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Abstract 

This research focuses on solving the min-max Multi Depot Vehicle Routing Problem (MDVRP) based on a swarm 

intelligence based algorithm called ant colony optimization. A traditional MDVRP tries to minimize the total 

distance travelled by all the vehicles to all customer locations. The min-max MDVRP, on the other hand, tries to 

minimize the maximum distance travelled by any vehicle. The algorithm developed is an extension of Single Depot 

Vehicle Routing Problem (SDVRP) algorithm developed by Bullnheimer et al. in 1997 based upon ant colony 

optimization. In SDVRP, all the vehicles start from a single depot and return to the same depot, and solution aims at 

finding tours of vehicles so that every customer location is visited exactly once and that minimizes the total distance 

travelled. Building upon the SDVRP algorithm, this study first involves developing an algorithm for the min-max 

variant of SDVRP problem where the maximum distance travelled by any vehicle is minimized.   

Later, the algorithm has been extended to address the Multi Depot variant of this problem. In this case, vehicles can 

start from multiple depots unlike SDVRP case and have to come back to their respective depot of origin once they 

visit a set of customer locations. The min-max multi-depot vehicle routing problem involves minimizing the 

maximum distance travelled by any vehicle in case of vehicles starting from multiple depots and travelling to each 

customer location at least once. This problem is of specific significance in case of time critical applications such as 

emergency response in large-scale disasters, and server-client network latency. The proposed algorithm uses an 

equitable region partitioning approach aimed at assigning customer locations to depots so that MDVRP is reduced to 

SDVRP. A background study on swarm intelligence based optimization techniques, region partitioning methods, 

approximation algorithms and also various techniques of optimization has been included in this research.  

The proposed method has been implemented in Matlab for obtaining the solution for the min-max MDVRP with any 

number of vehicles and customer locations. A comparative study is carried out to evaluate the proposed algorithm’s 

performance with respect to a currently available algorithm in literature in terms of the optimality of solution and 

time taken to reach the solution. Based on an extensive simulation study, it has been demonstrated that the ant 

colony optimization technique proposed in this thesis leads to more optimal results as compared to an existing 

method.  
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Chapter 1. Introduction and Motivation 

Efficient transportation of products in and around the globe is an essential part of modern supply chain because of its 

high impact on cost and customer satisfaction by reduction of energy consumption and speedy delivery. With the 

growing business and hence increase in the complexity of transportation of materials, minimizing the cost of 

logistics becomes a significant factor in reducing the overall cost [1]. In the last decade, research [2] suggests that 

10% to 15% of the traded goods correspond to the transportation costs. Therefore utilization of computerized 

methods for transportation will result in significant savings ranging from 5% - 20%. Recent study of U.S. Bureau of 

Labor Statistics estimates that transportation-related fields are growing by nearly 56,000 jobs a year thus showing an 

increase in trade and logistic businesses [3]. Realizing the importance of these factors, researchers have devoted a lot 

of effort in finding out novel and optimal ways for an efficient transportation. A well-known problem in this area, 

called Vehicle Routing Problem (VRP), has been studied for the past five decades. The problem involves finding 

tours of vehicles (with constraints on maximum distance they can travel) from a depot that visits a given number of 

delivery points and minimizes the total distance travelled. This problem was first proposed by Dantzig and Ramster 

in 1959 [4] as an extension of the classical Travelling Salesman Problem (TSP). Solving this problem, just like 

classical TSP, is computationally extensive and is known to be a Nondeterministic Polynomial (NP) hard problem 

[5]. NP Hard are those set of problems whose solutions require computational effort which increases in polynomial 

fashion with the size of problem. Hence an approximate solution is more desirable as it is considered to be a tradeoff 

to the computation time. The two basic types of VRP are:  Single Depot (SDVRP) and Multi-Depot (MDVRP). 

