
DSP-SLAM: Object Oriented SLAM with Deep Shape Priors

Jingwen Wang Martin Rünz Lourdes Agapito
Department of Computer Science, University College London
{jingwen.wang.17, martin.runz.15, l.agapito}@ucl.ac.uk

Figure 1: DSP-SLAM builds a rich object-aware map, providing complete detailed shapes of detected objects, while repre-
senting the background coarsely as sparse feature points. Reconstructed map and camera trajectory on KITTI 00.

Abstract

We propose DSP-SLAM, an object-oriented SLAM sys-
tem that builds a rich and accurate joint map of dense
3D models for foreground objects, and sparse landmark
points to represent the background. DSP-SLAM takes as
input the 3D point cloud reconstructed by a feature-based
SLAM system and equips it with the ability to enhance
its sparse map with dense reconstructions of detected ob-
jects. Objects are detected via semantic instance seg-
mentation, and their shape and pose are estimated using
category-specific deep shape embeddings as priors, via a
novel second order optimization. Our object-aware bun-
dle adjustment builds a pose-graph to jointly optimize cam-
era poses, object locations and feature points. DSP-SLAM
can operate at 10 frames per second on 3 different in-
put modalities: monocular, stereo, or stereo+LiDAR. We
demonstrate DSP-SLAM operating at almost frame rate on
monocular-RGB sequences from the Friburg and Redwood-
OS datasets, and on stereo+LiDAR sequences on the KITTI
odometry dataset showing that it achieves high-quality
full object reconstructions, even from partial observations,

while maintaining a consistent global map. Our evaluation
shows improvements in object pose and shape reconstruc-
tion with respect to recent deep prior-based reconstruc-
tion methods and reductions in camera tracking drift on the
KITTI dataset. More details and demonstrations are avail-
able at our project page: https://jingwenwang95.
github.io/dsp-slam/

1. Introduction

Simultaneous Localization and Mapping (SLAM) is the
process of estimating the trajectory of a moving camera
while reconstructing its surrounding environment. From a
purely geometric perspective, SLAM is often regarded as
a well-understood or even solved problem. Many state-
of-the-art dense SLAM algorithms can achieve accurate
trajectory estimation and create high-quality geometric re-
constructions that can be used in obstacle avoidance or
path planning for mobile robots. However, when it comes
to more complex tasks that require scene understanding,
geometry-only scene representations fall short of providing
key semantic information. Taking advantage of recent deep

1

ar
X

iv
:2

10
8.

09
48

1v
2

 [
cs

.C
V

]
 2

2
O

ct
 2

02
1

Figure 2: System overview: DSP-SLAM takes a live stream of monocular or stereo images, infers object masks, and outputs
a joint map of feature points and dense objects. The sparse SLAM backbone provides per-frame camera poses and a 3D point
cloud. At each keyframe, a shape code is estimated for each new detected object instance, using a combination of 3D surface
consistency and rendered depth losses. DSP-SLAM can operate in 3 different modes: monocular, stereo, and stereo+LiDAR
(when an optional LiDAR point cloud is available).

learning breakthroughs in semantic segmentation and ob-
ject detection algorithms [12, 30, 29] semantic SLAM sys-
tems augment geometric low-level map primitives by fus-
ing semantic labels into the 3D reconstruction [21, 40, 4].
However, the resulting scene maps merely consist of a set
of labelled 3D points where reasoning about the scene at
the level of objects to infer meaningful information such as
the number of objects of each category, their size, shape or
relative pose remains a challenging task. Better use of the
semantic information is required in the form of an object-
centric map representation that allows detailed shape esti-
mation and meaningful instantiation of scene objects.

Our proposed approach forms part of a more recent fam-
ily of object-aware SLAM methods that reconstruct object-
centric maps grouping all the low-level geometric primi-
tives (voxels, points ...) that make up the same object into
a single instance. Front-end camera tracking and back-
end optimization are both performed at the level of object
instances. While the first object-level methods, such as
SLAM++ [33], mapped previously known object instances,
more recent systems have taken advantage of instance level
semantic segmentation masks [12] to achieve object level
reconstruction for unknown objects [20] even in the pres-
ence of dynamic objects [31, 44].

However, these early object level SLAM systems exhibit
major drawbacks: They either require a pre-known database
of object instances [33]; or reconstruct objects from scratch
without exploiting shape priors [31, 44, 20], which results
in partial or incomplete object reconstructions. We improve
this by exploiting the regularity of shapes within an object
category in the form of learned shape priors, defined as a
latent code z and a generative model G(z) that decodes it

Figure 3: Qualitative shape and pose results on a
stereo+LiDAR KITTI sequence. A very sparse set of Li-
DAR points was used to reconstruct each car. LiDAR points
on the road are only shown for illustration.

into its full geometry. This brings us several advantages; ob-
ject shapes decoded from latent codes are guaranteed to be
detailed and complete, regardless of partial observations or
changes in view-points, they provide a compact representa-
tion and they can be optimized using the gradients obtained
through back-propagation.

Using ORB-SLAM2 [22] as a sparse camera track-
ing and mapping backbone, DSP-SLAM takes the recon-
structed 3D point-cloud as input and fits a latent code to
each detected object instance, using a combination of 3D
surface consistency and rendered depth losses. Foreground
objects, background features and camera poses are further
refined via bundle adjustment using a joint factor graph. We
show DSP-SLAM operating in 3 different modes: monoc-
ular, stereo, and stereo+LiDAR. The monocular and stereo
systems use the respective ORB-SLAM2 modalities as the
SLAM backbone and the reconstructed 3D point-clouds to
reconstruct the detected objects. The stereo+LiDAR system
uses stereo ORB-SLAM2 as the SLAM backbone but in ad-
dition it incorporates a sparse set of LiDAR measurements
(as few as 50 per object) for object reconstruction and pose-
only optimization.
Contributions: While DSP-SLAM is not the first approach

to leverage shape priors for 3D reconstruction [32, 36] from
image sequences, it innovates in various ways. Firstly, un-
like [32, 36], our map does not only represent objects, but
also reconstructs the background as sparse feature points,
optimizing them together in a joint factor graph, marrying
the best properties of feature-based [22] (highly accurate
camera tracking) and object-aware SLAM (high level se-
mantic map). Secondly, although Node-SLAM [36] also
incorporates shape priors within a real-time SLAM sys-
tem [36], it uses dense depth images for shape optimiza-
tion, while DSP-SLAM can operate with RGB-only monoc-
ular streams and requires as few as 50 3D points per object
to obtain accurate shape estimates. Finally, although both
FroDO [32] and DSP-SLAM can operate in a monocular
RGB setting, FroDO is a slow batch approach that requires
all frames to be acquired in advance and associated with
their camera poses, while DSP-SLAM is an online, sequen-
tial method that can operate at 10 frames per second.

