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A Portable Modular System for Automatic
Acquisition of 3-D Objects
N. Alberto Borghese, Member, IEEE,and Stefano Ferrari

Abstract—A portable and flexible system for three-dimensional
(3-D) scanning is here presented. It is constituted of four main
modules. The first module is devoted to the acquisition of a set of
3-D points over the surface through laser scanning (digitization).
The second module reconstructs a continuous 3-D surface, filtering
the measurement noise. Whenever required (e.g., in CAD applica-
tions), a third module converts the surface into a 3-D mesh which
can then be colored by projecting over it a bitmap of the surface,
obtained from a snapshot to obtain a highly realistic textured 3-D
model. This instrument improves upon the commercially available
scanners in two main aspects. The digitizer proves to be highly flex-
ible and accurate, and it can easily accommodate objects of dif-
ferent dimension. The construction of the surface and the filtering
of the digitization noise are performed in a single step through a
fully adaptive algorithm which produces a multiscale surface and
can be parallelized to work in real time. Results on the reproduc-
tion of human faces are reported and discussed.

Index Terms—Modular architectures, multiresolution, neural
networks, radial basis functions, range data, real-time, scanner
3-D.

I. INTRODUCTION

V IRTUAL three-dimensonal (3-D) models are required
by an increasing number of applications ranging from

basic image processing to video conferencing, constructive
and plastic surgery, 3-D fax, reversed engineering, and 3-D
CAD (virtual prototyping). A host of devices (3-D scanners),
have come to the market in the last few years to provide these
models. Essentially, a 3-D scanner captures the 3-D visible
surface of an object as a mesh suitable to be processed by
CAD and graphical systems [1]. Although ultrasound [2] or
mechanical (e.g., Microscribe) devices are available, optical
technology is preferred because it allows a high resolution
and it does not require any contact with the surface. The
gold-standard is represented by the Cyberware scanners which
are suitable to most applications. However, apart from their
very high cost, they have two drawbacks:

1) it has a complex structure, inside which the object is
placed, has to be set up, and

2) only objects within limited size ranges can be digitized.

In this paper, a modular 3-D scanner, which is devoted to op-
posite criteria is described (Fig. 1). The first module is devoted
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to the acquisition of a set of 3-D points over the surface through
laser scanning (digitization). The second module reconstructs a
3-D continuous surface which filters out the noise introduced
by the digitization process. At this stage, a 3-D model is already
available. For some applications in CAD/CAM and computer
graphics, the representation of the surface in the form of a mesh
is more suitable; this is done in a third module, which converts
the surface into a mesh. In a fourth module, a bitmap of the sur-
face, obtained from a snapshot, is aligned and projected over the
3-D mesh to obtain a highly realistic textured 3-D model. The
aim of this paper is to present the overall structure, focusing on
the accuracy of the digitization process and on the reconstruc-
tion of the 3-D surface. The overall processing allows achieving
a high accuracy and can be implemented onto PC boards to
achieve real-time 3-D modeling. The system has been widely
tested in the reconstruction of 3-D objects and of human faces
in particular.

II. DATA ACQUISITION

The first step toward creating a 3-D model is the digitization
of a set of 3-D points on the objects surface, which is carried out
here by the Autoscan system introduced in [3]. This is consti-
tuted of a commercial laser pointer of 5 mW of power, a set of
video cameras, which provide each an image of pixels
with a frame rate of 100 frames/s, a real-time image processor
and a host computer. The processor computes a cross-correla-
tion between a mask, template of the laser spot, and each
image of the stream coming from the video cameras. This allows
achieving a high SNR (a laser spot can be detected also in out-
door conditions) and sub-pixel accuracy (by averaging the over-
threshold pixels of the laser spot, weighted with their cross-cor-
relation value), which has been experimentally determined in
0.1 pixel [4]. Digital cameras can therefore be used as a valid
alternative to analog sensors for spot detection (cf. [5]). The
pattern matching procedure allows also to automatically discard
those spots which are poorly seen: in this case, cross-correlation
is over-threshold only for one row and/or column of the image,
losing sub-pixel accuracy in the computation of the spot center.
The cross-correlation is computed in real-time through a custom
board which contains essentially delay lines, adders, and multi-
pliers [6]; it can be replaced by less expensive general-purpose
hardware (e.g., on FPGA board), without degrading the perfor-
mances. The 3-D position of the laser spot is computed with
standard photogrammetric procedures from the spot position on
two cameras. For this purpose, the cameras are calibrated by sur-
veying a rigid bar with two spherical markers on its extremities,
the same size of the laser spot, inside the volume where the ob-
ject is scanned [7]. This makes the system extremely simple to
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Fig. 1. System: scanning a human face. The beam of a commercial laser pointer is directed over the subject’s face. Scanning is performed moving the laser
manually with the aim of collecting more data points in the most difficult regions: lips, eyes… At the same time, a commercial CCD video camera acquires(a) a
snapshot of the face. A schematic diagram of the processing blocks is reported in (b).

