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and putX̂(t) = X(t)� x0I: Then we have

@

@t
Tr f(X(t)) =

1

n=0

an Tr
@

@t
X̂(t)n

=

1

n=1

an

n

i=1

Tr X̂(t) � � �
@X̂(t)

@t

ith

� � � X̂(t)

=

1

n=1

nan Tr X̂(t)n�1
@

@t
X̂(t)

= Tr f 0(X(t))
@X(t)

@t
:

Lemma 5: Let Ai(i = 1; � � � ; a) be nonnegative linear operators
on H: If 0<� � � � 1 then
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Proof: By Jensen’s inequality for the operator concave function
x
(0<
 � 1), it holds that
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:

Replace
 by �=� andAi by A
1=�
i in the above inequality, then
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Sincex� is a operator monotone function, we obtain
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Löwner’s theorem,”Math. Ann., vol. 258, pp. 229–241, 1982.
[18] D. G. Luenberger,Optimization by Vector Space Methods. New York:

Wiley, 1969.
[19] S. Verd́u and T. S. Han, “A general formula for channel capacity,”IEEE

Trans. Inform. Theory, vol. 40, pp. 1147–1157,1994.
[20] A. Winter, “Coding theorem and strong converse for quantum channels,”

this issue, pp. 2481–2485.

Monotonicity of the Quantum Linear Programming Bound

Eric M. Rains

Abstract—The most powerful technique known at present for bounding
the size of quantum codes of prescribed minimum distance is the quantum
linear programming bound. Unlike the classical linear programming
bound, it is not immediately obvious that if the quantum linear program-
ming constraints are satisfiable for dimensionK, then the constraints can
be satisfied for all lower dimensions. We show that the quantum linear
programming bound is monotonic in this sense, and give an explicitly
monotonic reformulation.

Index Terms—Quantum codes linear programming.

I. INTRODUCTION

The most powerful technique known at present for bounding the
size of quantum codes of prescribed minimum distance is the quantum
linear programming (LP) bound:
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Theorem (Quantum LP Bound):If there exists a quantum codeQ
encodingK states inn qubits, with minimum distanced, then there
exist homogeneous polynomialsA(x; y), B(x; y), and S(x; y) of
degreen, satisfying the equations

B(x; y) = A
x+ 3y

2
;
x� y

2
(1)

S(x; y) = A
x+ 3y

2
;
y � x

2
(2)

A(1; 0) = K
2 (3)

B(1; y)�
1

K
A(1; y) = O(yd) (4)

and the inequalities

A(x; y) � 0 (5)

B(x; y)�
1

K
A(x; y) � 0 (6)

S(x; y) � 0 (7)

whereP (x; y) � 0 means that the polynomialP has nonnegative
coefficients.

Proof: This is [2, Theorem 10]; see also [4]. The polynomials
A(x; y),B(x; y), andS(x; y) are the weight enumerator, dual weight
enumerator, and shadow enumerator, respectively, of the quantum
code.

Remark: In the sequel, we will use the standard notation
((n;K; d)) to denote a quantum code encodingK states inn
qubits, with minimum distanced.

It is clear that the existence of an((n;K; d)) code implies the
existence of an((n;K0; d)) code for allK 0 � K, which suggests
that the same should be true for the quantum LP bound, namely, that
if the quantum LP constraints can be satisfied for((n;K; d)), then
they can be satisfied for((n;K0; d)) for all K 0 � K. At first glance,
this appears to be false; after all, in the inequality (6), decreasing
K actually makes the inequalityharder to satisfy. This impression
is misleading, however; the quantum LP bound is indeed monotonic
in K. To be precise

Theorem 1: Let n and d be integers, and let1 � K 0 < K be
real numbers. There exists a construction which, given a polynomial
A(x; y) satisfying the quantum LP constraints for((n;K; d)), pro-
duces a polynomialÂ(x; y) satisfying the quantum LP constraints
for ((n;K0; d)).

II. RANDOM SUBCODES

The reason the quantum LP bound “ought” to be monotonic in
K is that if Q is an ((n;K; d)) code, andQ̂ is a subcode ofQ of
dimensionK 0, thenQ̂ is an((n;K0; d)) code. Of course, in general,
it is impossible to deduce the weight enumerators ofQ̂ from the
weight enumerators ofQ, so this is not directly applicable to the
LP bound. However, if instead of picking a specific subcode, we
average overall subcodes of a given dimension, the resulting average
weight enumerators turn out to depend only on the original weight
enumerators.

