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Abstract— Continuous-time birth-death Markov processes
serve as useful models in population biology. In this paper, we
present a procedure for constructing approximate stochastic
models for these processes. This is done by representing the
population of a specie as the continuous state of a Stochastic
Hybrid System (SHS). This SHS is characterized by reset
maps that account for births and deaths, transition intensities
that correspond to the birth-death rates, and trivial continuous
dynamics. It has been shown that for this type of SHS the
statistical moments of the continuous state evolve according
to an infinite-dimensional linear ordinary differential equation
(ODE). However, for analysis purposes it is convenient
to approximate this infinite-dimensional linear ODE by a
finite-dimensional nonlinear one. This procedure generally
approximates some higher-order moments by a nonlinear
function of lower-order moments and it is called moment
closure.

We obtain moment closures by matching time derivatives
of the infinite-dimensional ODE with its finite-dimensional
approximation at some time t0. This guarantees a good
approximation, at-least locally in time. We provide explicit
formulas to construct these approximations and compare this
technique with alternative moment-closure methods available
in the literature. This comparison takes into account both the
transient and the steady-state regimens.

I. INTRODUCTION

Continuous-time birth-death Markov processes have been
extensively used for modeling stochasticity in population
biology [1], [2], [3]. The time evolution of this process
is typically described by a single equation for a grand
probability function, where time and species populations
appear as independent variables, called the Master or
Kolmogorov equation [4]. However, this equation can only
be solved for relatively few, highly idealized cases and a
more reasonable goal is to determine the evolution of a few
low-order moments.

In this paper, a method for estimating lower-order
moments is introduced for a Markov process involving a
single specie, with birth and death rates being polynomials
of order s ∈ N≥2. This process is modeled by a Stochastic
Hybrid System (SHS) whose state x is the population of
the specie. This SHS has trivial continuous dynamics ẋ = 0,

This material is based upon work supported by the Institute for Collab-
orative Biotechnologies through grant DAAD19-03-D-0004 from the U.S.
Army Research Office and by the National Science Foundation under Grant
No. CCR-0311084.

A.Singh and J.P.Hespanha are with the Center for Control
Engineering and Computation University of California, Santa
Barbara, CA 93101. abhi@engineering.ucsb.edu,
hespanha@ece.ucsb.edu

TABLE I
SEPARABLE DERIVATIVE-MATCHING MOMENT CLOSURE FUNCTION

ϕs
` (ν), ` ∈ {n+1, . . . ,n+4}.

` = n+1 ` = n+2 ` = n+3 ` = n+4

n = 2 ν3
2
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2
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1
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2
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1
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1 ν4
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2

ν15
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3
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2
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3
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n = 4 ν10
2 ν5

4
ν5

1 ν10
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4
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3
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2 ν35

4
ν70

1 ν105
3
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2 ν70

4
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3

and is characterized by reset maps that account for births
and deaths and transition intensities that correspond to the
birth-death rates. Details of the Markov process and its
stochastic modeling are presented in Section II. Similar
SHS were used in [5] for the stochastic modeling of single
specie elementary chemical reactions, however, in this case
the transitional intensities are always polynomials of order
2.

Let µm be the mth order moment of x. We will show
in Section III that the time derivative of µm is a linear
combination of moments upto order m + s− 1. Thus, if
one creates an infinite vector containing all the statistical
moments of x, the dynamics of this vector is governed
by an infinite-dimensional linear ordinary differential
equation (ODE) which we call the infinite-dimensional
moment dynamics. However, for analysis purposes it is
convenient to approximate this infinite-dimensional linear
ODE by a finite-dimensional nonlinear one, which we
refer to as the truncated moment dynamics and denote
its state by ν = [ν1, . . . ,νn]T . As the dynamics of vector
µ = [µ1, . . . ,µn]T is given by

µ̇ = Aµ +B[µn+1, . . . ,µn+s−1]T ,

for some matrices A and B, this procedure generally ap-
proximates the moments µ`, ` ∈ {n + 1, . . . ,n + s− 1} by a
nonlinear function ϕ`(ν) of ν1, . . . ,νn, which we call the
moment closure function. With this the truncated moment
dynamics can be written as

ν̇ = Aν +B[ϕn+1(ν), . . . ,ϕn+s−1(ν)]T . (1)

In Section IV, we consider moment closure functions of the



following separable form:

ϕ
s
`(ν) =

n

∏
m=1

νm
γ`

m

for appropriately chosen constants γ`
m ∈ R. The constants

are obtained by matching time derivatives of the infinite-
dimensional ODE with its finite-dimensional approximation
at some time t0. We refer to this moment closure as
the separable derivative-matching moment closure. For
truncation of order n = {2,3,4} and s = 5 this procedure
leads to the formulas in Table I.