In terms of object shape and pose estimation, we im-
prove quantitative and qualitatively over auto-labelling [47],
a state-of-the-art prior-based object reconstruction method.
Experiments on the KITTI odometry [9] dataset show that,
with stereo+LiDAR input our joint bundle adjustment of-
fers improvements in trajectory estimation over the feature-
only stereo system ORB-SLAM2 [22], used as our back-
bone. Moreover, DSP-SLAM offers comparable tracking
performance to state-of-the-art stereo [41], LiDAR-only [4]
and dynamic [1] SLAM systems, while providing rich dense
object reconstructions. DSP-SLAM also achieves promis-
ing qualitative reconstruction results with monocular input
on Freiburg Cars [34] and Redwood-OS [5] dataset.

2. Related work
Object-aware SLAM: SLAM++ [33] pioneered object-
aware RGB-D SLAM, representing the scene at the level
of objects using a joint pose-graph for camera and object
poses. A database of pre-scanned objects was created in ad-
vance and object instances were detected and mapped using
a pre-trained 3D detector, ICP losses and pose-graph opti-
mization. In later work, Tateno et al. [38] aligned object
instances from a pre-trained database to volumetric maps
while Stuckler et al. [35] performed online exploration,
learning object models on the fly and tracking them in real
time. An important drawback of instance-based approaches
is their inability to scale to a large number of objects and
their need for object models to be known in advance. More
recent object-aware RGB-D SLAM systems have dropped
the requirement for known models and instead take advan-
tage of state-of-the art 2D instance-level semantic segmen-
tation masks [12] to obtain object-level scene graphs [21]
and per-object reconstructions via depth fusion, even in the
case of dynamic scenes [31, 44].

Extensions of object-aware SLAM to the case of monoc-

ular video input deal with the additional challenge of re-
lying only on RGB-only information [8, 13, 24, 46, 26]
which results in the use of simplistic shape representations.
In QuadricSLAM [24] objects are represented as ellipsoids
and fit to monocular observations while in CubeSLAM [46]
cuboid proposals generated from single-view detections are
optimized in a joint bundle adjustment optimization.

While the above SLAM systems represent an important
step forward towards equipping robots with the capability
of building semantically meaningful object-oriented maps,
they fall short of exploiting semantic priors for object re-
construction. In this paper we take this direction of using a
category-specific learnt shape prior and embed this within
an object-aware SLAM system.
3D Reconstruction with Shape Priors: The use of learnt
compact shape embeddings as priors for 3D reconstruc-
tion has a long tradition in computer vision. From 3D
morphable models for the reconstruction of faces or bod-
ies [2, 19], to PCA models to represent category specific
object shape priors [42]. Other examples of the use of
embedding spaces for single or multi-view shape recon-
struction include GPLVMs [6, 27, 28] or neural represen-
tations [14, 48] such as a variational autoencoder [36], Al-
tlasNet [11, 17] or DeepSDF [25, 32, 43, 47]. DeepSDF
[25] provides a powerful implicit learnt shape model that
encapsulates the variations in shape across an object cate-
gory, in the form of an auto-decoder network that regresses
the signed distance function (SDF) values of a given ob-
ject and has been used as a shape prior for single-view [43]
and multi-view [32] reconstruction. Similarly to [47] DSP-
SLAM adopts DeepSDF as the shape prior and takes sparse
LiDAR and images as input, however [47] takes single
frames and is not a SLAM method. DOPS [23] is a single-
pass 3D object detection architecture for LiDAR that esti-
mates both 3D bounding boxes and shape.

Our approach is most closely related to those that build
consistent multi-object maps over an entire sequence such
as FroDO [32] and Node-SLAM [36]. Unlike FroDO [32]
ours is a sequential SLAM system and not a batch method.
Unlike Node-SLAM [36], in our system low-level point fea-
tures and high-level objects are jointly optimized to bring
the best of both worlds: accurate tracking and rich semantic
shape information. DeepSLAM++ [15] leverages shape pri-
ors in a SLAM pipeline by selecting 3D shapes predicted by
Pix3D [37], but forward shape generation is often unstable
and lead to poor results on real data.

3. System Overview
DSP-SLAM is a sequential localisation and mapping

method that reconstructs the complete detailed shape of de-
tected objects while representing the background coarsely
as a sparse set of feature points. Each object is repre-
sented as a compact and optimizable code vector z. We

Figure 4: Shape reconstruction: qualitative results.

employ DeepSDF [25] as the shape embedding, that takes
as input a shape code z ∈ R64 and a 3D query location
x ∈ R3, and outputs the signed distance function (SDF)
value s = G(x, z) at the given point. An overview of DSP-
SLAM is shown in Fig. 2. DSP-SLAM runs at almost real
time (10 frames per second) and can operate on different
modalities: monocular, stereo or stereo with LiDAR; de-
pending on the available input data.
Sparse SLAM backbone: ORB-SLAM2 [22] is used as
the tracking and mapping backbone, a feature-based SLAM
framework that can operate on monocular or stereo se-
quences. While the tracking thread estimates camera pose
at frame-rate from correspondences, the mapping thread
builds a sparse map by reconstructing 3D landmarks.
Detections: We perform object detection at each key-
frame, to jointly infer 2D bounding boxes and segmentation
masks. In addition, an initial estimate for the object pose es-
timation is obtained via 3D bounding box detection [18, 45].
Data association: New detections will either be associated
to existing map objects, or instantiated as a new object via
object-level data association. Each detected object instance
I consists of a 2D bounding box B, a 2D mask M, the
dpeth observation of sparse 3D point cloudD, and the initial
object pose Tco,0.
Prior-based object reconstruction: Newly instantiated
objects will be reconstructed following the object recon-
struction pipeline described in Sec. 4. DSP-SLAM takes
the set of sparse 3D point observations D, which can come
from reconstructed SLAM points (in monocular and stereo
modes) or LiDAR input (in stereo+LiDAR mode) and opti-
mises the shape code and object pose to minimise surface
consistency and depth rendering losses. Objects already
present in the map will only have their 6-dof pose updated
via pose-only optimization.
Joint map optimisation: A joint factor graph of point fea-
tures (from SLAM), objects and camera poses is optimised
via bundle adjustment to maintain a consistent map and in-
corporate loop closure. New objects are added as nodes to
the joint factor graph and their relative pose estimates Tco

as camera-object edges. Object-level data association and
joint bundle adjustment will be discussed in Sec. 5.

4. Object Reconstruction with Shape Priors
We aim to estimate the full dense shape z and 7-DoF

pose Tco, represented as a homogeneous transformation

Figure 5: Illustration of the effectiveness of the rendering
term in the presence of partial observations. Left: De-
tected object and partial surface point observations (green).
Middle: Optimisation result with Esurf only. The loss is
minimised but the shape grows larger than its actual size.
Right: Optimisation result with the rendering term. En-
forcing the silhouette constraint results in the correct scale.

matrix Tco = [sRco, tco; 0, 1] ∈ Sim(3), for an object
with detections I = {B,M,D,Tco,0}. We formulate this
as a joint optimization problem, which iteratively refines the
shape code and object pose from an initial estimate. We
propose two energy terms Esurf and Erend and formulate
a Gauss-Newton solver with analytical Jacobians.

4.1. Surface Consistency Term

This term measures the alignment between observed 3D
points and the reconstructed object surface.

