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Sincex" is a operator monotone function, we obtain Monotonicity of the Quantum Linear Programming Bound
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Theorem (Quantum LP Bound)f there exists a quantum code where is the set of all tensor products of matrices from the set
encodingK” states inn qubits, with minimum distancé, then there p
. . 10 01 0 —i 1 0
exist homogeneous polynomialé(x,y), B(x,y), and S(x,y) of {I = <O 1) = <1 0)(&, = <7, 0)(7» = <0 _1>}
degreen, satisfying the equations '
andwt (e) is the number of nonidentity tensor factorsen

B(x,y) = A(x —;31’, h ; y) (1) Define
o o Ag(:c,y):EA Ags(e,y)
xr+3 Qced
S =a(HEITN) @ - :
‘ and, similarly, forBo(x,y), whereEQCQ denotes an average over
A(1,0) = K? (3) subcodesQ of dimensionk”. (To be precise, the average is with
IR IV d respect to the unique probability distribution on subspaceof
B(1.y) I{A(‘l’y) =0 @) which is invariant under arbitrary unitary transformation.) Choose

an orthonormal basis a, and define " x K matrix II by taking
the elements of the basis as columns. THeracts as a unitary
A(z,y) >0 (5) isomorphism fromC” to Q. So there exists a subspaSeof C*

and the inequalities

1 such thatll(S) = o} taking P’ as the orthogonal projection onto
B(x,y) - KA('T"”) 20 ®)  that subspace, we have
S(a,y) >0 (7) Po = Mt
where P(z,y) > 0 means that the polynomidP has nonnegative Ps = np'uf

coefficients.

Proof: This is [2, Theorem 10]; see also [4]. The polynomial
A(z,y), B(z,y), andS(z, y) are the weight enumerator, dual weigh
en(ljjmerator, and shadow enumerator, respectively, of the quantum i, (z,y) = E,» ZTr (P'TIe)?am—wt (Dt ()
code. O et

éor somell x K projection operato®’ of rank K'; heret denotes
lthe Hermitian transpose. So

Remark: In the sequel, we will use the standard notatiomnd, similarly, forBo, where now the expectation is ovéf x K
((n, K,d)) to denote a quantum code encodidg states inn  projection operators afank K. Now, this clearly cannot depend on
qubits, with minimum distance. the basis we chose in definidy Thus for anyl’ € U(K) (the group

It is clear that the existence of &fin, K, d)) code implies the of K x K unitary operators), we have

existence of ar((n, K',d)) code for all K’ < K, which suggests Ep Tr(IP'UYe)? = Ep T (MUP' U e)?

_that the same should be trl_Je for the quant_un_w LP bou[]d, namely, that = EpEyeu) Tt (HUZ—)/U'%H'I'e)Z

if the quantum LP constraints can be satisfied (for, I, d)), then

they can be satisfied fqkn, X', d)) for all K’ < K. At first glance, where E;;c;(x) denotes expectation with respect to Haar distribu-
this appears to be false; after all, in the inequality (6), decreasitign (the unique probability distribution ofy (K') invariant under

K actually makes the inequalityarder to satisfy. This impression multiplication by unitary matrices). In fact, since the unitary group
is misleading, however; the quantum LP bound is indeed monotoricts transitively on subspaces of a fixed dimension, the expectation

in K. To be precise over P’ is unnecessary, and we have
Theorem 1: Let » and d be integers, and let < K’ < K be Ep Tr(IP'T )’ = By Tr (MUP' U e)?
real numbers. There exists a construction which, given a polynomial = Evevge Tr (eIl P'UT2.