SDVRP involves a single depot where all the vehicles are present initially while MDVRP consists of multiple 

depots. Multi-Depot Vehicle Routing Problem (MDVRP) extends the SDVRP by having multiple depots where 

multiple vehicles can originate from (and return to). In SDVRP, the objective is to find the minimum cost route that 

satisfies the three constraints, viz. every customer is visited exactly once, all vehicles begin and end at the same 

depot, vehicle capacity and distance restrictions are not violated. MDVRP as mentioned earlier consists of multiple 

depots with multiple vehicles and the objective remains the same as SDVRP. Interesting versions of these problems 

are the min-max version, where the objective of the problem is to minimize the maximum distance travelled by a 

vehicle (instead of total distance travelled as in a conventional VRP). This problem is often of interest when 
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minimization of time taken to visit all points is more important than the total distance travelled, a usual factor of 

interest in emergency management situations. In emergency management, the objective is to use all available 

vehicles to minimize the time taken to attend to all points needing emergency resources. Other applications of this 

problem are in defense and computer networking. For example, assigning tours to a group of UAVs engaged in large 

scale surveillance operation by solving min-max MDVRP will minimize the maximum time of travel of UAVs, and 

hence help achieve desired objectives in time-critical scenarios. In computer networking, depots represent servers, 

vehicles represent data packets, and customers represent clients, a network routing topology generated by solving 

the min-max problem would result in minimizing the maximum latency between a server and a client. Traditional 

approaches to solving VRPs have involved the use of Linear Programming and Dynamic Programming based 

techniques. Some of the metaheuristic techniques have also been used lately. In recent years, optimization 

techniques that mimic swarming behavior in bio systems have gained lot of interest for applied problem solving. An 

artificial life program called Boids was developed by Craig Reynolds in 1986. This program simulates the flocking 

behavior of birds. In his paper published in 1987, he mentions an interesting observation about flocking of birds and 

the quote reads like this, “Perhaps most puzzling is the strong impression of intentional, centralized control. Yet all 

the evidence indicates that flock motion must be merely the aggregate result of the actions of individual animals; 

each acting solely on the basis of its own local perception of the world”.  The essence of this swarm optimization 

technique is the application of simple rules to individual agents with a decentralized control in order to achieve 

something that is of big picture. In nature, we observe several types of collective movements, for example, flocking 

of birds, fish schooling, and ant swarming. Foraging strategy in ants is a particularly interesting phenomenon. The 

branching bridge (See Figure 1-1) experiment by Deneubourg et al. in 1989 [6] demonstrated that the ants to reach 

point 2 from point 1 end up choosing one branch, the one which is shorter, over the other based on random 

fluctuations and pheromone guided selection of paths.. Pheromones are the chemicals deposited by certain species of 

ants. These pheromones are perceivable by other ants and also they evaporate over time. Over a period of time, due 

to back and forth travel of ants, pheromone trails are established and this determines the shortest path (optimal path) 

between nest and food source. On the basis of this research, Dorigo et al. successfully apply [42] this technique to 



11 

 

solve various combinatorial optimization problems and thus establish this interesting metaheuristic optimization 

technique.  

Applications of ant-colony based optimization technique are numerous. In the Harvard Business Review by 

Bonabeau [40], various possible applications of this method to practical business problems have been discussed. In 

the field of telecommunication network, to link a call from one place to another (say from Bangalore – San Jose), it 

has to be routed through various intermediate points (say Singapore, Honolulu etc.) to establish a connection. For 

such  

 

Figure 1-1: Binary Bridge Experiment: Ants Eventually Ended up Choosing Path 2 which was Shorter 

systems, use of ant colony search techniques perhaps help in minimizing the latency between two stations. Also, 

consider dramatic phone traffic congestion scenarios because of inclement weather conditions or a phone-in 

television show which needs a quick rerouting of messages to a different network to handle this surge of traffic. As 

per the authors, Hewlett-Packard labs in Bristol, England have successfully applied the ant-foraging principles that 

routes these calls efficiently. Internet traffic is also similar to the telecommunication network and in fact on a larger 

scale. Ant-colony optimization technique has been applied successfully [40] to maximize throughput and minimize 

delays in handling internet traffic. Pena Petroli, a Swiss based heating oil distributor, uses ant-based programs [40] 

to direct the fleet of trucks in distributing oil to its customers. Variations of ant-foraging algorithms have also been 

applied to improve the factory efficiency. Unilever, a consumer goods company, were lacking the fast, efficient way 
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to deploy equipment in one of its production facilities with the help of traditional optimization methods. Since the 