set-up. We explicitly remark that there are no constraints on the
set-up and on the size of the object to be scanned: this depends
only on the lens used and the relative position of the cameras.
Flexibility, scalability, and portability therefore characterize the
acquisition module.

Surface digitization is carried out by moving the laser pointer
manually [Fig. 1(a)]. To help in directing the laser beam, a
real-time feedback is provided on the host PC monitor. This
scanning procedure offers the great advantage to increase
the number of measured points in those regions which are
richer of spatial details (where the surface has the highest
spatial frequency content), achieving a denser sampling there.
The digitization accuracy has been experimentally assessed
similarly to [5], and the results are reported here (Fig. 2).
The position of 5000 laser spots projected over a plane posi-

tioned in the center of the working volume is analyzed. For
a medium-size volume (0.8 m m m), the accuracy
is of 0.27 mm 0.0063 mm (rms error), averaged over 100
different experiments, with the two cameras at an angle close
to 90 (86.9 ). This figure scales linearly with the dimension
of the working volume, and it is consistent with the accuracy
reported in the motion analysis field [7]. The distribution of the
measurement error is zero-mean and normally distributed [cf.
Fig. 2(b)] as it is the outcome of several error sources (quanti-
zation error in the video cameras, numerical approximation in
the cross-correlators, nonuniform spot appearance, etc.).

At the end of the digitization process, a set of3-D points is
obtained [cf. Fig. 3(a)]. At the same time,
through a standard CCD camera a color snapshot of the surface
is acquired [cf. Fig. 3(b)], which is converted into a bitmap of
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Fig. 2. (a) Distance of 5000 spots with respect to the best fitting plane. (b) The distribution of the error can be considered Gaussian; its standard deviation is
assumed as a measure of the digitization rms error.

Fig. 3. (a) Ensemble of theN = 17080 3-D points and (b) bitmap of Stefano’s face. (c) A direct tessellation of the data points (e.g., through Delaunay
triangulation) [33] would produce a jerky surface which is plotted with texture.

(PAL standard), with 24 bits/pixel. The sustained peak
acquisition rate is of 100 spots/s. This rate decreases when the
spot is not visible to the cameras. In real acquisitions, an av-
erage rate of 90–95 spots/s is obtained. By using arrays of laser
pointers in place of a single pointer, this rate could be increased.

III. SURFACERECONSTRUCTIONTHROUGH THEHRBF MODEL

The conversion of the cloud of 3-D points into a 3-D geomet-
rical model is the critical operation of any 3-D scanner. Due to
measurement noise a direct tessellation of the data points ob-
tained by simply connecting them, would produce an undesir-
able wobbling surface [Fig. 3(c)]. Such a surface is useless to
graphics, CAD or any other application, and the need of some
sort of filtering is evident.

When the shape of the object surface is known, model fitting
can be a valuable solution. In this approach a parameterized

surface model is progressively adapted to the range data
by minimizing their distance from the surface (e.g., [8] for
human faces). This approach is improved when features can be
extracted from the range data [9] (cf. also [10], [11]). However
these approaches are heavily based on predefined models and
lack in generality. Generic parametric shapes (semi-parametric
fitting), which are warped to fit the data topology, offer a more
general solution [12]. The simplest of these is the two-dimen-
sional lattice, proposed in the seventies in the connectionist
domain, as a tool to represent multivariate data distributions.
This model, called Self-Organizing Maps (SOMs) [13], has
been more recently applied to reconstruct 3-D surfaces from
range data [14]. Its limitation lies in the requirement that the
surface topology is homomorphic to the lattice structure (usu-
ally a plane). When this is not the case, twisting of the plane and
poor approximation arise. Superquadrics have been introduced
as more powerful semi-parametric geometrical models [9].
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Introducing a B-spline surface on the top of superquadric [9]
or meshes [15] can further refine the obtained surface. This
approach, termed “surface on surface,” gives rise to a weak hi-
erarchical structure: the superquadric is adapted first to capture
the overall shape of the data, and the spline patch is used to
deform the superquadrics surface to better fit the data locally,
by reproducing the surface details. To reconstruct complex
surfaces, more than one superquadric can be employed [16].