Esurf =
1

|Ωs|
∑

u∈Ωs

G2(Tocπ
−1(u,D), z) (1)

where Ωs denotes the pixel coordinates of the set of sparse
3D points D, which can come from reconstructed SLAM
points (in monocular and stereo modes) or LiDAR input (in
stereo+LiDAR mode). Ideally, the back-projected point at
pixel u should perfectly align with the object surface result-
ing in zero SDF value, giving a zero error residual. In prac-
tice, we observed that the surface consistency term alone
is not sufficient for correct shape and pose estimation in
the case of partial observations. Fig. 5 illustrates a case
where only points on the back and the right side of a car
are observed (shown in green). Using the surface consis-
tency alone term leads to incorrect shape estimation – much
larger than its actual size. To address this issue, we propose
a rendering loss, that provides point-to-point depth supervi-
sion and enforces silhouette consistency to penalize shapes
that grow outside of the segmentation mask.

4.2. Differentiable SDF Renderer

Following [39, 36], we build our SDF renderer via dif-
ferentiable ray-tracing. For each pixel u, we back-project
a ray cx = o + dK−1u̇ parameterized by the depth value
d under camera coordinate space, with o being the cam-
era optical centre and K being camera intrinsic matrix. We
sample M discrete depth values {di} along each ray within
the range [dmin, dmax], with di = dmin + (i − 1)∆d, and
∆d = (dmax − dmin)/(M − 1). The bounds of the depth

range are determined by the current estimation of object
translation and scale, and are re-computed at each iteration.
Occupancy Probabilities The SDF value si at each sam-
pled point can be obtained by transforming sampled points
to the object coordinate frame and passing through the
DeepSDF decoder. The SDF value encodes the probabil-
ity that a given point is occupied by the object or belongs
to free space. We apply a piecewise linear function to the
predicted SDF values to indicate the occupancy probability
oi, defined in Eq. 2, where σ represents the cut-off thresh-
old which controls the smoothness of the transition. We fix
σ = 0.01 throughout our experiments.

si = G(Toc
cx, z) and oi =





1 si < −σ
− si

2σ |si| ≤ σ
0 si > σ

(2)

Event Probabilities When tracing points along the ray, the
ray either terminates or escapes without hitting other points.
These M + 1 event probabilities can be defined as:

φi = oi
∏i−1
j=1(1− oj), i = 1, . . . ,M

φM+1 =
∏M
j=1(1− oj) (3)

Rendered Depth and Rendering Term With the probabil-
ities defined above, the rendered depth value at each pixel
u can be computed as the expected depth value of the ter-
minating point as in Eq. 4. To make it consistent, we set
dM+1, the depth value associated with escape probability,
to a constant value 1.1dmax, as in [36].

d̂u =
M+1∑

i=1

φidi (4)

Since the rendering is fully differentiable, it can be inte-
grated in our optimization. Unlike [36, 39], we perform ray-
tracing in continuous space and do not require to discretize
the object model. The final rendering term is as follows:

Erend =
1

|Ωr|
∑

u∈Ωr

(du − d̂u)2 (5)

where Ωr = Ωs∪Ωb is the union of surface pixels and pix-
els not on object surface but inside the 2D bounding box B.
Surface pixels Ωs are the same set of pixels used in Eq. 1,
obtained by projecting the 3D reconstucted SLAM points
onto the image masks as discussed in Sec. 3. The pixels in
Ωb are assigned the same depth value as dM+1 = 1.1dmax
and provide important silhouette supervision for our opti-
mization since they penalize renderings that lie outside the
object boundary, forcing empty space. As the pixels in Ωb

do not require a depth measurement, we perform uniform
sampling inside the 2D bounding box and filter out those
inside the segmentation mask.

4.3. Optimization details

Our final energy is the weighted sum of the surface and
rendering terms and a shape code regularization term:

E = λsEsurf + λrErend + λc ‖z‖2 (6)

The hyperparameter values used for optimization λs = 100,
λr = 2.5 and λc = 0.25 were tuned such that the Hes-
sian matrices of the energy terms are of the same order
of magnitude. Since all terms are quadratic, we adopt a
Gauss-Newton optimisation approach with analytical Jaco-
bians (Please refer to supplemental material for detail), ini-
tialized from a zero shape code z = 0. The initialisation for
the object pose Tco,0 is given by a LiDAR 3D detector [45]
when LiDAR is available. In the monocular/stereo case, it is
given by an image-based 3D detector [18] or by performing
PCA on the sparse object point cloud.

5. Object SLAM
As an object-based SLAM system, DSP-SLAM builds a

joint factor graph of camera poses, 3D feature points and
object locations and poses. As Fig. 3 shows, the factor
graph introduces object nodes and camera-object edges.

5.1. Object Data Association

Data association between new detections and recon-
structed objects is an important step in object-level SLAM.
We aim to associate each detection I to its nearest object o
in the map, adopting different strategies depending on the
different input modalities. When LiDAR input is available
we compare the distance between 3D bounding box and re-
constructed object. When only stereo or monocular images
are used as input, we count the number of matched feature
points between the detection and object. If multiple detec-
tions are associated with the same object, we keep the near-
est one and reject others. Detections not associated with
any existing objects are initialised as new objects and their
shape and pose optimised following Sec. 4. For stereo and
monocular input modes, reconstruction only happens when
enough surface points are observed. For detections associ-
ated with existing objects, only the pose is optimised by run-
ning pose-only optimization and a new camera-object edge
added to the joint factor-graph.

5.2. Joint Bundle Adjustment

Our joint map consists of a set of camera poses C =
{Twci}Mi=1, object poses O = {Twoj}Nj=1 and map points
P = {wpk}Kk=1. Our joint BA can be formulated as a non-
linear least squares optimization problem:

C∗, O∗, P ∗ = arg min
{C,O,P}

∑

i,j

∥∥eco(Twci ,Twoj)
∥∥

Σi,j

+
∑

i,k

‖ecp(Twci ,
w pk)‖Σi,k

(7)

Diff. Auto-labelling[47] Ours
BEV@0.5 3D@0.5 NS@0.5 NS@1.0 BEV@0.5 3D@0.5 NS@0.5 NS@1.0

E 80.70 63.96 86.52 94.31 83.31 62.58 88.01 96.86
M 63.36 44.79 64.44 85.24 75.28 47.76 76.15 89.97

Table 1: Quantitative comparison of object cuboid prediction quality with Auto-labelling on KITTI3D on Easy and Moderate
samples. Results of Auto-labelling are taken from their paper. Best results are shown as bold numbers.