facility was very complex with lot of constraints including rates of operation of other equipment, changeover time 

for switching from one product to another, capacities, and preventive maintenance schedules, it was difficult to 

develop a traditional optimization program for this dynamic environment. Swarm intelligence technique was [40] 

used to develop software which adjusts the schedules quickly and automatically. This technique may also hold 

important applications in exploiting new markets. A classic example the authors provide is in the context of idea 

generation in Capital One. Here, the employees are responsible for their ideas and not the managers. People with 

better ideas should find sponsors, who are not necessarily their managers, and also recruit the people they need. In 

this system, the ideas which stand the best chance of revenue making will eventually attract more people, kind of 

analogy to a rich food source, and those ideas are transformed to new business units. This resembles a self-

organizing behavior shown by ants. Thus there are myriads of applications of this swarm intelligence based 

techniques. These interesting behavioral consequences of biological swarming, specifically, phenomena such as 

ant foraging, and the immense potential these carry in solving complex optimization problems is the primary 

motivation for using this approach for solving the min-max MDVRP.  

Min-Max MDVRP was chosen as the thesis problem because of two reasons: i) the problem is very significant, and 

ii) the problem has been introduced recently, and very few prior researches have been conducted to address this 

problem. Considering the importance of this problem with various applications as mentioned in the earlier part of 

this chapter, a metaheuristic algorithm that can solve this problem has to be established in contrast to an exact 

algorithm in view of the nature of the problem. Ant colony optimization technique is a conspicuous option as this 

technique has been extensively applied to solve some of the well-known combinatorial optimization problems such 

as TSP and VRP. Some of the other approximation algorithms such as Genetic Algorithms, Tabu search, insertion 

algorithms, simulated annealing have already been applied to solve some of the variants of this problem. But, Ant 

colony technique, due to its guided search capability in addition to randomness and the usage of elitist phenomenon 

where the good solutions have more weights and influence search directions, is more suitable to solve the proposed 

min-max MDVRP.  
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The remainder of the thesis is organized as follows: First, the problem is introduced in Chapter 2. Later, an overview 

of the background of the problem and review of existing literature are presented with a brief introduction to various 

combinatorial optimization problems. A background study on different versions of the Vehicle Routing Problem and 

their formulations in Linear Programming framework has been carried out. Also, a discussion on the min-max 

MDVRP problem and methods available in literature has been discussed. Background studies on different types of 

optimization techniques and in particular, on ant colony optimization technique, have been done. Chapter 3 

discusses the approach that was used in this thesis to solve the min-max MDVRP, which is the problem of interest. 

It starts with the approach to solve min-max SDVRP and has been extended to multi depot problem. This chapter 

also addresses some of the route improvement strategies that were used to obtain a better solution to the problem 

under consideration in this thesis. In Chapter 4, results and discussions that were obtained after rigorous simulation 

procedures have been studied. Following Results and Discussions chapter, the thesis has been concluded with a brief 

idea for future works that are possible on the basis of the proposed thesis in Chapter 5.  
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Chapter 2. Background and Literature Survey 

2.1 A Typical Optimization Problem 

Any decision making problem would involve finding out a best action to achieve certain goal. This best action needs 

to be performed with an objective function in place and finding out the maxima or minima of this function. These set 

of problems are typically called optimization problems. Mathematically, an optimization problem can be defined [7] 

as shown in Eq.(2.1)  

 If Objective function is f(x), then  

          Find: {min, max} f(x) 

 Subject to: Constraints - gi(x) {≤ , = , ≥} bi, i = 1,2..m 

                     Variable bounds - l ≤ x ≤ u 

     Variable types – xj is {real, integer, binary}, j = 1,2...n 

 

 

 

(2.1)  

In short, an optimization problem involves finding out best solution in a set of feasible solutions, respecting certain 

constraints, bounds and variable types. To quote few applications - a decision making scenario that maximizes the 

business profit, to minimize the maintenance cost for a machinery, to minimize the total distance travelled in order 

to save fuel and time in case of a truck delivering goods.      

