data currently being generated.
The structure space of possible different combinations is large and
exploring it for efficient models for biological sequence analysis is
limited by the time-consuming development of dedicated machine
learning algorithms and benchmarking procedures. Additionally,
efforts to directly compare models are clouded by implementation
differences and the heuristic fine-tunings developed through the
decades that optimize the models in terms of the sequence analysis
task at hand. To overcome these challenges, we use the probabilistic
logic programming language and machine learning system PRISM.
PRISM offers a generic representation of a large number of
diverse model types that subsumes HMMs, SCFGs and Bayesian
Networks. The PRISM machine learning system uses a general set
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of algorithms to perform machine learning tasks for all models (Sato
and Kameya, 2001). Using this approach, we can directly compare
the performance of the underlying model structures of various
gene finders without differences due to training procedures, the
inclusion of different kinds of additional signals, pre/post-processing
of data or other implementation differences. The generalized nature
of PRISM programs allows the formulation of all types of model
structures previously used as well as non-standard conditioning
schemes (such as mixed memory HMM’s) and the ability to export
those conditioning schemes to other types of models [such as pair-
HMMs, factorial-HMMs and Stochastic Context Free Grammars
(Christiansen et al., 2011)]. An alternative approach for using
PRISM for evaluating gene finder programs based on artificially
generated datasets is given in Christiansen and Dahmcke (2007).

2 APPROACH
To keep things as simple as possible, our preliminary benchmark
uses the well-studied test case of bacterial gene finding. We use
Escherichia coli as a test bed for our model structure comparisons,
due to the availability of experimentally verified annotations and
textbook gene structures. To test the robustness of the performance
of the models, we have duplicated the experiments using a distantly
related (and less well annotated) Bacillus subtilis genome. We
evaluate the performance of the models based on learning statistics
from learn sessions on the complete experimentally verified E.coli
dataset as well as on prediction performances based on 5-fold cross-
validation experiments for both genomes. In order to compare the
performances of different gene finder model structures, we have
implemented the first HMM-based gene finder model structure
(ecoparse), the two most common current model structures that
capture protein coding potential: a structure with fifth ordered
emissions and one with inhomogeneous three-periodic Markov
chain like emissions, as well as two new types of structures
consisting of a model based on a amino acid hidden state sequence
and a model based on a mixed memory HMM. In addition to the
basic model structures, we have also included two straightforward
extensions of the model structures: the first extension involves
length modeling, an important feature of contemporary gene finders.
Since the codon usage of highly expressed, normally expressed and
laterally transferred/phage genes are known to differ (Blattner et al.,
1997), the second extension are three-state versions of the models
that encode these three separate classes of genes.

3 METHODS

3.1 PRISM
PRISM is a logic programming language and machine learning system (Sato
and Kameya, 2001). The earliest general-purpose engine for bioinformatics
automata was implemented in Prolog by Searls and Murphy (1995); PRISM
is effectively a probabilistic dialect of B-prolog, allowing a pure declarative
approach that unifies the description of model and data. The distinguishing
feature of PRISM is the build-in predicate msw/2, that represents discrete
random variables. This allows Prolog’s abducible facts to be assigned
probabilistic parameters. Executing a query using a tabled variant of the
prologs SLD resolution produces a tabled search tree—an explanation
graph (corresponds to a dynamic programming matrix), enabling efficient
parameter estimation using a generic expectation–maximization algorithm
running on explanation graphs as reviewed in Sato (2009).

The usefulness of HMM’s is based on a small set of algorithms for
‘decoding’ a sequence, i.e. calculating the most probable path �∗ and its
probability P(�∗)(the Viterbi algorithm), the total probability of a sequence
(the Forward algorithm or the Backward Algorithm) and the posterior
probability that a specific character at a given position is emitted by a certain
state (a combination of the Forward and Backward algorithms) and training
models on data (the Baum–Welch algorithm) (Rabiner, 1989).

These algorithms are subsumed by the graphical EM algorithm that
PRISM runs on the proof tree-like structures generated by a PRISM model,
which means that as soon as one has formulated a PRISM model, one can
parameterize it via EM from training data, calculate various probabilities
of interest, use the parameterized model to decode data as well as generate
simulated data from the parameterized model (Sato et al., 2010). In addition
to the standard EM algorithm and a Deterministic Annealing EM algorithm
(Ueda and Nakano, 1998) that produces estimates of the maximum likelihood
parameter values of a model, PRISM also offers a variational Bayes EM
algorithm (Sato et al., 2008) and a DeterministicAnnealing Variational Bayes
EM algorithm (Katahira et al., 2008).