A(z,y) satisfying the quantum LP constraints fdm, I, d)), pro-

duces a polynomial(z, y) satisfying the quantum LP constraintsAt this point, we can apply the following lemma:
]

for ((n, &7, d)). Lemma 2: Define functions

1 A
Il. RANDOM SUBCODES s2(4) = 5(Tr (4)" + Tr (47))

f'l_'he rea_son_the quantl{m LP bound “qught” to be monotonic in s2(A) = l(Tr(A)Q _Tr (42)).
K is that if Q is an((n, K,d)) code, andQ is a subcode of of 2
dimensionk”, thenQ is an((n, K. d)) code. Of course, in general, For any K’ x K matrices4 and B (K > 1)
it is impossible to deduce the weight enumeratorscbfrom the s(4)s(B)
weight enumerators of, so this is not directly applicable to the EUeL,r(K)s(AUBUT) =7
LP bound. However, if instead of picking a specific subcode, we s(Ix)
average oveall subcodes of a given dimension, the resulting averagehere s is eithers, or s;z.
weight enumerators turn out to depend only on the original weight Proof: In fact, this is just the special case (in deg®eof the
enumerators. more general fact
Recall that if Q is an ((n, K, d)) code, andPg is the orthogo- , " oo
nal projection ontoQ, th(én the W)eight enumerator$o (=, y) and sx(I) Eveviu)sr(AUBU) = sy (4)ar(B),
Bo(z,y) are defined by where ) is an arbitrary partition, and,, is the Schur function [1] of
/ _ . 2 newt (e) wt (e) type A. See, e.g., [1, Sec. VIL5, in particular example 3].
Ao(e.y) = ZTI (Poe) Y To be precise, that reference (and, indeed, most references on the
ecs subject) only states the result whedrand B are positive semidefinite
Bo(w,y) = Tr (PgePge)a" ™ (Dywt () Hermitian, which is thus slightly weaker than we need. However, the
c€€ equations ar@olynomialidentities in the coefficients od and B (in
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our case of degre2). So if we apply the result with = 4, +tA,, Ill. A REFORMULATION
with A; and A» positive semidefinite, we obtain an identity for all | a;yma 2 suggests that we should be able to obtain a simpler

t>0, anq so for qllt.. Takingt = —1 thent = /—1, we find that 5 mulation of the quantum LP bound by considering the polynomials
the equation is valid in general. O Aery) + Blany)
Alx,y T,y

In particular Cla,y) = Tk

Eucur) Tr(TeUP'UT)? D(x,y) = w
= ESQEU(KL”(HTGHUP'U:);' Slyzrl(HTeHUP,UT) (where D(x,y) is only well-defined for" > 1), associated ta:
_ I}{z i 2 so(TTTell) 4+ I}{Z : 2 sy2(ITTeTI). and s, =, respectively. In particular, we have the following result.

Lemma 5: For anyl < K' < K, ¢ = C andD = D.
In other words
W So, if we reformulate the quantum LP bound in term&oand D,

Theorem 3: Let Q be a((n, i, d)) quantum code, with enumer- the result should be explicitly monotonic, in that a feasible solution
ators Agp and Bo. Then the polynomialsic and Bo, defined as for K will itself be a feasible solution for all smallek’.
the average enumerators of subcodefabf dimensionk”’, can be