2.2 NP Hard 

Before the discussion of various optimization problems and techniques, it is better to know the term which describes 

the class of the problems based on the computational time and efficiency. Non-deterministic Polynomial (NP) is one 

of those terms which define the type of the optimization problem. A normally accepted algorithm for a given 

problem will generate a solution in a polynomial time. These classes of problems are called P-type problems. In 

layman terms, these are the problems that can be solved quickly. Most maxima-minima optimization problems come 

under this category. NP-Complete is another class of problems where there is no known algorithm that can generate 

the solution in a polynomial time. Hence, NP problems are the superset of NP-Complete and P-type problems. See 

Figure 2-1. 
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Figure 2-1: Classification of mathematical problems based on computational complexity 

According to [5], a problem ‘Ω’ is called a NP-hard, if a polynomial-time algorithm for problem ‘Ω’ would imply a 

polynomial-time algorithm for every problem in NP. In short, these are a different set of problems that can have few 

NP type problems and these are actually NP-complete. See Figure 2-2. 

 

 

Figure 2-2: NP-complete are the intersection of NP and NP-Hard type of problems 

 

2.3 Combinatorial Optimization Problems 

In Applied Mathematics, a combinatorial optimization problem involves finding an optimal solution given a set of 

feasible solutions that are discrete. As per [8], a discrete-optimization problem is a problem of maximizing a real-

valued objective function f(x), on a finite set of feasible solutions S. This set S arises from a set of 2
E
 (the set of all 

subsets of E), for some finite ground set E, in which case it is called combinatorial-optimization problem. The 

applications of this type of problems are in operations research, machine learning, and artificial intelligence. 
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Discussed in the sections below are some of the well-known combinatorial optimization problems and their 

extensions in terms of dimensionality of the problem.   

2.3.1 TSP 

Travelling Salesman Problem (TSP) is a well-known combinatorial optimization problem. Here, the goal is to find a 

closed tour of minimal length connecting ‘n’ given cities or customer locations. Each city must be visited once and 

only once. The origin of this problem was from Irish Mathematician W.R. Hamilton and British Mathematician 

Thomas Kirkman. But this problem was formulated mathematically in 1930 by Karl Menger in Vienna and Harvard. 

This was later expanded by Whitney and Flood in Princeton [9]. A typical solution to TSP can be seen in Figure 2-3. 

TSP is considered as NP-hard problem in terms of computational complexity [5]. Starting from the solution to 49 

cities in 1954 by Dantzig et al. [10], TSP has come a long way with the recent solution from Cook et al. in 2005 to 

solve 33810 cities instance [10]. This is shown in Table 1. 

 

Table 1: Historical Solutions to TSP provided by various research teams 

Year Research Team Size of Instance 

1954 G Dantzig, R Fulkerson and S. Johnson 49 cities 

1971 M Held and R. M. Karp 64 cities 

1975 P.M. Camerini, L. Fratta,and F. Maffioli 67 cities 

1977 M. Grötschel 120 cities 

1980 H. Crowder and M.W. Padberg 318 cities 

1987 M. Padberg and G. Rinaldi 532 cities 

1987 M. Grötschel and O. Holland 666 cities 

1987 M. Padberg and G. Rinaldi 2392 cities 

1994 
D. Applegate, R. Bixby, V. Chvátal, and W. 

Cook 
7397 cities 

1998 
D. Applegate, R. Bixby, V. Chvátal, and W. 

Cook 
13509 cities 

2001 
D. Applegate, R. Bixby, V. Chvátal, and W. 

Cook 
15112 cities 

2004 
D. Applegate, R. Bixby, V. Chvátal, W. Cook,  

and K. Helsgaun 
24978 cities 

2005  W. Cook et al. 33810 cities* 
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A Linear Programming formulation of TSP as explained in [11] can be represented in the following way. 

Considering the TSP defined on n nodes belonging to set N = {1, 2... n}, arc set E =N x N with travel costs tij ((i,j) ϵ 

E; tii = ∞, ∀ i ϵ N). In a regular TSP, if city 1 is the starting point of the travel, then the ending point is also city 1.  

Some of the other definitions pertaining to the problem formulation are: 

M, which denotes the set of the remaining cities, M = N \ {1},   

S = N \ {n} as the index set for the stage of travel corresponding to the order of visit of the cities in M and  

R = S \ {n-1} 

Let xis (i ϵ M, s ϵ S) be a binary variable (0, 1) that takes the value ‘1’ if city i ϵ M is visited at stage s ϵ S. 