Figure 6: A qualitative comparison of shape reconstruction and pose estimation against Auto-labelling [47]. Left: input RGB
image. Middle: result with DSP-SLAM Right: result with auto-labelling [47]

where eco and ecp represent the residuals for camera-object
and camera-point measurements and Σ is the co-variance
matrix of measurement residuals. Objects act as additional
landmarks, which results in improvements in tracking per-
formance as shown in our evaluation on KITTI. The opti-
mization is solved with Levenberg-Marquardt in g2o [16].
Camera-Object Measurements: Object-camera poses
Tco are evaluated by minimising the surface alignment term
in Eq. 1 while keeping the shape code and scale fixed.
New pose observations serve as edges between camera pose
Twc and object pose Two, and the residual is defined as:
eco = log(T−1

co · T−1
wc · Two) where log is the logarithm

mapping from SE(3) to se(3). Poses in the factor graph are
6-DoF, as object scale is only optimised when first detected.
Camera-Point Measurements: We use the standard for-
mulation of re-projection error used in ORB-SLAM2 [22]:
ecp = π(T−1

wc
wp) − ũ, where ũ is the measured pixel co-

ordinate of map point p. We follow a similar strategy as
ORB-SLAM2 to tune Σij such that the two energy terms
contribute roughly the same to the overall optimization.

6. Experimental Results
We perform a quantitative evaluation of our novel prior-

based object reconstruction optimisation, using LiDAR in-
put on the KITTI3D Dataset [10], comparing with auto-
labelling [47], the most related approach. In addition, we
evaluate the camera trajectory errors of our full DSP-SLAM
system on both stereo+LiDAR and stereo-only input on the
KITTI Odometry [9] benchmark, comparing with state-of-
the-art approaches. We also provide qualitative results of
our full SLAM system on pure monocular input on Freiburg
Cars [34] and Redwood-OS [5] Chairs dataset.

6.1. 3D Object Reconstruction

We conduct a quantitative comparison of our object
pose estimation on the KITTI3D benchmark, against auto-
labeling [47], a recent approach to prior-based object shape

and pose reconstruction based on image and LiDAR inputs,
and using the same shape prior embedding (DeepSDF [25])
and similar level of supervision (object masks and sparse
depth from the LiDAR measurements).
Experimental Setting: For a fair comparison, we evaluate
our approach using a single image and LiDAR input and
take the 2D segmentation masks and initial pose estimates
from the auto-labelling code release [47] as initialization
for our own optimization approach. We evaluate the results
of pose estimation on the trainval split of KITTI3D which
consists of 7481 frames, using the same metrics proposed
in [47]: BEV AP @ 0.50, 3D AP @ 0.50, and the distance
threshold metric (NS) from the nuscenes dataset [3].
Results: We report quantatitive results in Tab. 1. Our
method achieves better performance under almost all met-
rics, especially on harder samples. We also visualize the
comparison of reconstructed shapes and pose in Fig. 6.
Auto-labelling [47] does not capture shape accurately for
several vehicles: The first two cars on the left side
are sedans, but auto-labelling [47] reconstructs them as
”beetle”-shaped. In addition, some of the cars on the right
side are reconstructed with incorrect poses which do not
align with the image. In contrast, DSP-SLAM obtains ac-
curate shape and pose.
Timing Analysis: To achieve close to real-time perfor-
mance, we employ a Gauss-Newton solver with faster con-
vergence than first-order methods during our optimization,
leading to significant speed-ups. Tab. 3 shows a run-time
comparison between a first-order optimizer and our Gauss-
Newton solver with analytical gradients. Our method is ap-
proximately one order of magnitude faster to complete a
single iteration, and requires fewer iterations to converge.
Ablation Study: We conducted an ablation study for DSP-
SLAM with stereo+LiDAR input to analyse the effect of
the number of LiDAR points used for shape optimization
on the reconstruction error. Fig. 7 shows that there is no
significant difference when reducing the number of LiDAR

Approach
Sequence

Average00* 01 02* 03 04 05* 06* 07* 08* 09* 10
rpe/rre rpe/rre rpe/rre rpe/rre rpe/rre rpe/rre rpe/rre rpe/rre rpe/rre rpe/rre rpe/rre

SuMa++ [4] 0.64/0.22 1.60/0.46 1.00/0.37 0.67/0.46 0.37/0.26 0.40/0.20 0.46/0.21 0.34/0.19 1.10/0.35 0.47/0.23 0.66/0.28 0.70/0.29
Ours St+LiDAR (250pts) 0.75/0.22 1.49/0.20 0.79/0.23 0.60/0.18 0.47/0.11 0.32/0.15 0.39/0.21 0.52/0.28 0.94/0.27 0.79/0.28 0.69/0.26 0.70/0.22
Ours St+LiDAR (50pts) 0.80/0.24 1.50/0.15 0.84/0.26 0.61/0.18 0.44/0.10 0.32/0.16 0.35/0.15 0.57/0.24 1.03/0.30 0.78/0.27 0.67/0.30 0.72/0.22

ORB-SLAM2 [22] 0.70/0.25 1.38/0.20 0.76/0.23 0.71/0.17 0.45/0.18 0.40/0.16 0.51/0.15 0.50/0.28 1.07/0.31 0.82/0.25 0.58/0.28 0.72/0.22
St DSO [41] 0.84/0.26 1.43/0.09 0.78/0.21 0.92/0.16 0.65/0.15 0.68/0.19 0.67/0.20 0.83/0.36 0.98/0.25 0.98/0.18 0.49/0.18 0.84/0.20

St LSD-SLAM [7] 0.63/0.26 2.36/0.36 0.79/0.23 1.01/0.28 0.38/0.31 0.64/0.18 0.71/0.18 0.56/0.29 1.11/0.31 1.14/0.25 0.72/0.33 0.91/0.27
DynaSLAM [1] 0.74/0.26 1.57/0.22 0.80/0.24 0.69/0.18 0.45/0.09 0.40/0.16 0.50/0.17 0.52/0.29 1.05/0.32 0.93/0.29 0.67/0.32 0.76/0.23

Ours St only 0.71/0.24 1.45/0.30 0.75/0.23 0.73/0.19 0.47/0.11 0.57/0.23 0.57/0.22 0.51/0.29 1.02/0.32 0.87/0.26 0.65/0.31 0.75/0.25
Ours St only (5Hz) 0.71/0.26 1.43/0.23 0.78/0.24 0.67/0.18 0.46/0.09 0.40/0.16 0.47/0.14 0.52/0.29 0.99/0.31 0.90/0.28 0.63/0.31 0.72/0.22

Table 2: Comparison of camera tracking accuracy - average trel [%] and rrel [°/100m] against state-of-the-art stereo and
LiDAR SLAM systems. Sequences marked with * contain loops. Note that Stereo-DSO is a purely visual odometry system,
so their result is without loop closing. We keep it in the table for completeness.

Method Energy Terms msec. / iter # of iter
1st order Esurf + Erend 183 50
1st order Esurf 88 50
Ours GN Esurf + Erend 20 10
Ours GN Esurf 4 10

Table 3: Speed comparison between first-order optimization
and our Gauss-Newton method with analytical Jacobians

points from 250 to 50. The reconstruction quality starts to
degrade when the number of points is further reduced to 10.