All these approaches are iterative and cannot operate in
real-time on the data points. A novel different approach is
presented here aimed to produce 3-D models in real-time.
The reconstruction is achieved with a sparse approximation
with adaptive variable resolution spatial filtering, where the
correlation between neighbor data points is exploited to elim-
inate noise introduced by the sampling process. It is based on
the hierarchical radial basis function network (HRBF) model,
proposed originally in the connectionist domain as a tool
for multiscale signal processing [17]; it is extended here to
surface approximation from scattered data. In the following,
the overview of the HRBF model is presented first along with
the robust determination of its parameters. The hierarchical,
multiscale, structure is then introduced to make the approach
fully adaptive both in resolution and scale.

A. Construction of a 3-D Surface Through Approximation

We assume that the surface can be represented as a function
. This assumption is motivated by the shape

of the human face which can described as a height field
(2 1/2–D). However this does not lack in generality as full
3-D surfaces can be recovered by zippering multiple 2 1/2 D
models [18]. Under this hypothesis, it is more convenient to
reframe the data points collected with the scanning procedure
as: as the set

.
Our final goal is the reconstruction of the true surface up to the

measurement error. That is, the distance between the points re-
constructed by the HRBF model, and those sampled on the sur-
face, should be distributed according to the measurement error.
The reconstructed surface should satisfy the following
conditions:

(1a)

as the measurement noise in zero mean (Section II), and

(1b)

which can be evaluated, for a given set-up, through the exper-
iment reported in Section II. As the measurement error is uni-
form, (1) should be satisfied not only on the entire input domain,
but also locally in sub-regions of it (cf. Section III-D).

B. HRBF Network

The HRBF model combines the output of many simple units
to achieve the reconstruction of a complex surface. In particular,

Fig. 4. HRBF network structure.

the HRBF network is composed of radially symmetric Gaussian
units

(2)

where , and . In the HRBF model, the units
are organized in layers (subnetworks), where theth layer is
composed of equally spaced Gaussians, which have the same
standard deviation, (cf. Figs. 4 and 6). Therefore the surface,

, is constructed by adding the contribution of a few grids
of Gaussian functions, where, as shown in Fig. 5, each grid op-
erates at a certain scale (or cut-off frequency).

Given a set, , of parameters which characterize the HRBF
network, the actual shape of the reconstructed surface (i.e., the
output of the net), , is

(3)

where
number of grids;
number of Gaussian units in theth grid;
weight associated to theth Gaussian in theth grid;
its position in the grid;
standard deviation of all the Gaussians in theth grid
which determines the filtering scale of that grid.

The parameters determine
the actual shape of . Although these parameters could be
determined by global optimization, e.g., [19], the time required
to obtain a reasonable solution has suggested exploring alter-
native solution schemes. HRBF networks, in particular, offer a
very fast solution as the determination of the parameters in (3)
does not require any iteration, and it is performed with only local
operations on the data points. This makes this approach partic-
ularly suitable to 3-D scanning application.

C. Determination of the Parameters in Each Layer

Each grid, , of the HRBF model realizes a low-pass filter,
which is able to reconstruct the surface up to a certain scale, de-
termined by . It can be shown that and the spacing between
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Fig. 5. Multiscale reconstruction of Stefano’s face is reported here. It is obtained adding the contributions (a) of all the four layers; (b) of the first three layers;
(c) of the first two layers. In (d), the output of the first layer is plotted. The residual distribution is plotted besides each layer in the form of a histogram whose area
is normalized to one.

two consecutive Gaussians on the same grid,, are related
with

(4)

This relationship is obtained by accepting a maximum attenu-
ation in the pass band of 3 dB and a minimum attenuation

in the stop band of 40 dB [20].1 Different attenuation values
lead to a different proportionality constant between and

. To apply the Gaussian filter, the data should be equally sam-
pled in correspondence to the grid crossings. That is, the
set should be available. Unfortunately this

1These values produce a cut-off frequency ofv = 0:1874=� and a
transition band of [0:1874=� , 0:7327=� ].
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Fig. 6. Position of the Gaussian units in the four layers for Stefano reconstruction. Cluster of Gaussians are inserted in the higher layers determined an increase
in the local frequency of the reconstruction.

is not the case here where the data are unevenly sampled. How-
ever, since many points are usually digitized (surface oversam-
pling), a reliable estimate of can be obtained through the
following weighted mean estimate (cf. also [21])

(5)

where is the Receptive field associated to theth
Gaussian in theth grid. It is set, somewhat arbitrarily, as the
square region centered of side . The estimate in (5) is
carried out locally on the input space, and it can be parallelized
to achieve quasi-real-time processing.