3.2 HMMs
An HMM is fully characterized by a set of transition probabilities between
unobserved states and a set of emission probabilities of observed characters
emitted from states. The structure of an HMM can be identified from the
factorization scheme used to calculate the joint probability P(O,�) of an
observed sequence O and a hidden state path �. Given an observed sequence
O=x1,x2,...,xn and a path �=π1,π2,...,πn, the transition probabilities akl

are defined for position i and states k and l, as:

akl =P(πi = l |πi−1 =k), (1)

and the emission probabilities ek(b) are defined for path �, character x in
position i, state k and character b, as:

ek(b)=P(xi =b |πi =k). (2)

The joint probability of observing the sequence X and the path � is:

P(X,�)=a0π1

n∏

i=1

eπi (xi)aπiπi+1 . (3)

The PRISM equivalent of a HMM is a collection of “values” predicates,
declaring the values that can be taken by various random variables. These
random variables represent the outcome spaces for probabilistic transitions
and emissions. A recursive structure, with predicates for initiation and
termination, connects these random variables to the state and emission
sequences, specifying the partitioning scheme of the joint probability. The
following is the complete source code of a 2 state DNA HMM (% marks
comments)

% parameters:
values(transition(state(begin)),[state(1),state(2),end]).
values(transition(state(1)),[state(1),state(2),end]).
values(transition(state(2)),[state(1),state(2),end]).
values(emission(state(1)),[a,c,g,t]).
values(emission(state(2)),[a,c,g,t]).

% initiation:
model(Observables) :-

recursion(state(begin),Observables).

% recursion structure:
recursion(state(Si),[Xi|Rest]) :-

msw(emission(state(Si)),Xi),
msw(transition(state(Si)),NS),
recursion(NS,Rest).

% termination:
recursion(end,[]).

This fully functional PRISM program can be parameterized, decoded to
or sampled from using built-in PRISM functions. For example, to fit the
model to a sequence ‘aaagt’, one could use learn([model([a,a,a,g,t])]).; to
Viterbi-decode that same sequence, viterbif(model([a,c,g,t])).; and to sample
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a sequence into samples once, get_samples(1,model(X),Samples). Since the
outcome spaces are shared for transitions and emissions a more compact
program would be the replacement of the parameters section with:

values(transition(state(_)),[state(1),state(2),end]).
values(emission(state(_)),[a,c,g,t]).

where the underscore denotes ‘the anonymous variable’ which is simply
a placeholder for any logic variable. Note that except for the values
and msw predicates that are special PRISM predicates, the names of the
remaining predicates and variables are arbitrary and replacing them with
single letters would result in a program with the exact same properties
(consisting of a single line of code with 138 characters including 5 white
spaces).

The elegant brevity of the source code for a HMM given as a PRISM
program and its close structural resemblance with the model architecture
makes it very easy to produce novel models via small changes, e.g. changing
the emission probabilities to:

values(emission(_,_),[a,c,g,t]).

and the recursive formula to:

recursion(state(Si),P1,[Xi|Rest]): -
msw(emission(state(Si),P1),Xi),
msw(transition(state(Si)),NS),
recursion(NS,Xi,Rest).

transforms a standard HMM into a second-order HMM with emissions
conditioned on the present state and the previous emission, whereas
changing to:

values(transition(_,_),[state(1),state(2)]).

with

recursion(state(Si),P1,[Xi|Rest]):-
msw(emission(state(Si)),Xi),
msw(transition(state(Si)),P1),NS),
recursion(NS,Xi,Rest).

is a second order like mixed memory HMM with transitions conditioned on
present state and previous emission. In the following, we will use such model
extensions to develop novel model structures suitable for modeling protein
coding potential.

3.3 Models of protein coding potential
• iid.psm is an IID like zeroth order emission HMM with a single

state that emits over the alphabet of {acgt}. The model captures
base frequencies and has a geometric length distribution. This type
of model has traditionally been used as null model or as a model of
intergenic sequences.

• mc5.psm is a fifth order Markov chain like HMM, with a single state
and emissions conditioned on state and five previous emissions. The
model captures di-codon preferences of coding regions.