6.2. KITTI Odometry Benchmark

We evaluate the camera trajectory error for our full DSP-
SLAM system on the KITTI odometry benchmark with
both stereo+LiDAR and stereo-only input. We evaluate on
the 11 training sequences and compare with state-of-the-art
SLAM systems of different input modalities using relative
translation error trel (%) and relative rotation error rrel (de-
gree per 100m). Quantitative results are shown in Table 2.
Stereo+LiDAR input: The upper part of Tab. 2 shows tra-
jectory errors of our system with stereo+LiDAR input. Re-
sults suggest our method achieves comparable results with
SuMa++, a state-of-the-art LiDAR-based semantic SLAM
system [4]. Note however, that our method only takes
very few LiDAR points (several hundred per frame) while
SuMa++ uses a full LiDAR point-cloud. It is interesting to
see the comparison between our stereo+LiDAR system and
stereo ORB-SLAM2, which is used as our backbone sys-
tem. With our LiDAR-enhanced object reconstruction and
joint BA, tracking accuracy improves on most sequences,
especially 03, 05, 06, 08 where adequate number of static
objects are observed throughout the sequence. However,
our system performs slightly worse on some sequences
which contain only moving objects (01, 04) or long trajec-
tory segments where no static objects are observed (02, 10).
The table also shows the effect on the camera trajectory er-
ror when using 250 vs 50 points for object reconstruction.
The results suggest that the impact of reducing the number
of points on camera tracking accuracy is minimal.
Stereo-only input: The lower part of Tab. 2 contains the

results of our stereo-only system. It can be seen that
our stereo-only system performs slightly worse than stereo
ORB-SLAM2, which means dense shape reconstruction
and joint BA does not help improve tracking accuracy with
stereo-only input. We argue that the reason is two-fold.
Firstly, 3D measurements based on stereo images are nois-
ier than LiDAR-based measurements, giving rise to lower
accuracy in object pose estimates. Secondly, in the stereo-
only case, the surface points are obtained from the SLAM
system, where the same features are repeatedly measured
and not from multiple (LiDAR) measurements. We also
noticed that, to guarantee timings, we were performing
bundle-adjustment less frequently than ORB-SLAM2. We
re-ran DSP-SLAM, at a slightly reduced frame-rate (5Hz),
performing BA after every key-frame (as ORB-SLAM2)
and the average performance increased, matching ORB-
SLAM2 at 0.72/0.22. A comparison with state-of-the-art
stereo SLAM systems is also included in Tab. 2.

6.3. Freiburg Cars & Redwood-OS Dataset

Finally, we evaluate our SLAM system with monocu-
lar input on the Freiburg Cars dataset [34] and Redwood-
OS Chairs dataset. Both datasets consist of object-centric
sequences with the camera moving around the object.
Demonstrations can be seen on Fig. 8 and 9 and in the sup-
plementary video.
Experimental Setting: 3D Bounding boxes are estimated
using PCA on the reconstructed surface points. Note that
this approach cannot differentiate between the front and
back side of the car. To address this issue, we initialize with
two flipped hypothesis and keep the orientation that yields
a smaller loss.
Results: Fig. 8 provides qualitative reconstruction results
on 4 Freiburg Cars sequences. Our system is capable of
reconstructing dense, accurate and high-quality shapes for
cars solely from monocular input at 10-20 fps. Fig. 9 illus-
trates results on chairs from the Redwood-OS [5] dataset.
Reconstruction accuracy is slightly worse than on cars as
chairs have more complex shape variations. Results are
promising nonetheless – our method still produces dense

Figure 7: Object reconstruction results when using different number of LiDAR points per object (N=250, 50, 10). There is
no noticeable difference when the number of points is reduced from 250 to 50. The reconstruction quality starts to degrade
when further reducing to 10. The degraded parts are marked with a red circle.

Figure 8: Qualitative results on Freiburg Cars dataset

Figure 9: Qualitative results on Redwood-OS Chairs dataset

meshes that capture the overall object shape from monocu-
lar RGB-only sequences, in quasi-real time.

7. Conclusions

We have presented DSP-SLAM, a new object-aware
real-time SLAM system that exploits deep shape priors
for object reconstruction, produces a joint map of sparse
point features for the background and dense shapes for de-
tected objects. We show almost real-time performance on
challenging real-world datasets such as KITTI (stereo and

stereo+LiDAR), and even on monocular setting Freiburg
cars and Redwood-OS. Our quantitative comparisons with
competing approaches on camera trajectory estimation and
shape/pose reconstruction show comparable or superior per-
formance to state of the art methods.

Acknowledgements
Research presented here has been supported by the UCL

Centre for Doctoral Training in Foundational AI under
UKRI grant number EP/S021566/1. We thank Wonbong
Jang and Adam Sherwood for fruitful discussions.

References
[1] B. Bescos, J. M. Fácil, J. Civera, and J. Neira. Dynaslam:

Tracking, mapping, and inpainting in dynamic scenes. IEEE
Robotics and Automation Letters, 3(4):4076–4083, 2018. 3,
7

[2] Volker Blanz and Thomas Vetter. A morphable model for
the synthesis of 3d faces. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 187–194, 1999. 3

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 6

[4] Xieyuanli Chen, Andres Milioto, Emanuele Palazzolo,
Philippe Giguere, Jens Behley, and Cyrill Stachniss.
Suma++: Efficient lidar-based semantic slam. In 2019
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4530–4537. IEEE, 2019. 2, 3,
7

[5] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen
Koltun. A large dataset of object scans. arXiv preprint
arXiv:1602.02481, 2016. 3, 6, 7

[6] Amaury Dame, Victor A Prisacariu, Carl Y Ren, and Ian
Reid. Dense reconstruction using 3d object shape priors.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1288–1295, 2013. 3

[7] Jakob Engel, Jörg Stückler, and Daniel Cremers. Large-scale
direct slam with stereo cameras. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 1935–1942. IEEE, 2015. 7

[8] Dorian Gálvez-López, Marta Salas, Juan D Tardós, and JMM
Montiel. Real-time monocular object slam. Robotics and
Autonomous Systems, 75:435–449, 2016. 3

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012. 3, 6

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012. 6

[11] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan
Russell, and Mathieu Aubry. AtlasNet: A Papier-Mâché Ap-
proach to Learning 3D Surface Generation. In Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018. 3

[12] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017. 2, 3

[13] Mehdi Hosseinzadeh, Kejie Li, Yasir Latif, and Ian Reid.
Real-time monocular object-model aware sparse slam. In
2019 International Conference on Robotics and Automation
(ICRA), pages 7123–7129. IEEE, 2019. 3

[14] Lan Hu, Yuchen Cao, Peng Wu, and Laurent Kneip. Dense
object reconstruction from rgbd images with embedded deep

shape representations. arXiv preprint arXiv:1810.04891,
2018. 3

[15] Lan Hu, Wanting Xu, Kun Huang, and Laurent Kneip. Deep-
slam++: Object-level rgbd slam based on class-specific deep
shape priors. arXiv preprint arXiv:1907.09691, 2019. 3

[16] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard. g2o: A general framework for graph opti-
mization. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3607–3613,
Shanghai, China, May 2011. 6

[17] Chen-Hsuan Lin, Oliver Wang, Bryan C Russell, Eli Shecht-
man, Vladimir G Kim, Matthew Fisher, and Simon Lucey.
Photometric mesh optimization for video-aligned 3d object
reconstruction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 969–978,
2019. 3