Moment closure methods which have been used in
literature, typically achieve moment closure by assuming
the probability distribution to be normal [6], lognormal
[7], poisson and binomial [8]. We refer to them as
normal, lognormal, poisson and binomial moment closures
respectively. In Section V, they are compared with the
separable derivative-matching moment closure, for a special
class of the birth-death Markov process known as the
stochastic logistic model.

In Section V-A the comparisons are done based on how well
the time derivatives of the moment closure function ϕ`(ν)
match those of the higher-order moment µ`. We show in
Section V-A, that with the exception of the poisson, all the
moment closure achieve approximate derivative matching.
We propose an alternative poisson moment closure function,
which unlike its previous counterpart, does match derivatives
approximately, and is subsequently shown to perform better.

In Section V-B comparison are done based on the
steady-state solutions of the truncated moment dynamics.
We show that the separable derivative-matching moment
closure, always yields a unique non-trival positive real
steady-state ∀n ∈ N≥2. Thus, it is in some sense superior
to the other moment closures, which can have spurious,
imaginary and even stable negative steady-states, and hence,
biologically meaningless.

II. JUMP MARKOV PROCESS MODEL

We consider a continuous time birth-death Markov pro-
cess, where the conditional probabilities of a unit increase
and decrease, respectively, in an “infinitesimal” time interval
(t, t +dt] is given by

P{x(t +dt) = x+1|x(t) = x}=

 η(x)dt, ∀ x≤U

0, otherwise
P{x(t +dt) = x−1|x(t) = x}= χ(x)dt,

where

η(x) := a0 +a1x+ . . .+asxs, χ(x) := b1x+ . . .+bsxs (2)

for some integer s≥ 2, U ∈ N≥0 and

a0 ≥ 0, χ(x) > 0, η(x) > 0, ∀x ∈ (0,U), η(U) = 0.

We assume that the initial condition satisfies x(t0) ∈ [0,U ],
and hence, x(t) ≤ U , ∀t ∈ [0,∞) with probability one. We
call U as the population limit.

To model the time evolution of x(t), we consider a
special class of Stochastic Hybrid Systems (SHS), which
was introduced in [9] to model the stochastic time evolution
of the populations of different species involved in a chemical
reaction. More specifically, to fit the framework of our
problem, these system are characterized by trivial dynamics

ẋ = 0, (3)

two reset maps

x 7→ φ1(x) := x+1, x 7→ φ2(x) := x−1 (4)

and the corresponding transition intensities

λ1(x) := η(x), λ2(x) := χ(x). (5)

In essence, if no “event” takes place, the state remains
constant and whenever a “birth event” or “death event” takes
place, the corresponding φi(x) is “activated” and x is reset
accordingly, furthermore, the probability of the activation
taking place in an “infinitesimal” time interval (t, t + dt] is
λi(x)dt.

III. MOMENT DYNAMICS

Ideally, one would like to determine the evolution of the
probability distribution for x(t). In general, this is difficult
and a more reasonable goal is to determine the evolution of
a few low-order moments.

Given m ∈ N≥1, we define the mth order (uncentered)
moment of x to be

µm(t) = E [x(t)m] , ∀t ≥ 0, (6)

where E stands for the expected value. The time evolution of
moments is given by the following result, which is a straight
forward application of Theorem 1 in [10] to the SHS (3)-(5).

Theorem 1 : For every continuously differentiable function
ψ : R→ R we have that

dE[ψ(x)]
dt

= E[(Lψ)(x)], (7)

(Lψ)(x) =
2

∑
i=1

[ψ(φi(x))−ψ(x)]λi(x). (8)

The operator ψ 7→ Lψ defined by (8) is called the extended
generator of the SHS. �

Since the reset maps φi(x) and transitional intensities
λi(x) are polynomials in x, the extended generator (Lψ)(x)
is a polynomial in x for every polynomial ψ(x) in x. Such
SHSs whose extended generator L is closed on the set of
polynomials in x are called polynomial Stochastic Hybrid
System (pSHS).



With ψ(x) = xm in (7), we have from (8) that

(Lψ)(x) = η(x)[(x+1)m−xm]+ χ(x)[(x−1)m−xm].