• i3pmc.psm is a inhomogeneous three-periodic Markov chain with
three sequential states with the emission of the first state conditioned
on state, the emission of the second state conditioned on state and the
previous emission, and the emission of the third state conditioned
on state and the two previous emissions. All states emits from
{acgt}.

• eco.psm the ecoparse architecture with three consecutive states with
single symbol emissions for each codon combination and a single
silent state to control the codon distribution.

• aa.psm has 20 hidden states corresponding to the 20 amino acids that
emits synonymous codons. The hidden state path corresponds to the
translated amino acid sequence of the encoded protein. aa models

(a)

(c)

(d)

(f) (e)

(b)

Fig. 1. Graphical representation of the conditioning schemes of the
underlying structure of the models. (a) iid.psm; (b) eco.psm; (c) i3pmc.psm;
(d) mc5.psm; (e) aa.psm; and (f ) mm.psm. Squares represent the hidden
State(S), Previous State(PS) or Next State(S); circles represent emissions
(X) or past emissions (P). The dotted arrows are conditional transition
probabilities and the full arrows are conditional emission probabilities.

codon bias and amino acid sequence composition of the encoded
protein simultaneously. The model assigns higher probability to
synonymous than non-synonymous sequences, hence it is capable of
attaining higher likelihood if the genes have more similar amino acid
sequences than nucleotide sequences. The amino acid frequencies are
governed by transitions from a silent state.

• mm.psm is a three state mixed memory HMM (Saul and Jordan,
1999) with higher ordered transitions, i.e. with transitions conditioned
on the previous emissions. The model recognizes start and stop
codons via making the transition probabilities conditional on the
previous two and the present emission. Triplet emissions with first
position conditioned on state, second position conditioned on state
and previous emission and third emission conditioned on state and
previous two emissions.

All models (except iid.psm that is only used as null model) comes in
three variants: a standard version as outlined above, an Acyclic Discrete
Phase Type (ADPH) length modeling version, and a three-state version with
three separate states that cannot transition to each other (e.g. once there is
a transition to one of the states, the state path stays in that state until the
end state) that corresponds to the three classes of bacterial genes: highly
expressed genes, normally expressed genes and laterally transferred/phage
genes. ADPH versions are created via adding six lines of code to the models
and the three-state versions by adding two lines of code to the models. A
graphical presentation of the standard version model structures are given in
Figure 1.
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4 EXPERIMENTS AND RESULTS

4.1 Training data
The E.coli genome used is the Refseq NC_000913.2 wild-type K12
strain MG1665 genome (Blattner et al., 1997). The E.coli training
set comprise the 2413 experimentally verified E.coli MG1665 genes
from the ecocyc annotation (Keseler et al., 2009) with canonical start
and stop codons and no frameshift mutations. The complete verified
ecocyc training set comprises a total of 2.487.654 nucleotides. The
Bacillus training set used is the Refseq NC_000964 B.subtilis subsp.
subtilis str. 168 (Kunst et al., 1997). The complete Bacillus training
set comprise 4155 genes with canonical start and stop codons and
no frameshift mutations from the .gbk annotation (3.695.139 nt
in total). The E.coli test set comprises all 68.826 potential ORFs
from canonical start codon (ATG, GTG, TTG) to canonical stop
codon (TAA, TAG, TGA) with a length over 60 nt (13.554.717 nt
in total). The Bacillus test set comprises the equivalent 63.198
potential ORFs (11.438.079 nt in total). Training sets for all cross-
validation studies were produced by randomly assigning the genes
of the full training set into five subsets. The E.coli cross-validation
training sets contains ∼ 500 genes each (see Supplementary Material
for exact dataset sizes). Each cross-validation training sets were
removed from the test sets and golden standards for the prediction
performance evaluations. All sequence sets were converted to a
format compatible with the PRISM models, i.e. a collection of e.g.:
‘model([a,t,g,a,a,a,t,a,a]).’. Prediction performances were evaluated
using the complete training sets as golden standards.

4.2 Training algorithms
All models are written as .psm files (available in for download).
An additional prolog file default_setting.pl contains code for batch
execution and settings of learning modes. The models were trained
on the training datasets using learn with standard settings of VB-
EM [see default_setting.pl and Sato et al. (2010) for instructions
and other available options] with learning statistics and parameter
values stored in separate files. Viterbi probabilities were calculated
using viterbi.