The grid filter can be now written as

(6)

Comparing (6) with (3), it can be demonstrated that the param-
eters can be obtained simply as [20].

D. Hierarchical Multiscale Structure

If only one grid was adopted, a serious drawback is intro-
duced: the Guassian scale should be small enough to resolve
the finest details. This requires very dense packing of the Gaus-
sians also in those regions where the details can be resolved at
a coarser scale, causing a waste of resources and overfitting in



1134 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 49, NO. 5, OCTOBER 2000

Fig. 7. (a) Tessellation resulting from sampling the HRBF surface at 1mm step. (b) The final result where texture has been applied.

those space regions. Moreover, as the sampled point local den-
sity reflects the local richness of details, those regions which
lack high-frequency details will contain points spaced apart far,
and receptive fields may come out empty there. A better
solution would be to adaptively allocate the Gaussian units, with
an adequate scale and, consequently, adequate receptive fields,
in the different space regions. The novel idea is to analyze the
local residual and to stack noncomplete grids over a first grid at
a coarse scale, obtaining what is termed a sparse approximation
(cf. Fig. 6). The first grid will output a rough estimate of the
surface, [Fig. 5(a)] as

(7)

The residual is computed for each sampled data
point, , as

(8)

This residual will be the input to a second grid which features
a smaller scale than the first one; somewhat arbitrarily we have
chosen which is the same choice made in wavelet
decomposition [22]. This second grid does not need to recon-
struct the original surface but only the residual one. Its output,

, will be a reconstruction of the residual at the scale
, and it will provide a second residual

(9)

This grid will not be full, but Gaussians will be inserted only
when a poor approximation is given. This is evaluated through
the residual itself: a Gaussian is inserted in the grid crossing
only if

(10)

where is the noise variance and is the number of sam-
pled points which belong to . A mathematical proof of
HRBF convergence can be found in [23] and goes beyond the
scope of this paper. Grids are created one after the other, until
the condition in (10) is not true over the entire input domain
[Figs. 5(a)–(d)].

IV. CONVERSION INTO AMESH AND COLOR APPLICATION

When required, the reconstructed continuous surface can be
sampled as densely as desired [at 1 mm in Fig. 7(a)] to ob-
tain a mesh of triangular elements. The sampling could be op-
timized according to topological or geometrical criteria to ob-
tain a lighter mesh [24]. When the color appearance is impor-
tant (e.g., in computer graphics applications), a bitmap obtained
from the snapshot of the surface is applied. This is achieved by
using standard texture mapping procedures after having aligned
it to the mesh through a semi-automatic graphical tool [25], [26].
The final result is a 3-D very realistic reconstruction of human
face [Figs. 2(b) and 7(b)]. A detailed description of this proce-
dure goes beyond the scope of this paper.
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TABLE I
PERFORMANCEINDEXES AND PARAMETERS OFEACH LAYER OF THE

HRBF NETWORK

V. RESULTS

The system has been intensively used in scanning human
body parts and faces in particular. This is a particularly difficult
task because the face’s spatial frequency content is highly vari-
able. Three to four layers are usually sufficient. A typical result
is reported in Figs. 5 and 7 for Stefano’s face. In the set-up used
the angle between the cameras was of50 with an estimated
rms measurement error of 0.65 mm. The surface is reconstructed
starting from data points collected in 3 min. As
can be seen in Fig. 6, in the higher layers the units are inserted
in clusters, only in those regions where the face has the highest
frequency content: the HRBF network automatically adapts its
local cut-off frequency and resolution to the local frequency of
the data. Only 10 355 Gaussian units have been used versus the
21 750 units, which were required by a complete Gaussian filter
at the smallest scale. The quantitative results are reported in
Table I, where the residuals and the parameters of each layer are
shown. As it can be seen, the mean error on the reconstructed
surface (bias) is already very close to zero in the second layer,
while the standard deviation decreases down to 0.72 mm in the
fourth layer. The distribution of the residuals becomes progres-
sively Gaussian shaped and approaches that of the digitization
error as can be seen in Fig. 5.