Using (2) and Theorem 1, we have that the evolution of µm,
∀m ∈ N≥1 can be written as

µ̇m =
s

∑
p=0

m+s−1

∑
r=0

Cm
m+p−r f (m+ p− r, p)µr (9)

where µ0 = 1, Cm
j is defined as follows1 ∀ j,m ∈ N

Cm
j :=

{
m!

(m− j)! j! m≥ j ≥ 0

0 m < j
(10)

f ( j, p) :=


0 j = 0
a1 +(−1) ja2 j > 0, p = 1
−b1 +(−1) jb2 j > 0, p = 2.

(11)

One can see from the right-hand-side of (9), that the time
derivative of µm is a linear combination of moments µr,
upto order r = m + s−1. Hence, if one stacks all moments
in an infinite vector µ∞ = [µ1,µ2, · · · ]T , its dynamics can be
written as

µ̇∞ = A∞µ∞, (12)

for some infinite matrix A∞. We refer to (12) as the infinite-
dimensional moment dynamics. Let µ = [µ1,µ2, . . . ,µn]T ∈
Rn contains the top n elements of µ∞. Then, using (9) the
evolution of µ is given by

µ̇ = Aµ +Bµ̄, µ̄ = [µn+1, . . . ,µn+s−1]T , (13)

for some n×n and n× s−1 matrices A and B. Our goal is
to approximate (13) by a finite-dimensional nonlinear ODE
of the form

ν̇ = Aν +Bϕ̄(ν), ν = [ν1,ν2, . . . ,νn]T (14)

ϕ̄(ν) = [ϕn+1(ν), . . . ,ϕn+s−1(ν)]T

where the map ϕ̄ : Rn → Rs−1 should be chosen so as to
keep ν(t) close to µ(t). We call (14) the truncated moment
dynamics and ϕ`(ν) the moment closure function for µ`,
∀` ∈ {n+1, . . . ,n+ s−1}.

When a sufficiently large but finite number of derivatives
of µ(t) and ν(t) match point-wise, then, the difference
between solutions to (13) and (14) remains close on a given
compact time interval. This follows from a Taylor series
approximation argument. To be more precise, for each δ > 0
and integer N, there exists T ∈ R, for which the following
result holds: Assume that for every t0 ≥ 0,

µ(t0) = ν(t0) ⇒ diµ(t)
dt i |t=t0 =

diν(t)
dt i |t=t0 , ∀i ∈ {1, . . . ,N}

(15)

1n! denotes the factorial of n.

where diµ(t)
dt i and diν(t)

dt i represent the ith time derivative of
µ(t) and ν(t) along the trajectories of system (12) and (14)
respectively. Then,

µ(t0) = ν(t0)⇒‖µ(t)−ν(t)‖ ≤ δ , ∀t ∈ [t0,T ], (16)

along solutions of (12) and (14), where µ denote the first
n elements of µ∞. It has been shown in [11] that under
appropriate asymptotic stability conditions on (12), the in-
equality (16) can actually be extended ∀t ∈ [t0,∞). In the
next section we will use (15) to construct moment closure
functions ϕ`(ν).

IV. SEPARABLE DERIVATIVE-MATCHING MOMENT
CLOSURES

In this section we construct truncated moment dynamics
(14) for the class of birth-death Markov processes introduced
in Section II using (15). After replacing (13) and (14) in
(15), equality (15) becomes a PDE on ϕ̄ . We will seek for
solutions ϕ̄ to this PDE, whose entries have the following
separable form

ϕ
s
`(ν) =

n

∏
m=1

νm
γ`

m := ν
(γ`), γ` = (γ`

1, . . . ,γ
`
n) (17)

∀ν = [ν1, . . . ,νn]T , ∀` ∈ {n+1, . . . ,n+ s−1}

for appropriately chosen constants γ`
m ∈ R. In the sequel we

will refer to such ϕs
`(ν) as a Separable Derivative-Matching

(SDM) moment closure function for µ`. Often, it is not
possible to find ϕ̄(ν) of the form (17) for which (15) holds
exactly. We will therefore relax this condition and simply
demand the following

µ(t0) = ν(t0) ⇒ diµ(t)
dt i |t=t0 =

diν(t)
dt i |t=t0 +E[εi(x(t0))],

(18)

∀i ∈ {1,2}, where each element of the vector εi(x(t0))
is a polynomial in x(t0). One can think of (18) as an
approximation to (15) which will be valid as long as
diµ (t)

dt i |t=t0 dominate E[εi(x(t0))].