4.3 Learning statistics
PRISM reports the following information relevant for model
selection: the size of the explanation graph, the size of the table
space used, the number of EM iterations, the total time of learning,
the number of parameters, the number of parameter instances and the
variational free energy values obtained after VB-EM learning.
The variational free energy score is an approximation of log of the
marginal likelihood (like the Bayesian Information Criterion), and
is explained in detail in Sato et al. (2008). Table 1 shows a summary
of the statistics from the learning sessions.

4.4 Prediction accuracy
Prediction accuracy was obtained using log-odds values obtained
from the Viterbi probabilities of all potential open reading frames
with a length over 60 nt for a given model and its null model
(iid.psm). The log odds scores of the potential ORFs sequence were
divided into a positive set (according to the golden standard) and a
negative set. Confusion matrices and prediction performance metrics
were calculated using all observed log odds scores of the positive set
as thresholds. In order to ensure that a choice of log odds threshold

Table 1. Learn Statistics of the different models trained on the entire E.coli
verified ecocyc dataset

Model Free Variational Graph Learn
parameters free energy nodes time

aa_s 507 −3.229×106 2.476 ×106 750
eco_s 67 −3.252 ×106 9.061 ×106 3024
i3pmc_s 64 −3.26 ×106 4.124 ×106 201
mc5_s 3139 −3.307 ×106 7.448 ×106 5
mm_s 127 −3.244 ×106 4.124 ×106 190

aa_3 1523 −3.211 ×106 7.428 ×106 4451
eco_3 203 −3.235 ×106 27.183×106 24 128
i3pmc_3 74 −3.257 ×106 12.371 ×106 492
mc5_3 9419 −3.307 ×106 22.343 ×106 25
mm_3 383 −3.228 ×106 12.371 ×106 528

aa_a 486 −3.245 ×106 16.433 ×106 3193
eco_a 67 −3.250 ×106 34.470 ×106 12 138
i3pmc_a 64 −3.26 ×106 24.646 ×106 597
mc5_a 3139 −3.306 ×106 49.572 ×106 15
mm_a 64 −3.26 ×106 24.646 ×106 621

Values reported includes the number of free parameters, the Variational Free Energy
score after learning, the number of nodes in the explanation graph, and the learn time
in minutes.

is not biased in favor of any particular model, the prediction
metrics example reported is the one that for each model maximizes
the difference between true positive rate (TPR) and false positive
rate (FPR), corresponding to the intercept of the ROC curve with
the parallel to the no-discrimination line. Performance measures
are all based on accurate prediction of stop codon position only,
since discovery of novel genes is more interesting than correctly
annotating the starting position of an already known gene. Prediction
performance was determined by TPR (sensitivity/precision), FPR
(Recall) and ROC curve area under the curve (AUC) value. AUC
values were calculated from the pairs of TPRs and FPRs using the
trapezoidal rule, which given the large number of points should be a
relatively close approximation (DeLong et al., 1988). Subsequently,
the significance of the ranking of the models based on AUC were
calculated through pairwise paired t-tests in R.

The receiver operator characteristics (ROC) curves from the E.coli
cross-validation experiments is given for the standard versions of
the models in Figure 2. (ROC curves for all the cross-validation
experiments are available in Supplementary Materials.)

Table 2 gives the average ROC optimized prediction
performances of the E.coli cross-validation experiments ±1 SD
as well as the average AUC values ±1 SD. ROC optimized
confusion matrices and prediction performances including match
coefficient and Mathews correlation coefficient are available in
Supplementary Materials. P-values of pairwise paired t-tests of the
ranking of the E.coli AUC values are given in Table 3. P-values
from pairwise paired t-tests of the prediction performance ranking:
three-state version > standard version > adph version, using
the E.coli AUC values are given in Table 4. The corresponding
tables from the Bacillus cross-validation experiments are given as
Tables 5–7. (P-values of pairwise paired t-tests of the ranking based
on variational free energy scores are available in Supplementary
Materials.)
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Fig. 2. E.coli cross-validation ROC curves for the standard models using
thresholds over all log odds values in the positive set. Notice that only the
area from 0.0–0.1 FPR and 0.9–1.0 TPR is shown.