computed as Theorem 6: If there exists ari(n., I, d)) quantum codé¢ X > 1),

then there exist homogeneous polynomi@lse, y) and D(z,y) of

N K'(K'K -1 K'(K - K’ degreen, satisfying the equations
*4*2('1'7 y) = (,}3—3)44(2(17 y) + %Bg(l* U)
K3 - K K3 — K r+3y v—y
K — K IR — Clz,y) =Cl ——, —— (8)
Bo(r.y) = K'(K - K do(e,y)+ K'(K'K 1)B (e Y 5 '
Q(*Lay = K3 — Kk P20 "L'Ay) K3 — Kk Q *lvy)‘ 3y @
A D) =-p(*EXITY) @
This motivates the following guess for the polynomidl of 2 2
Theorem 1: ) C(1,0)=1 (10)
Proof of Theorem 1:Define the new polynomiall by C(1,y) — D(1,y) = O(y") (11)
Al y) = K’ ({g’K - 1) Ale,y) + K”(é{ - Ix') B(a,y). and satisfying the inequalities
K3 - K K3 - K K—-1 _
R Cla,y) — 5 (C(x,y) = D(2,y)) 2 0 (12)
We need to show thal satisfies the quantum LP constraints fof. B Cley) — Dir.y) > 0 13
Straightforward computation gives ’ ‘[‘ys (&.9) 2 (13)
r+3y y—x
) > 14
. K? K'(K-K) 1 C< 2 2 ) 20 (14)
K2 K3 - K K D J;—|—31/ y—x >0 (15)
1 . K71 1 2 2 )=
K K2 =1 K Proof: We have
12 ! _ .
G Ix’ +Ix, S(x,y) + S(—z,y) A, y) = K*C(a,y)
K2+ K 2 K2 K
. A A U
K” - K' <S(ry) — S(—=, 1/)) - T(C(.’r,y) = D(x,y))
K2 - K 2 ' <
1 K- -1, .
_ _ _ B(a.y) = A, y) = —5—(Cla,y) = D(@.y))
Since all of the constants appearing above are nonnegative for . - .
1< K' < K,andA(1,0) = K'*, the claim follows. O S(z,y) = K+ K C(*” 3y y- i)
’ 2 2 72
Rema?rks: N _ _ K*-K_[z+4+3y y—=z
1) Itis worth pointing out that the proof of Theorem 1 is logically + B D 5 ' 9 -

independent of the computation dfo. That is, the only role ) ) _

of that computation was to motivate our guessdgfonce we Equations (8) and (9) are clearly equivalent to (1), while (10) and

had the guess, its origins were irrelevant. (11) are together equivalent to (3) and (4). Similarly, the inequalities
2) Since the operatiol — A preserves the additional constrain{12) and (13) are equivalent to (5) and (6), respectively.

A(1,y) = 14 O(y?), it follows that the quantum LP bound For (14) and (15), it suffices to note that (8) and (9) imply

for pure codes is alo monotonic it . C(I +3y y— x) C<_I +3y y+ 1)
Theorem 3 has the following corollary: 2 T2 ) 2 72
. r+3y y—a\ _ - +3y y+a
Corollary 4: The average weight enumerator of a random D 5 =-D —5 3 .

((n, K)) quantum code is
It follows that the two terms in the expression f6x,y) have

K@K -2") .  K(K-2") (x + 3y)". disjoint support. So (7) becomes (14) and (15). O

Alz,y) =
(. y) an 1 an 1

Theorem 1 is an obvious corollarys” appears only in (12), and
Proof: We haveA(x, y) = Ay, whereH is the trivial quantum decreasingl in that equation only makes the constraint easier to
code consisting of the entire Hilbert space, with weight enumeratsatisfy. For pure codes, the additional constréint, y) = 1—|—O(y”’)
4"z, O holds, and again monotonicity is obvious.
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It should also be noted that this theorem carries over readily tioe code. The resulting codes are therefore more efficient than CSS
nonbinary codes (see [3, Secs. 4 and 5] for the constraints of twes. The examples | will give are found to be among the most
nonbinary quantum LP bound); in particular, the quantum LP bourdficient quantum codes known, and enabled some of the bounds in

is monotonic for larger alphabet codes as well. [7] to be tightened. The code construction is essentially the same
as that described for Reed—Muller codes in [24], the new feature is
REFERENCES to understand how the method works and thus prove that it remains

successful for a much wider class of code. After this some relevant
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44, pp. 1388-1394, July 1998. nomenclature of [7]. A pure additive code i®ndegeneratén the
[4] P. W. Shor and R. Laflamme, “Quantum analog of the Macwmiamﬁomenclature of [9].

identities in classical coding theoryPhys. Rev. Lett.vol. 78, pp.

1600-1602, 1997.