The following theorem, the proof of which is omitted
due to space considerations, summarizes the main result.

Theorem 2 : Let γ` = (γ`
1, . . . ,γ

`
n), ∀`∈ {n+1, . . . ,n+s−1}

be chosen as the unique solution of the following system of
linear equations

C`
k =

n

∑
m=1

γ
`
mCm

k , ∀k = {1, . . . ,n}. (19)

Then, for every deterministic initial condition µ∞(t0) =
[x0,x2

0, . . .]
T which corresponds to x(t0) = x0 with probability

one, we have

µ(t0) = ν(t0)⇒


dµ(t)

dt |t=t0 = dν(t)
dt |t=t0

d2µ(t)
dt2 |t=t0 = d2ν(t)

dt2 |t=t0 + ε2(x0),
(20)



where diµ(t)
dt i and diν(t)

dt i represent the ith time derivative
of µ(t) and ν(t) along the trajectories of system (12)
and (14) respectively and the mth element of the vector
ε2(x0) is a polynomial in x0 of order m− n + 2(s− 1), for
m−n+2(s−1)≥ s and equal to zero otherwise. �

Remark 1. Using (9) it can be shown that d2µm(t)
dt2 is a

linear combination of moments of x upto order m+2(s−1).
Thus, d2µm(t)

dt2 |t=t0 is a polynomial in x0 of order m+2(s−1),

and hence, for2 x0 >> 1, εm
2 (x0)/

d2µm(t)
dt2 |t=t0 = O(x−n

0 ),
where εm

2 (x0) is the mth element of ε2(x0). Hence, with
increasing n or x0, the truncated moment dynamics model
should provide a more accurate approximations to the lower
order moments. �

Remark 2. One can see from (19) that the constants
γ`

m are independent of the coefficient of the polynomials in
(2). Moment closures for different values of ` that satisfy
(19) are listed in Table I. Moreover, one can check that
the moment closure for µ` as given by ϕs

`(ν) in Table I is
consistent with x(t) being lognormally distributed. �

Remark 3. Using Mathematica to perform the symbolic
manipulations, we verified that the separable derivative-
matching moment closures also matches derivatives of order
higher than 2 in (20). To be more precise, for n ∈ {2,3,4}
and i ∈ {2, . . . ,9}, we have

µ(t0) = ν(t0)⇒


dµ(t)

dt |t=t0 = dν(t)
dt |t=t0

diµ(t)
dt i |t=t0 = diν(t)

dt i |t=t0 + εi(x0),
(21)

where the mth element of εi(x0) is a polynomial in x0 of
order m−n + i(s−1), for m−n + i(s−1) ≥ s and equal to
zero otherwise. We conjecture that the above equality holds
∀n ∈N≥2 and ∀i ∈N≥2 but we only verify for n upto 4 and
i upto 9. �

V. COMPARISON OF MOMENT CLOSURES

In this section we compare the SDM moment closure
with other moment closure techniques that have appeared in
literature. We restrict our attention to a class of birth-death
Markov processes, known as the stochastic logistic model.
The stochastic logistic model is the stochastic birth-death
analogous model of the well-known deterministic Verhulst-
Pearl equations [12] and has been extensively used for
modeling stochasticity in population biology [1], [2], [3]. In
this model, the polynomials η(x) and χ(x) in (2) are given
by

η(x) := a1x−b1x2, χ(x) := a2x+b2x2, a1 > b1, a1 > a2,
(22)

where a1, a2, b1, b2 ∈ R>0 and the population limit
U = a1/b1. For the stochastic logistic model we have s = 2,

2O(.) denotes order of.

TABLE II
DIFFERENT MOMENT CLOSURES FUNCTIONS FOR µ3

Technique Moment Closure Function

SDM
(

ν2
ν1

)3

Normal 3ν2ν1−2ν3
1

Lognormal
(

ν2
ν1

)3

Nasell-Poisson ν1 +3ν1ν2−2ν3
1

New -Poisson ν2−ν2
1 +3ν1ν2−2ν3

1

Binomial 2 (ν2−ν2
1 )2

ν1
− (ν2−ν2

1 )+3ν1ν2−2ν3
1

and hence, µ̄ = µn+1 in (13) and ϕ̄(ν) = ϕn+1(ν) in (14).