Table 2. Prediction performances of the E.coli verified ecocyc cross-
validation experiments

Model TPR FPR AUC

aa 0.957 ± 0.004 0.045 ± 0.0 0.978 ± 0.001
eco 0.956 ± 0.002 0.047 ± 0.0 0.976 ± 0.001
i3pmc 0.95 ± 0.002 0.043 ± 0.0 0.975 ± 0.001
mc5 0.902 ± 0.002 0.062 ± 0.0 0.951 ± 0.003
mm 0.951 ± 0.001 0.044 ± 0.0 0.976 ± 0.001

aa_3 0.972 ± 0.002 0.042 ± 0.0 0.987 ± 0.0
eco_3 0.971 ± 0.007 0.046 ± 0.0 0.985 ± 0.002
i3pmc_3 0.959 ± 0.004 0.048 ± 0.0 0.979 ± 0.001
mc5_3 0.9 ± 0.004 0.064 ± 0.0 0.952 ± 0.002
mm_3 0.965 ± 0.003 0.046 ± 0.0 0.983 ± 0.002

aa_a 0.954 ± 0.003 0.044 ± 0.0 0.977 ± 0.001
eco_a 0.951 ± 0.005 0.044 ± 0.0 0.975 ± 0.001
i3pmc_a 0.947 ± 0.003 0.042 ± 0.0 0.974 ± 0.001
mc5_a 0.896 ± 0.005 0.064 ± 0.0 0.947 ± 0.002
mm_a 0.954 ± 0.005 0.045 ± 0.0 0.976 ± 0.001

Mean values ±1 SD.

5 RESULTS
The performance of the models both in terms of statistical fit ranked
as per the variational free energy value after training on the complete
training set and in terms of prediction performance evaluated
via cross-validation experiments suggests the following general
ranking: aa >= eco >= mm > i3pmc > mc5. Interestingly, the
model structures that performed the worst were the the two currently
most popular model structures: the fifth order Markov chain model
(mc5) and the three-periodic inhomogeneous Markov chain model
(i3pmc). With a single exception (mm), ADPH length modeling has
an averse effect on the prediction performance, whereas using the
three-state versions dramatically improved the performance of all
models. Even though the difference in prediction performance for the

Table 3. P-values from pairwise paired t-tests of the ranking of the standard
models of the AUC values of the ROC curves from the E.coli verified ecocyc
cross-validation experiments

> aa_ s/3/a eco_ s/3/a i3pmc_ s/3/a mc5_ s/3/a mm_ s/3/a

aa 2.048e-05 9.768e-06 2.095e-05 1.676e-05
eco 1 1.848e-06 3.612e-05 1.393e-05
i3pmc 1 1 4.526e-05 1
mc5 1 1 1 1
mm 1 1 1.586e-07 4.322e-05

aa_3 0.0727 0.0001077 1.857e-06 0.005065
eco_3 0.9273 0.005022 2.35e-05 0.2019
i3pmc_3 0.9999 0.995 1.1e-05 0.9887
mc5_3 1 1 1 1
mm_3 0.995 0.7981 0.01135 2.120e-06

aa_a 0.0001479 1.495e-05 3.621e-06 0.0001170
eco_a 0.9999 2.171e-06 3.826e-06 0.9988
i3pmc_a 1 1 4.879e-06 1
mc5_a 1 1 1 1
mm_a 0.9999 0.001164 6.347e-06 4.17e-06

For each of the model versions, values are reported for comparisons within class only.
Alternative hypothesis is that row entries are greater than column entries.

Table 4. P-values from pairwise paired t-tests of the ranking of the three-
state, standard and ADPH models of the AUC values from the E.coli verified
ecocyc cross-validation experiments

aa eco i3pmc mc5 mm

3>s 1.276e-05 0.001599 0.0004739 0.02713 0.0007062
s>a 0.01031 0.04478 0.03815 0.005672 0.5935

standard models is less pronounced for the B.subtilis experiments,
the general ranking of the models are still the same as for the E.coli
experiments.

6 DISCUSSION
The findings of this study have been based on very architecturally
simple models of protein coding potential only. We have used
bacterial gene finding as a test environment favoring a thorough
comparative test of the most prominent current single sequence
bacterial gene finder model structures. Our results are not directly
comparable to prediction performances of current state of the
art gene finders in absolute terms, since we do not employ the
heuristics that have been carefully developed through the last
decades. However, as more and more data amasses we need as
powerful models as possible. We propose that systematic testing
of underlying model structures in a language where the model is
foregrounded is a valuable approach to constructing reliable models
for real-world applications.