Recall that ifQ is an ((n;K; d)) code, andPQ is the orthogo-
nal projection ontoQ, then the weight enumeratorsAQ(x; y) and
BQ(x; y) are defined by

AQ(x; y) =
e2E

Tr (PQe)
2
x
n�wt (e)

y
wt (e)

BQ(x; y) =
e2E

Tr (PQePQe)x
n�wt (e)

y
wt (e)

whereE is the set of all tensor products of matrices from the set

I =
1 0
0 1

; �x =
0 1
1 0

�y =
0 �i

i 0
�z =

1 0
0 �1

andwt (e) is the number of nonidentity tensor factors ine.
Define

ÂQ(x; y) = EEEQ̂�QAQ̂(x; y)

and, similarly, forB̂Q(x; y), whereEEEQ̂�Q denotes an average over
subcodesQ̂ of dimensionK 0. (To be precise, the average is with
respect to the unique probability distribution on subspaces ofQ

which is invariant under arbitrary unitary transformation.) Choose
an orthonormal basis ofQ, and define a2n�K matrix� by taking
the elements of the basis as columns. Then� acts as a unitary
isomorphism from K to Q. So there exists a subspaceS of K

such that�(S) = Q̂; taking P 0 as the orthogonal projection onto
that subspace, we have

PQ = ��y

PQ̂ = �P 0�y

for someK �K projection operatorP 0 of rankK 0; herey denotes
the Hermitian transpose. So

ÂQ(x; y) = EEEP

e2E

Tr (�P 0�ye)2xn�wt (e)
y
wt (e)

and, similarly, forB̂Q, where now the expectation is overK � K

projection operators ofrankK 0. Now, this clearly cannot depend on
the basis we chose in defining�. Thus for anyU 2 U(K) (the group
of K � K unitary operators), we have

EEEP Tr (�P 0�ye)2 = EEEP Tr (�UP 0
U
y�ye)2

= EEEP EEEU2U(K) Tr (�UP
0
U
y�ye)2

whereEEEU2U(K) denotes expectation with respect to Haar distribu-
tion (the unique probability distribution onU(K) invariant under
multiplication by unitary matrices). In fact, since the unitary group
acts transitively on subspaces of a fixed dimension, the expectation
over P 0 is unnecessary, and we have

EEEP Tr (�P 0�ye)2 = EEEU2U(K) Tr (�UP
0
U
y�ye)2

= EEEU2U(K) Tr (�
y
e�UP 0

U
y)2:

At this point, we can apply the following lemma:

Lemma 2: Define functions

s2(A) =
1

2
(Tr (A)2 +Tr (A2))

s1 (A) =
1

2
(Tr (A)2 � Tr (A2)):

For anyK � K matricesA andB (K > 1)

EEEU2U(K)s(AUBU
y) =

s(A)s(B)

s(IK)

where s is either s2 or s1 .
Proof: In fact, this is just the special case (in degree2) of the

more general fact

s�(IK)EEEU2U(K)s�(AUBU
y) = s�(A)s�(B);

where� is an arbitrary partition, ands� is the Schur function [1] of
type �. See, e.g., [1, Sec. VII.5, in particular example 3].

To be precise, that reference (and, indeed, most references on the
subject) only states the result whenA andB are positive semidefinite
Hermitian, which is thus slightly weaker than we need. However, the
equations arepolynomialidentities in the coefficients ofA andB (in
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our case of degree2). So if we apply the result withA = A1+ tA2,
with A1 andA2 positive semidefinite, we obtain an identity for all
t > 0, and so for allt. Taking t = �1 then t =

p�1, we find that
the equation is valid in general.

In particular

EEEU2U(K) Tr (�
y
e�UP 0Uy)2

= EEEU2U(K)s2(�
y
e�UP 0Uy) + s1 (�ye�UP 0Uy)

=
K 02 +K 0

K2 +K
s2(�

y
e�) +

K 02 �K 0

K2 �K
s1 (�ye�):

In other words

Theorem 3: Let Q be a((n;K; d)) quantum code, with enumer-
atorsAQ andBQ. Then the polynomialsÂQ and B̂Q, defined as
the average enumerators of subcodes ofQ of dimensionK 0, can be
computed as

ÂQ(x; y) =
K 0(K 0K � 1)

K3 �K
AQ(x; y) +

K 0(K �K 0)

K3 �K
BQ(x; y)

B̂Q(x; y) =
K 0(K �K 0)

K3 �K
AQ(x; y) +

K 0(K 0K � 1)

K3 �K
BQ(x; y):

This motivates the following guess for the polynomial̂A of
Theorem 1:

Proof of Theorem 1:Define the new polynomial̂A by

Â(x; y) =
K 0(K 0K � 1)