Most moment closure techniques that appeared in the
literature start by assuming a specific distributions for the
population, and use this assumption to express higher order
moments as a function of the lower order ones. This has
been done for well known classes of distributions, such as
normal [6], lognormal [7], poisson and binomial [8] and for
these distribution we simply say that ϕn+1 is the normal,
lognormal, poisson, or binomial moment closure function.
For a more detiled discussion on distribution based moment
closures the reader is referred to [13].

For a second order truncation (n = 2), Table II lists
these moment closure functions for µ3 along with the
separable derivative matching (SDM) moment closure
function. Nasell-Poisson refers to the poisson moment
closure function proposed in [8], while New-poisson refers
an alternative poisson moment closure function that we
propose, which, as we will see, performs better than the one
proposed in [8]. The explanation for this lies in the fact that
the New-poisson has better derivative matching properties
than the Nasell-Poisson, in the sense of (18).

In the sequel we use superscripts s, l, g, p1, p2 and
b to denote separable derivative-matching, lognormal,
normal, Nasell-poisson, New-poisson and binomial moment
closure functions, respectively. We introduce two criteria to
compare the different moment closure techniques. The first
is the error

e(t) = µ3(t)−ϕ3(ν(t)) (23)

and the second is the steady-state solution of the truncated
moment dynamics. In particular we are especially interested
in determining if there exists a unique non-trivial positive real
steady-state which would be physically meaningfull. This
is important, because the normal moment closure can have
stable spurious, imaginary and sometimes even stable neg-
ative steady-states, which lead to biologically meaningless



behaviour [7]. For space considerations, we will restrict our
comparisons to a second order of truncation, i.e., n = 2 only
and refer the reader to [13] for a more general analysis. Also
as from Table II we have ϕ l

3(ν) = ϕs
3(ν) for n = 2 we do

not need to discuss lognormal moment closure separately.

A. Derivative matching

For separable derivative-matching moment closure, the
error (23) can be written as

es(t) = µ3(t)−ϕ
s
3(ν(t)) (24)

=
∞

∑
i=0

(t− t0)i

i!

(
diµ3(t)

dt i |t=t0 −
diϕs

3(ν(t))
dt i |t=t0

)
=

∞

∑
i=0

(t− t0)i

i!
ε

s(i,3,x0) (25)

where

ε
s(i,3,x0) :=

diµ3(t)
dt i |t=t0 −

diϕs
3(ν(t))
dt i |t=t0 (26)

is called the derivative matching error. Similarly, by
substituting ϕ

g
` (ν), ϕ

p1
` (ν), ϕ

p2
` (ν), ϕb

` (ν) in (24)-(26), one
can define the derivative matching error for other closures,
which will be denoted using the appropriate superscripts.

With deterministic initial conditions µ∞(t0) = [x0,x2
0, . . .]

T

as in Theorem 2, using Table II we have for i = 0,

ε
s(0,3,x0) = ε

g(0,3,x0) = ε
p2(0,3,x0) = ε

b(0,3,x0) = 0,

ε
p1(0,3,x0) =−x0. (27)

For i≥ 1, using symbolic manipulation in Mathematica, we
see that for each of these moment closures, the ith derivative
matching error, is a polynomial in x0 of order i+1, but with
different coefficients. Hence, all moment closures match
derivatives approximately, with the error being of the same
order in x0. Since ε p1(0,3,x0) = −x0, the Nasell-poisson
moment closure will have a large initial error as compared
with New-poisson moment closure. Simulation results show
that with the exception of Nasell-poisson moment closure,
which consistently provides the worst estimates, all other
closures perform fairly well.

Example: We consider the stochastic logistic model
with

a1 = .30, a2 = .02, b1 = .015, b2 = .001, (28)

which corresponds to the population dynamics of the African
Honey Bee [3]. Using (9), we have the following truncated
moment dynamics[

ν̇1
ν̇2

]
=

[
0.28 −0.016
.32 .546

][
ν1
ν2

]
+

[
0

−0.032

]
ϕ3(ν).