[18] Zechen Liu, Zizhang Wu, and Roland Tóth. SMOKE:
Single-stage monocular 3d object detection via keypoint es-
timation. arXiv preprint arXiv:2002.10111, 2020. 4, 5

[19] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM transactions on graphics (TOG),
34(6):1–16, 2015. 3

[20] J. Mccormac, R. Clark, M. Bloesch, A. Davison, and S.
Leutenegger. Fusion++: Volumetric object-level slam. In
2018 International Conference on 3D Vision (3DV), pages
32–41, Sep. 2018. 2

[21] J. McCormac, A. Handa, A. Davison, and S. Leutenegger.
Semanticfusion: Dense 3d semantic mapping with convolu-
tional neural networks. In 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 4628–4635,
2017. 2, 3

[22] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source
slam system for monocular, stereo, and rgb-d cameras. IEEE
Transactions on Robotics, 33(5):1255–1262, 2017. 2, 3, 4,
6, 7

[23] Mahyar Najibi, Guangda Lai, Abhijit Kundu, Z. Lu, V.
Rathod, Tom Funkhouser, C. Pantofaru, D. Ross, L. Davis,
and Alireza Fathi. Dops: Learning to detect 3d objects
and predict their 3d shapes. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
11910–11919, 2020. 3

[24] Lachlan Nicholson, Michael Milford, and Niko Sünderhauf.
Quadricslam: Dual quadrics from object detections as land-
marks in object-oriented slam. IEEE Robotics and Automa-
tion Letters, 4(1):1–8, 2018. 3

[25] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 3, 4, 6

[26] Parv Parkhiya, Rishabh Khawad, J Krishna Murthy, Bro-
jeshwar Bhowmick, and K Madhava Krishna. Constructing
category-specific models for monocular object-slam. In 2018
IEEE International Conference on Robotics and Automation
(ICRA), pages 1–9. IEEE, 2018. 3

[27] Victor Adrian Prisacariu and Ian Reid. Shared shape spaces.
In 2011 International Conference on Computer Vision, pages
2587–2594. IEEE, 2011. 3

[28] Victor Adrian Prisacariu, Aleksandr V Segal, and Ian Reid.
Simultaneous monocular 2d segmentation, 3d pose recovery
and 3d reconstruction. In Asian conference on computer vi-
sion, pages 593–606. Springer, 2012. 3

[29] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick,
and Ali Farhadi. You only look once: Unified, real-time ob-
ject detection. CoRR, abs/1506.02640, 2015. 2

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern Analysis
& Machine Intelligence, 39(6):1137–1149, 2017. 2

[31] M. Runz, M. Buffier, and L. Agapito. Maskfusion: Real-time
recognition, tracking and reconstruction of multiple moving
objects. In 2018 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), pages 10–20, Oct 2018. 2,
3

[32] Martin Runz, Kejie Li, Meng Tang, Lingni Ma, Chen Kong,
Tanner Schmidt, Ian Reid, Lourdes Agapito, Julian Straub,
Steven Lovegrove, and Richard Newcombe. Frodo: From
detections to 3d objects. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020. 3

[33] Renato F. Salas-Moreno, Richard A. Newcombe, Hauke
Strasdat, Paul H.J. Kelly, and Andrew J. Davison. Slam++:
Simultaneous localisation and mapping at the level of ob-
jects. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2013. 2, 3

[34] N. Sedaghat and T. Brox. Unsupervised generation of a view-
point annotated car dataset from videos. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2015. 3, 6,
7

[35] Jörg Stückler and Sven Behnke. Model learning and real-
time tracking using multi-resolution surfel maps. In Twenty-
Sixth AAAI Conference on Artificial Intelligence, 2012. 3

[36] Edgar Sucar, Kentaro Wada, and Andrew Davison. Neural
object descriptors for-multi view shape reconstruction. In
arXiv preprint arXiv:2004.04485, 2020. 3, 4, 5

[37] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong
Zhang, Chengkai Zhang, Tianfan Xue, Joshua B. Tenen-
baum, and William T. Freeman. Pix3d: Dataset and methods
for single-image 3d shape modeling. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018. 3

[38] Keisuke Tateno, Federico Tombari, and Nassir Navab. When
2.5d is not enough: Simultaneous reconstruction, segmen-
tation and recognition on dense slam. 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 2295–2302, 2016. 3

[39] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Ji-
tendra Malik. Multi-view supervision for single-view re-
construction via differentiable ray consistency. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2626–2634, 2017. 4, 5

[40] V. Vineet, O. Miksik, M. Lidegaard, M. Nießner, S.
Golodetz, V. A. Prisacariu, O. Kähler, D. W. Murray, S.

Izadi, P. Pérez, and P. H. S. Torr. Incremental dense semantic
stereo fusion for large-scale semantic scene reconstruction.
In 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 75–82, 2015. 2

[41] R. Wang, M. Schwörer, and D. Cremers. Stereo dso: Large-
scale direct sparse visual odometry with stereo cameras.
In International Conference on Computer Vision (ICCV),
Venice, Italy, October 2017. 3, 7

[42] Rui Wang, Nan Yang, Joerg Stueckler, and Daniel Cre-
mers. Directshape: Photometric alignment of shape priors
for visual vehicle pose and shape estimation. arXiv preprint
arXiv:1904.10097, 2019. 3

[43] WeiyueXu Wang, Qiangeng Xu, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. Disn: Deep implicit surface
network for high-quality single-view 3d reconstruction. In
NeurIPS, 2019. 3

[44] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison,
and S. Leutenegger. Mid-fusion: Octree-based object-level
multi-instance dynamic slam. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pages 5231–5237,
May 2019. 2, 3

[45] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely em-
bedded convolutional detection. Sensors, 18(10), 2018. 4,
5

[46] Shichao Yang and Sebastian Scherer. Cubeslam: Monocular
3-d object slam. IEEE Transactions on Robotics, 35(4):925–
938, 2019. 3

[47] S. Zakharov, Wadim Kehl, A. Bhargava, and Adrien Gaidon.
Autolabeling 3d objects with differentiable rendering of sdf
shape priors. 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 12221–12230,
2020. 3, 6

[48] Rui Zhu, Chaoyang Wang, Chen-Hsuan Lin, Ziyan Wang,
and Simon Lucey. Object-centric photometric bundle ad-
justment with deep shape prior. In 2018 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pages
894–902. IEEE, 2018. 3

Supplemental Material
DSP-SLAM: Object Oriented SLAM with Deep Shape Priors

1. Shape Priors for Object SLAM
In this section, we explain in more detail the benefit of

using learnt shape priors in object SLAM. We evaluate the
related object-oriented SLAM methods under three impor-
tant properties: 1. Can the system reconstruct previously
unseen objects? 2. Is the reconstruction complete? 3. Does
the reconstruction preserve detailed shape?