K3 �K
A(x; y) +

K 0(K �K 0)

K3 �K
B(x; y):

We need to show that̂A satisfies the quantum LP constraints forK 0.
Straightforward computation gives

Â =
K 02

K2
A +

K 0(K �K 0)

K3 �K
B � 1

K
A

B̂ � 1

K 0
Â =

K 02 � 1

K2 � 1
B � 1

K
A

Ŝ =
K 02 +K 0

K2 +K

S(x; y) + S(�x; y)
2

+
K 02 �K 0

K2 �K

S(x; y)� S(�x; y)
2

:

Since all of the constants appearing above are nonnegative for
1 � K 0 < K, andÂ(1; 0) = K 02, the claim follows.

Remarks:

1) It is worth pointing out that the proof of Theorem 1 is logically
independent of the computation of̂AQ. That is, the only role
of that computation was to motivate our guess ofÂ; once we
had the guess, its origins were irrelevant.

2) Since the operationA 7! Â preserves the additional constraint
A(1; y) = 1 + O(yd), it follows that the quantum LP bound
for pure codes is alo monotonic inK.

Theorem 3 has the following corollary:

Corollary 4: The average weight enumerator of a random
((n;K)) quantum code is

A(x; y) =
K(4nK � 2n)

4n � 1
x
n +

K(K � 2n)

4n � 1
(x+ 3y)n:

Proof: We haveA(x; y) = ÂH, whereH is the trivial quantum
code consisting of the entire Hilbert space, with weight enumerator
4nxn.

III. A R EFORMULATION

Lemma 2 suggests that we should be able to obtain a simpler
formulation of the quantum LP bound by considering the polynomials

C(x; y) =
A(x; y) +B(x; y)

K2 +K

D(x; y) =
A(x; y)�B(x; y)

K2 �K

(whereD(x; y) is only well-defined forK > 1), associated tos2
ands1 , respectively. In particular, we have the following result.

Lemma 5: For any1 < K 0 < K; Ĉ = C and D̂ = D.

So, if we reformulate the quantum LP bound in terms ofC andD,
the result should be explicitly monotonic, in that a feasible solution
for K will itself be a feasible solution for all smallerK.

Theorem 6: If there exists an((n;K; d)) quantum code(K > 1),
then there exist homogeneous polynomialsC(x; y) andD(x; y) of
degreen, satisfying the equations

C(x; y) = C
x+ 3y

2
;
x� y

2
(8)

D(x; y) = �D x + 3y

2
;
x� y

2
(9)

C(1;0) = 1 (10)

C(1; y)�D(1; y) = O(yd) (11)

and satisfying the inequalities

C(x; y)� K � 1

2K
(C(x; y)�D(x; y)) � 0 (12)

C(x; y)�D(x; y) � 0 (13)

C
x+ 3y

2
;
y � x

2
� 0 (14)

D
x+ 3y

2
;
y � x

2
� 0: (15)

Proof: We have

A(x; y) = K
2
C(x; y)

� K2 �K

2
(C(x; y)�D(x; y))

B(x; y)� 1

K
A(x; y) =

K2 � 1

2
(C(x; y)�D(x; y))

S(x; y) =
K2 +K

2
C

x+ 3y

2
;
y � x

2

+
K2 �K

2
D

x+ 3y

2
;
y � x

2
:

Equations (8) and (9) are clearly equivalent to (1), while (10) and
(11) are together equivalent to (3) and (4). Similarly, the inequalities
(12) and (13) are equivalent to (5) and (6), respectively.

For (14) and (15), it suffices to note that (8) and (9) imply

C
x + 3y

2
;
y � x

2
= C

�x+ 3y

2
;
y + x

2

D
x + 3y

2
;
y � x

2
= �D �x+ 3y

2
;
y + x

2
:

It follows that the two terms in the expression forS(x; y) have
disjoint support. So (7) becomes (14) and (15).

Theorem 1 is an obvious corollary;K appears only in (12), and
decreasingK in that equation only makes the constraint easier to
satisfy. For pure codes, the additional constraintC(1; y) = 1+O(yd)
holds, and again monotonicity is obvious.



2492 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

It should also be noted that this theorem carries over readily to
nonbinary codes (see [3, Secs. 4 and 5] for the constraints of the
nonbinary quantum LP bound); in particular, the quantum LP bound
is monotonic for larger alphabet codes as well.
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Enlargement of Calderbank–Shor–Steane Quantum Codes

Andrew M. Steane

Abstract—It is shown that a classical error correcting codeC =
[n; k; d] which contains its dual,C? � C, and which can be enlarged
to C0 = [n; k0 > k + 1; d0], can be converted into a quantum code of
parameters [[n; k+k0�n; min (d; d3d0=2e)]]. This is a generalization of
a previous construction, it enables many new codes of good efficiency to be
discovered. Examples based on classical Bose–Chaudhuri–Hocquenghem
(BCH) codes are discussed.