The time evolution of the moments corresponding to different
moment closure techniques is obtained by substituting the
appropriate moment closure function from Table II in place
of ϕ3(ν). In order to evaluate the performance of these
moment closure functions for all time, we compute the exact

evolution of the moments. This is only possible because
the population limit U = 25 is small and one can obtain
the exact solution by numerically solving the Kolmogorov
equation. Figures 1, 2 contains plots of the variance errors
for the different moment closure functions with x0 = 5
and x0 = 20 respectively. The letters s, g, p1, p2 and b
are used to denote the errors corresponding to separable
derivative-matching, normal, Nasell-poisson, New-poisson
and binomial moment closure functions, respectively. For
x0 = 20 the binomial moment closure function provides the
best estimate both initially and at steady-state, whereas for
x0 = 5 the New-poisson moment closure function does best
initially, but the binomial moment closure function continues
to provide the most accurate steady-state estimate. As one
would expect from (27), the Nasell-poisson moment closure
function performs the worst. Similar plots are obtained for
the mean error µ1(t)− ν1(t), which are not presented here
due to lack of space.
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Fig. 1. Propagation of [(µ2(t)− µ1(t)2)− (ν2(t)− ν1(t)2)] for different
moment closures with x0 = 5 .
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Fig. 2. Propagation of [(µ2(t)− µ1(t)2)− (ν2(t)− ν1(t)2)] for different
moment closures with x0 = 20 .

B. Steady-state solutions

Without going into any details we summarize the our
result in this theorem. For details of the proof, the reader is
referred to [13].



Theorem 3 : Consider the stochastic logistic model
(22). Then the truncated moment dynamics (14) with the
separable derivative-matching moment closure function as
given by Table I has a unique non-trivial attracting positive
real steady-state for all order of truncations n≥ 2.

In terms of the parameters a1, b1, a2 and b2, the solutions
for n = 2 is

ν
s
1(∞) =

K

1+ σ2

K2

where

K =
a1−a2

b1 +b2
, σ

2 =
a1b2 +b1a2

(b1 +b2)2 .

Using Table II, we get the following non-trivial steady-state
solutions for other moment closures and n = 2 :

ν
g
1 (∞) = K

3
4
± 1

4

(
1− 8σ2

K2

) 1
2


ν

p1
1 (∞) = K

3
4
± 1

4

(
1− 8(σ2−1)

K2

) 1
2


ν

p2
1 (∞) =

3K−1
4

± 1
4

(
(K +1)2− 8σ2

K2

) 1
2


ν

b
1 (∞) = K− σ2

K−1
.

From the above steady-states we conclude the following:
1) The binomial moment closure leads to a unique non-

trivial attracting real steady-state, which can be nega-
tive for a range of parameters.

2) Normal, New-poison and Nasell-poison moment clo-
sures, yield two non-trivial steady-states, with the
one with the − sign being a “spurious steady-state”.
Following the definition in [14], a steady state is
“spurious”, if limM→∞ ν1(∞) 6= K, where σ2 and K
are both O(M). For n = 2, all these “spurious steady-
states” happen to be un-stable, and hence, the truncated
model will not converge to them.When the parameters
are chosen, such that the term under the square root
sign is negative, then both the non-tivial steady-states
would be imaginary, which is biologically meaningless.

3) The separable derivative-matching moment closure
leads to a unique non-trivial attracting positive real
steady-state, and hence, with no spurious or imaginary
steady-states has a clear advantage.

VI. CONCLUSION AND FUTURE WORK

An approximate stochastic model for a continuous-time
birth-death Markov processes was presented in this paper.
This was done by representing the population of the specie
as the continuous state of a SHS. With such a represen-
tation, the dynamics of the infinite vector containing all
the statistical moments of the continuous state are governed

by an infinite-dimensional linear system of ODEs. Finite-
dimensional nonlinear ODEs approximations were obtained
by matching its time derivatives with those of the infinite-
dimensional ODEs at some time t = t0. Explicit formulas
to construct these finite-dimensional nonlinear ODEs were
provided. Comparisons based on transient performance and
steady-state solutions of the finite-dimensional ODEs were
done, with alternative approximations available in literature,
which lead to the following conclusion.

1) With the exception of the Nasell-poisson, all the mo-
ment closures achieve approximate derivative match-
ing, and hence, give fairly good estimates. We pro-
posed an alternative New-poisson moment closure,
which unlike the Nasell-poisson moment closure pro-
posed in literature, does match derivatives approxi-
mately, and thus performs better.

2) The separable derivative-matching moment closure,
always yields a unique non-trival positive real steady-
state ∀n ∈ N≥2, and hence, in some sense superior to
the other moment closures, which can have spurious,
imaginary and even stable negative steady-states.

A possible directions for future research is to extend the
results of this paper to multi-specie birth-death Markov
processes. Preliminary result regarding this appear in [9].
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