The first line of works [6, 9] relies on a pre-scanned
CAD model database to perform online detection and reg-
istration. The reconstructed object shapes are complete and
detailed, but the system cannot handle new objects. The
second category of works [5, 3] leverages 2D segmentation
masks, treat each segmented object as individual identities
and perform reconstruction on-the-fly. This reconstruction-
by-segmentation strategy can reconstruct arbitrary unseen
object shapes in great detail, but the reconstructed shape
is incomplete due to partial observation and missing depth.
The last line of research represents objects as simple geo-
metric shapes, such as ellipsoids [4] or cuboids [13]. This
kind of geometric representation can be applied to arbitrary
unseen shapes and preserve some important properties like
scale and orientation, but we’ve lost the level of details in
the shapes.

With learnt shape priors, all the three properties can be
achieved at the same time. Its generative property means
it can generalize to unseen shapes. Object shape decoded
from latent code is guaranteed to be detailed and complete,
even from a single partial view. The compact representation
also benefits the optimization process. Table 1 provides an
overview of the related works under the different proper-
ties. Only NodeSLAM [8] and DSP-SLAM can achieve all
the three important properties. Unlike NodeSLAM, DSP-
SLAM can also deal with large scale environments and
monocular RGB inputs.

2. Full Derivation of Jacobians
As mentioned in the main paper, one of our contribu-

tion is the fast Gauss-Newton optimizer, which is crucial to
achieve real-time performance. This section provides full
derivation of Jacobians of each individual residual term.

2.1. Jacobian of Surface Term Residual

As shown in Eq. 1 in the main paper, the surface term
residual at pixel u ∈ Ωs is simply the SDF value of the
back-projected point under object coordinate:

Method
Unseen
Objects

Full
Shape

Detailed
Shape

RGB
Input

Large
Scene

2.5D is not
enough[9] X X
SLAM++

[6] X X
Mask-

Fusion [5] X X
Fusion++

[3] X X
Quadric-

SLAM [4] X X X X
Cube-

SLAM [13] X X X X
Node-

SLAM [8] X X X
DSP-

SLAM X X X X X

Table 1: Comparison of the properties of DSP-SLAM with
respect to other object-oriented SLAM systems.

es(u) = G(Tocπ
−1(u,D), z) = G(ox, z) (1)

Its Jacobian with respect to object pose and shape [ξoc; z]
is defined as:

Js =
∂es(u)

∂[ξoc; z]
(2)

where ξoc ∈ R7 is the Cartesian representation (twist
coordinate) of the corresponding element in Lie Algebra
sim(3). The Jacobian with respect to the shape code ∂es(u)

∂z
could be obtained directly via back-propagation. To derive
the Jacobian with respect to object pose ξoc, we first factor-
ize it using chain rule:

∂es(u)

∂ξoc
=
∂G(ox, z)

∂ox

∂ox

∂ξoc
(3)

Then the first term ∂G(ox,z)
∂ox can also be obtained via

back-propagation. The second Jacobian term could be com-
puted by applying a left perturbation to the pose Toc:

1

ar
X

iv
:2

10
8.

09
48

1v
2

 [
cs

.C
V

]
 2

2
O

ct
 2

02
1

∂ox

∂ξoc
= lim
δξ=0

exp
(
δξ∧

)
Toc

cx−Toc
cx

δξ
(4)

= lim
δξ=0

(
I + δξ∧

)
Toc

cx−Toc
cx

δξ
(5)

= lim
δξ=0

δξ∧Toc
cx

δξ
= lim
δξ=0

δξ∧ox
δξ

(6)

where exp(·) is the exponential map from Lie Algebra
sim(3) to the corresponding Lie Group Sim(3), and ·∧
is the hat-operator that maps a twist coordinate in R7 to
sim(3):

ξ∧ =



ν
φ
s



∧

=

[
φ× + sI ν

0 0

]
(7)

ν ∈ R3, φ ∈ R3 and s ∈ R represent the translation,
rotation and scale part of the twist coordinate respectively.
(·)× maps from R3 to so(3) (skew-symmetric matrices).
With the equation above, the Jacobian term in Eq. 6 can
be computed as:

lim
δξ=0

δξ∧ox
δξ

= lim
δξ=0

δφ×
ox + δsox + δν

δξ
(8)

= lim
δξ=0

δν − ox×δφ + δsox

δξ
(9)

=
[
I −ox× ox

]
(10)

The full Jacobian of the surface consistency term resid-
ual with respect to the object pose can be obtained by com-
bining Eq. 3, 6, 10. Note that here we derive the Jacobian
with slight abuse of notations and neglected the notation of
homogeneous representation. For a more detailed explana-
tion of Lie Theory, please refer to [1] or [7].

2.2. Jacobian of Rendering Term Residual

As stated in the main paper, the rendering term residual
of pixel u is

er(u) = du − d̂u (11)

To compute the Jacobian of the rendering terms Jr, we
can expand it using chain rule:

Jr =
∂er

∂ [ξoc; z]
(12)

=

M∑

k=1

∂er
∂ok

∂ok
∂sk

∂G(oxk, z)

∂ [ξoc; z]
(13)

where {oxk}Mk=1 is the depth-ordered set of sampled
points along the ray of back-projecting pixel u. The third

Figure 1: Demonstration of the depth rendering process.
Only very few ray points contribute to the overall Jacobian
term.

term ∂G(oxk,z)
∂[ξoc;z]

has exactly the same form as the surface
term Jacobian in Eq. 2, thus it can be computed following
Sec. 2.1 . The second term ∂ok

∂sk
is either a constant value

or 0, as the sdf-occupancy conversion is linear inside the
cut-off threshold and constant elsewhere.

∂ok
∂sk

=

{
− 1

2σ |sk| < σ

0 elsewhere
(14)

To compute the first term, we expand the residual term
using Eq. 3 and Eq. 4 in the main paper following [10]:

er = du −
(M∑

i=1

di oi

i−1∏

j=1

(1− oj) + dM+1

M∏

j=1

(1− oj)
)

=

M∑

i=1

ψ(i) oi

i−1∏

j=1

(1− oj) + ψ(M + 1)

M∏

j=1

(1− oj)

=

M+1∑

i=1

ψ(i)

i−1∏

j=1

(1− oj)−
M∑

i=1

ψ(i)

i∏

j=1

(1− oj)

= ψ(1) +

M∑

i=1

(ψ(i+ 1)− ψ(i))

i∏

j=1

(1− oj)

where ψ(i) = du−di is the depth residual for each of the
sampled points along the ray. Differentiating with respect to
the sample point, we reach:

∂er
∂ok

=
M∑

i=1

(ψ(i+ 1)− ψ(i))
∂

∂ok

i∏

j=1

(1− oj) (15)

=
M∑

i=k

(ψ(i)− ψ(i+ 1))
i∏

j=1,j 6=k
(1− oj) (16)

= ∆d

M∑

i=k

i∏

j=1,j 6=k
(1− oj) (17)

As we are sampling uniformly along the ray, the coeffi-
cient ψ(i) − ψ(i + 1) = di+1 − di reduces to ∆d. To un-
derstand this expression we can multiply (1 − ok) on both
sides, of Eq. 17, which gives us:

Figure 2: Results with GT (←) vs. MaskRCNN (→) masks

∂er
∂ok

(1− ok) = ∆d
M∑

i=k

ti (18)

where ti =
∏i
j=1(1 − oj) represents the accumulated

transmittance at point oxi along the ray. Before hitting the
surface, ok is zero, so the term (1 − ok) has no effect, and
the Jacobian term becomes the sum of transmittance of all
the points starting from point k. And after the ray entering
the solid body, this Jacobian term will be zero. This means
only points before entering the solid body contribute to the
rendered depth value.