Index Terms—BCH code, CSS code, quantum error correction.

I. INTRODUCTION

Quantum information theory is rapidly becoming a well-established
discipline. It shares many of the concepts of classical informa-
tion theory but involves new subtleties arising from the nature
of quantum mechanics [2], [23]. Among the central concepts in
common between classical and quantum information is that of error
correction, and the error-correcting code. Quantum error-correcting
codes have progressed from their initial discovery [19], [20] and the
first general descriptions [5], [20], [21] to broader analyses of the
physical principles [3], [6], [9], [13] and various code constructions
[6], [9], [10], [14], [17], [18], [22], [24]. A thorough discussion of
the principles of quantum coding theory is offered in [7], and many
example codes are given, together with a tabulation of codes and
bounds on the minimum distance for codeword lengthn up ton = 30
quantum bits.

For larger n there is less progress, and only a few general
code constructions are known. The first important quantum code
construction is that of [5], [20], [21]. The resulting codes are
commonly referred to as Calderbank–Shor–Steane (CSS) codes. It
can be shown that efficient CSS codes exist asn ! 1, but on
the other hand, these codes are not the most efficient possible. I
will present here a method which permits most CSS codes to be
enlarged, without an attendant reduction in the minimum distance of
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the code. The resulting codes are therefore more efficient than CSS
codes. The examples I will give are found to be among the most
efficient quantum codes known, and enabled some of the bounds in
[7] to be tightened. The code construction is essentially the same
as that described for Reed–Muller codes in [24], the new feature is
to understand how the method works and thus prove that it remains
successful for a much wider class of code. After this some relevant
theory of Bose–Chaudhuri–Hocquenghem (BCH) codes [4], [12], [15]
will be given and used to construct a table of example quantum codes
built by the new method. The codes areadditive and pure in the
nomenclature of [7]. A pure additive code isnondegeneratein the
nomenclature of [9].

II. QUANTUM CODING

Following [7], the notation[[n; k; d]] is used to refer to a quantum
error-correcting code forn qubits having2k codewords and minimum
distanced. Such a code enables the quantum information to be
restored after any set of up tob(d � 1)=2c qubits has undergone
errors. In addition, whend is even,d=2 errors can be detected. We
restrict attention to the “worst case” that any defecting qubit (i.e.,
any qubit undergoing an unknown interaction) might change state in
a completely unknown way, so all the error processesX, Z, and
Y = XZ must be correctable [8], [9], [13], [21].

A quantum error-correcting code is an eigenspace of a commutative
subgroup of the groupE of tensor products of Pauli matrices. The
commutativity condition can be expressed [6], [7], [9], [24]

Hx � H
T

z +Hz � H
T

x = 0 (1)

whereHx andHz are (n � k � n) binary matrices which together
form the stabilizerH = (HxjHz). All vectors (uxjuz) in the code
(whereux anduz aren-bit strings) satisfyHx � uz +Hz � ux = 0.
These are generated by the generatorG = (GxjGz) which, therefore,
must satisfy

Hx �G
T

z +Hz �G
T

x = 0: (2)

In other words,H may be obtained fromG by swapping theX and
Z parts, and extracting the dual of the resulting(n+ k)� 2n binary
matrix. The rows ofGx andGz have lengthn, and the number of
rows is n + k.

The weight of a vector(uxjuz) is the Hamming weight of the
bitwise or of ux with uz . The minimum distanced of the codeC
is the largest weight such that there are no vectors of weight<d in
C n C?, where the dual is with respect to the inner product

((uxjuz); (vxjvz)) � ux � vz + uz � vx:

A pure code has furthermore no vectors of weight<d in C, apart
from the zero vector.

The CSS code construction [5], [21] is to take classical codesC1

andC2 with C?1 � C2, and form

G =
G1 0
0 G2

H =
H2 0
0 H1

(3)

whereGi andHi are the classical generator and check matrices. The
dual conditionC?1 � C2 ensures thatH1 � H

T

2 = H2 � H
T

1 = 0
and, therefore, the commutativity condition (1) is satisfied. IfC1 =
[n; k1; d1] andC2 = [n; k2; d2] then the minimum distance of the
quantum code ismin (d1; d2) and the number of rows inG is k1+k2,
leading to quantum code parameters[[n; k1+k2�n; min (d1; d2)]].
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