7 CONCLUSION
We have developed and tested a number of both new and existing
gene finder architectures for modeling protein coding potential in
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Table 5. Prediction performances of the Bacillus cross-validation
experiments

Model TPR FPR AUC

aa 0.955 ± 0.002 0.056 ± 0.0 0.973 ± 0.001
eco 0.951 ± 0.006 0.053 ± 0.0 0.973 ± 0.001
i3pmc 0.953 ± 0.002 0.055 ± 0.0 0.972 ± 0.001
mc5 0.804 ± 0.006 0.087 ± 0.0 0.884 ± 0.004
mm 0.955 ± 0.004 0.055 ± 0.0 0.973 ± 0.001

aa_3 0.963 ± 0.004 0.052 ± 0.0 0.976 ± 0.001
eco_3 0.959 ± 0.002 0.051 ± 0.0 0.975 ± 0.001
i3pmc_3 0.953 ± 0.005 0.063 ± 0.0 0.971 ± 0.001
mc5_3 0.804 ± 0.005 0.087 ± 0.0 0.884 ± 0.003
mm_3 0.957 ± 0.001 0.051 ± 0.0 0.975 ± 0.001

aa_a 0.951 ± 0.003 0.054 ± 0.0 0.972 ± 0.001
eco_a 0.944 ± 0.004 0.048 ± 0.0 0.972 ± 0.001
i3pmc_a 0.949 ± 0.003 0.052 ± 0.0 0.972 ± 0.001
mc5_a 0.8 ± 0.009 0.091 ± 0.0 0.877 ± 0.004
mm_a 0.946 ± 0.004 0.049 ± 0.0 0.972 ± 0.001

Mean values ±1 SD.

Table 6. P-values from pairwise paired t-tests of the ranking of the AUC
values of the standard models from the Bacillus cross-validation experiments

> aa_ s/3/a eco_ s/3/a i3pmc_ s/3/a mc5_ s/3/a mm_ s/3/a

aa 0.0853 0.006177 2.187e-07 0.02411
eco 0.9147 0.0001165 1.691e-07 0.0003565
i3pmc 0.9938 0.9999 1.588e-07 1
mc5 1 1 1 1
mm 0.9759 0.9996 5.357e-05 1.641e-07

aa_3 0.05268 5.516e-06 2.975e-07 2.137e-05
eco_3 0.9473 0.001716 1.603e-07 0.6412
i3pmc_3 1 0.9983 2.427e-07 1
mc5_3 1 1 1 1
mm_3 1 0.3588 1.72e-05 3.23e-07

aa_a 0.2583 0.01180 2.349e-07 0.9564
eco_a 0.7417 0.0001139 1.833e-07 1
i3pmc_a 0.9882 0.9999 1.78e-07 1
mc5_a 1 1 1 1
mm_a 0.04364 6.121e-05 7.598e-05 1.905e-07

For each of the model versions, values are reported for comparisons within class only.
Alternative hypothesis is that row entries are greater than column entries.

a generalized framework that permits direct comparisons of the
performance of the underlying model structures. Our approach
demonstrates that there are very efficient model structures hidden
in the vast structure space of non-standard HMMs. Specifically,
the novel structures presented here seems promising candidates
for advancing gene finding and additional biological sequence
analysis tasks that rely on protein coding potential. Additionally,
the general approach that we have used for exploring HMM
structures for capturing protein coding potential is a promising
route to exploring and discovering efficient models used for more
complex biological sequence analysis tasks (such as RNA structure
prediction or modeling viral genomes). Lastly, we have shown that

Table 7. P-values from pairwise paired t-tests of the ranking of the three-
state, standard and ADPH models of the AUC values from the Bacillus cross-
validation experiments

aa eco i3pmc mc5 mm

3>s 0.001636 0.01845 0.9704 0.8063 0.007597
s>a 2.219e-05 5.076e-05 3.881e-05 1.553e-05 0.0001157

the probabilistic logic programming language, PRISM, is a capable
framework for the rapid prototyping and benchmarking of statistical
models in bioinformatics, up to datasets the size of small (bacterial)
genomes.
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