Il. QuAaNnTUM CODING

Following [7], the notatior[n, &, d]] is used to refer to a quantum
error-correcting code for qubits havin@2* codewords and minimum
distanced. Such a code enables the quantum information to be
Enlargement of Calderbank—Shor—Steane Quantum Codes restored after any set of up tdd — 1)/2] qubits has undergone
errors. In addition, wher is even,d/2 errors can be detected. We

Andrew M. Steane restrict attention to the “worst case” that any defecting qubit (i.e.,

any qubit undergoing an unknown interaction) might change state in

) ) . a completely unknown way, so all the error proces3esZ, and
Abstract—It is shown that a classical error correcting codeC = Y = X Z must be correctable [8], [9], [13], [21]

[n, k, d] which contains its dual, C-- C C, and which can be enlarged . h . .
to C' = [n, k' > k+ 1, d'], can be converted into a quantum code of A quantum error-correcting code is an eigenspace of a commutative

parameters|[n, k + k' —n, min (d, [3d’/2])]]. This is a generalization of Subgroup of the groug of tensor products of Pauli matrices. The
a previous construction, it enables many new codes of good efficiency to becommutativity condition can be expressed [6], [7], [9], [24]
discovered. Examples based on classical Bose—Chaudhuri-Hocquenghem

(BCH) codes are discussed. H,-H +H.-H =0 (1)

Index Terms—BCH code, CSS code, quantum error correction. where H, and . are (n — k x n) binary matrices which together

form the stabilizer ¥ = (H.|H.). All vectors (u.|u.) in the code
. INTRODUCTION (whereu, andw. aren-bit strings) satisfyH, - u. + H. - u, = 0.

Quantum information theory is rapidly becoming aWeII-estabIish%z?eszzigenerated by the genergler (G|G-) which, therefore,

discipline. It shares many of the concepts of classical informa-
tion theory but involves new subtleties arising from the nature H.-GI'+H.-GF =o. 2
of quantum mechanics [2], [23]. Among the central concepts in

common between classical and quantum information is that of erdorother words,;/X may be obtained fron¥ by swapping theX and
correction, and the error-correcting code. Quantum error-correctiggparts, and extracting the dual of the resulting+ %) x 2n binary
codes have progressed from their initial discovery [19], [20] and timeatrix. The rows ofGG. and G. have lengthn, and the number of
first general descriptions [5], [20], [21] to broader analyses of thews isn + k.

physical principles [3], [6], [9], [13] and various code constructions The weight of a vectou.|u.) is the Hamming weight of the
[6], [9], [10], [14], [17], [18], [22], [24]. A thorough discussion of bitwise or of u, with u.. The minimum distance of the codeC
the principles of quantum coding theory is offered in [7], and mang the largest weight such that there are no vectors of weightn
example codes are given, together with a tabulation of codes ahy C*, where the dual is with respect to the inner product
bounds on the minimum distance for codeword lengtip ton = 30
guantum bits.

For larger n there is less progress, and only a few generg| e code has furthermore no vectors of weightl in C, apart
code constructions are known. The first important quantum cog8, the zero vector.

construction is that of [5], [20], [21]. The resulting codes are the css code construction [5], [21] is to take classical cades
commonly referred to as Calderbank—Shor—Steane (CSS) codes, ¢, with Cf C Cs, and form
can be shown that efficient CSS codes existnass oo, but on -
0 ) 2= <H2 0 ) 3)
G 0 Hy

the other hand, these codes are not the most efficient possible. | g = <G1
will present here a method which permits most CSS codes to be 0
enlarged, without an attendant reduction in the minimum distance\%ereGi and H; are the classical generator and check matrices. The
Manuscript received April 24, 1998; revised February 23, 1999. This wodual conditionCi- C C, ensures thafl, - H] = H, - H =0
was supported by the Royal Society and by St. Edmund Hall, Oxford.  anq therefore, the commutativity condition (1) is satisfied”'|f=
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((uzluz), (velvs)) = we - v +us - vg.

0018-9448/99$10.00 1999 IEEE