VI. DISCUSSION

The 3-D scanner presented here is based on a digitization
module characterized by scalability, flexibility and accuracy. In
fact, acquisition of objects of complex topology can be easily
accomplished by zippering multiple acquisitions carried out
with a single pair of cameras placed in different positions and
orientations [27] or increasing the number of video cameras
used simultaneously. The use of pattern recognition to compute
the spot’s centroid gives a spot accuracy higher than that of
commercial 3-D scanners [1]. This figure decreases when the
angle between the pair of video cameras, used to reconstruct the
3-D position of the spot, differs from 90with approximately
a quadratic curve [28], [29]. In real situations, where the angle
between the cameras has to be negotiated with the amplitude of
the common field of view of the two cameras, an angle between
40 and 60 is usually adopted, with an accuracy decrease
between 1.5 and 3 times. When higher accuracy is required,
smaller working volumes can be set-up or the angle between
the cameras increased.

Given the relatively long acquisition time, such a high accu-
racy can be reached only when still objects are scanned. There-
fore, when scanning human faces, maximum comfort of the

subject has to be provided to avoid nonintentional movements,
which do decrease the accuracy. These small movements could
be eliminated by using at least three circular markers solid with
the head, of the same dimension of the laser spot; they would
be recognized by the pattern matching processor, and used to
compensate head motion. Given the high accuracy achieved, this
procedure has not been adopted, but it could suggest a possible
implementation in which moving objects can be scanned.

This high accuracy is preserved in the reconstruction of the
3-D surface, which is achieved by a novel hierarchical model:
the HRBF network. The requirement of only operations carried
out locally on the data points with no iterations is the main char-
acteristic, which makes it suitable to real-time implementations.
Few algorithms aimed to real-time, can be found in the liter-
ature. The closest approach is the hierarchical reconstruction
based on B-splines [21] where the reconstructed surface is the
sum of a set of intermediate surfaces generated through a hier-
archy of control grids. The main difference is that, in the HRBF
model, the grids in the superior layers are not complete, but
Gaussian units are inserted in clusters where the residual is over
threshold, with a large saving in resources. The same adaptive
unit allocation schema offers to HRBF an advantage versus mul-
tiresolution analysis (MRA) carried out through wavelet decom-
position [22]. The MRA works in a direction opposite to HRBF
as it produces a hierarchy of approximating surfaces from fine
to coarse. Each surface is the sum of a very low-frequency sur-
face and a set of surfaces called details, where each of them is
obtained as a linear combination of basis functions. Small co-
efficients can be set to zero, giving a sparse approximation of
the surface. The MRA structure closely resembles the recon-
struction in the HRBF model (cf. Fig. 4), although the coeffi-
cients are computed differently. In fact, theth detail surface in
the HRBF is computed from the difference between the surface
approximated at the lower level and the surface samples. This
allows recovering errors in the computation, e.g., due to finite
precision, or the effect of zeroing the coefficients in the previous
layers. In MRA instead, the detail is computed directly by pro-
jecting the residual at the higher layer onto an adequate basis.
This procedure, although faster as it does not require computing
the residual for each data point, does not allow correcting for any
error in the computation.

Another advantage of the HRBF model is its minimalism, as
it requires a single basis, the Gaussian, versus the four bases
required by MRA, at least in the most common biorthogonal
setting [30].

Finally, the scale of each layer in HRBF does not have to be
necessarily halved as in MRA, but can be adapted to the data
frequency content. Moreover, if a norm different from were
required, it can be introduced by simply changing the norm in
which the error and the residuals are evaluated. For example, if
outliers are often collected, a more suitable norm to measure the
residual would be [20].

The limitation of HRBF networks, and of basis function ap-
proximation in general, lies in the use of filtering, which makes
the reconstruction of structured objects, with sharp edges and
corners, difficult. For these, procedures which reconstruct the
surface through an intermediate stage based on extraction of ob-
jects’ geometrical primitives can be more powerful [31], [32].
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VII. CONCLUSION

Overall, the 3-D scanner system presented here is able to
furnish a detailed 3-D reconstruction of surfaces by using
simple hardware components in conjunction with adaptive data
processing. The operations involved both in spot detection and
mesh construction are performed locally on the data set. They
can be easily parallelized and implemented on general purpose,
low-cost, processing boards (e.g., FPGA) to obtain a low cost
system which shall be seen as a standard measurement device
of next generation graphical workstations.
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