Now from Eq. 14 and Eq. 17, we already know that many
Jacobian terms that make up the final Jacobian in Eq. 13
should be zero. Therefore, we could further speed up the
optimization by not evaluating the third term ∂G(oxk,z)

∂[ξoc;z]
at

those points. Figure 1 is a demonstration of the rendering
process and the sparse nature of the resulting Jacobians.

2.3. Jacobian of Prior Terms

Based on the shape regularisation energy defined in Eq.
6 in the main paper. The residual of this energy term is
simply the shape code vector itself:

ec = z (19)

Based on Eq. 19, we have

∂ec
∂ξoc

= 0,
∂ec
∂z

= I (20)

Optionally, we can also apply structural priors such as
constraining the object orientation to be aligned with the
ground plane, as in [11]. We can define the rotation prior
residual as

erot = 1−Rco(0 : 2, 1) · ng (21)

= 1−
[
0 1 0

]
Rocng (22)

where R ∈ SO(3) denotes the rotation part of the trans-
formation matrix, and (0 : 2, 1) represents the operation
of getting the second column of the matrix. ng is the nor-
mal direction to the ground plane under camera coordinate
frame. The Jacobian with respect to pose can be easily ob-
tained following Eq. 10:

Component Time (ms)
Mask R-CNN Detector 70 / frame
3D LiDAR Detector 60 / frame
Pose-shape Optimization 20×10 / new object
Pose-only Optimization 4×5 / vis. object

Table 2: Run-time analysis with system components

∂erot
∂ξoc

= −
[
0 1 0

] ∂Rocng
∂ξoc

(23)

=
[
0 1 0

] [
0 (Rocng)× 0

]
(24)

=
[
0 0 0 (Rocng)×(1, 0 : 2) 0

]
(25)

where (0 : 2, 1) represents the operation of getting the
second row of the matrix. As this residual has no effect on
object shape, we have:

∂erot
∂z

= 0 (26)

3. Experiment Details and Run-time Analysis
We evaluate the run-time performance of our full SLAM

system (stereo+LiDAR) on a Linux system with Intel
Core i9 9900K CPU at 3.60GHz, and an nVidia GeForce
RTX2080 GPU with 8GB of memory. The 2D detec-
tion boxes and masks are obtained using MaskRCNN [2],1

throughout all the experiments. Initial object poses are
inferred using the LiDAR-based 3D b-box detector SEC-
OND [12].2 Our object reconstruction pipeline is imple-
mented in Python with PyTorch. The back-end object-
SLAM framework is implemented in C++ as an extension
of the original ORB-SLAM2 implementation. The Python
part is embedded into C++ using pybind11.

Table 2 lists the breakdown of the run-time performance
of different major components. Note that all those com-
ponents are performed only at key-frames. For KITTI se-
quences, we adopted two design choices to achieve real-
time performance. Firstly, we noticed shape estimation did
not improve much over time in KITTI, thus we perform full
optimization only for new objects and only update poses for
existing objects (as stated in the main paper). Secondly, we
abort new object optimization whenever necessary to ensure
new key-frame is inserted in time. These make our sys-
tem able to operate at 10Hz on KITTI. In sequences such
as Freiburg and Redwood-OS, it is beneficial to update the
shape more frequently, with fewer GN iterations to guaran-
tee real-time performance. Object meshes can be extracted
optionally using marching cube with an extra GPU, for vi-
sualization only.

1https://github.com/facebookresearch/detectron2
2https://github.com/traveller59/second.pytorch

4. Ablation with GT masks
We have shown promising reconstruction results on cars

on both KITTI and Freiburg dataset. Chairs have thin struc-
tures and a complex topology and are more challenging to
reconstruct than cars. We noticed the thin legs of the last
chair in Fig. 10 in the main paper were not properly recon-
structed. This is because our reconstruction makes use of
Mask-RCNN segmentation masks, which are noisy and af-
fected by shadows. This can result in background points
being associated to the chair, leading to incorrect results.
We conducted ablation study using ground-truth masks as
input. Fig. 2 illustrates an upper bound quality that could
be achieved with clean GT masks.

5. More Qualitative Results
We show more qualitative reconstruction results in

Fig. 3. For each scene the RGB image is shown on the top
and the reconstruction results are shown underneath. We
also show an example of reconstructed map in Fig. 4.

References
[1] Timothy D. Barfoot. State Estimation for Robotics. Cam-

bridge University Press, 2017. 2
[2] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017. 3

[3] J. Mccormac, R. Clark, M. Bloesch, A. Davison, and S.
Leutenegger. Fusion++: Volumetric object-level slam. In
2018 International Conference on 3D Vision (3DV), pages
32–41, Sep. 2018. 1

[4] Lachlan Nicholson, Michael Milford, and Niko Sünderhauf.
Quadricslam: Dual quadrics from object detections as land-
marks in object-oriented slam. IEEE Robotics and Automa-
tion Letters, 4(1):1–8, 2018. 1

[5] M. Runz, M. Buffier, and L. Agapito. Maskfusion: Real-time
recognition, tracking and reconstruction of multiple moving
objects. In 2018 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), pages 10–20, Oct 2018. 1

[6] Renato F. Salas-Moreno, Richard A. Newcombe, Hauke
Strasdat, Paul H.J. Kelly, and Andrew J. Davison. Slam++:
Simultaneous localisation and mapping at the level of ob-
jects. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2013. 1

[7] Joan Solà, Jérémie Deray, and Dinesh Atchuthan. A mi-
cro lie theory for state estimation in robotics. arXiv,
abs/1812.01537, 2018. 2

[8] Edgar Sucar, Kentaro Wada, and Andrew Davison. Neural
object descriptors for-multi view shape reconstruction. In
arXiv preprint arXiv:2004.04485, 2020. 1

[9] Keisuke Tateno, Federico Tombari, and Nassir Navab. When
2.5d is not enough: Simultaneous reconstruction, segmen-
tation and recognition on dense slam. 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 2295–2302, 2016. 1

[10] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Ji-
tendra Malik. Multi-view supervision for single-view re-
construction via differentiable ray consistency. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2626–2634, 2017. 2

[11] R. Wang, N. Yang, J. Stueckler, and D. Cremers. Direct-
shape: Photometric alignment of shape priors for visual ve-
hicle pose and shape estimation. In Proc. of the IEEE In-
ternational Conference on Robotics and Automation (ICRA),
2020. 3

[12] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10), 2018. 3

[13] Shichao Yang and Sebastian Scherer. Cubeslam: Monocular
3-d object slam. IEEE Transactions on Robotics, 35(4):925–
938, 2019. 1

Figure 3: More qualitative results on object reconstruction from a single view-point

Figure 4: Reconstructed map of KITTI-07. Note the dense reconstruction of the objects and the shape variations.