Thus, travel costs considering all travel stages is shown in Eq. (2.2). 
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Figure 2-3: A typical TSP solution and also VRP solution with an unlimited fuel capacity 
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LP Formulation is represented in Eq. (2.3). 

                                                             Minimize 

  
  


Rs Mi iMj

sjisisjTSP xxcZ
}){\(

1,  (2.3)  

                                                             subject to 

 1
Mi

isx   Ss  (2.4)  

 



Ss

isx 1   Mi  (2.5)  

  1,0isx   ;Mi  Ss  (2.6)  

Eq. (2.3) aims at minimizing the total cost of all travels. Constraint (2.4) with (2.6) represents that only one city can 

be visited from city 1 and only one city is visited at each stage of travel. Constraint (2.5) enforces that a given city is 

visited at exactly one stage of travel. The terms in objective function represents that a travel cost is incurred between 

city i and city j if and only if those are visited at consecutive stages of travel.  

 

2.3.2 VRP 

Vehicle Routing Problem (VRP) is closely related to TSP because it consists of many TSPs with common start and 

end cities. In VRP, there is single depot (hence sometimes called single depot vehicle routing problem or SDVRP), 

and ‘k’ vehicles with capacity and distance restrictions. The objective is to find the minimum cost (of minimum 

overall travel distance) vehicle route so that: i) every customer location is visited exactly once; ii) all vehicles routes 

begin and end at the depot; iii) vehicle capacity and distance restrictions are not violated. VRP was first proposed by 

Dantzig in 1959 [4]. Since then, it has been studied extensively and serves as one of the benchmark problems in the 

field of optimization. These problems have influenced the emergence of fields such as operations research, 

polyhedral theory and complexity theory. 

VRP in general can be formulated using Binary - Linear Programming technique. A generalized VRP formulation 

has been provided by Laporte in [21] and Kara in [22] . Here we discuss the formulation for a classical single depot 

vehicle routing problem with a constraint on the vehicle capacity (eg. fuel).  
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Consider a directed graph G = (V,A), where V = {0,1,2,…n} as set of vertices and A = {(i,j) : i,j ϵ V, i ≠ j} as the set 

of arcs. Node 0 represents the depot and remaining n nodes represent the customer points (cities to be visited). 

Hence |V| = n+1. The node set V is clustered into k mutually exclusive subsets where V0 = {0}. There are m 

identical vehicles, each with capacity Q. cij is a non-negative cost associated with each arc (i,j) ϵ A.  

Decision Variable xij can be defined as 

 

 



 


otherwise
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 niqQxqxqqQu iiiiiii ,,2,1,)( 00   (2.15)  
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(2.18)  

Where 
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  jijji qq  ,min  (2.19)  

 

up: Load of a vehicle just after leaving cluster p or unloaded amount from the vehicle just leaving cluster p, 

 p =1, 2… k 

ql: demand of cluster l,  

i.e. kldq
lVi il ,,2,1, 

 

di: demand of customer i,   i = 1,2,…n  

In the above formulation, since the cardinality of cluster is 1, demand of the customer and demand of the cluster are 

the same. Also capacity Q can be the distance constraint on the vehicle due to fuel or other reasons. And cij, the cost 

variable is the distance between the customer i and customer j. Thus the load up of the customer is nothing but the 

difference between total capacity of the vehicle and the distance travelled to reach the customer prior to the current 

customer. Also, demand of the customer is nothing but the distance travelled by the vehicle from the previous 

position to current position. Equations (2.9) - (2.11) represent the degree constraints on the problem. It implies that 

there are ‘m’ leaving arcs from and ‘m’ entering arcs to the home city. Equations (2.13) - (2.14) also represent the 

degree constrains implying that there can only be a single incoming or outgoing arc to a cluster from any other node 

belonging to other clusters except V0. Equations (2.15) - (2.18) represent the well-known subtour elimination 

constraints. 
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Figure 2-4: A VRP solution for 2 vehicle problem 

2.3.3 Variants of VRP: MDVRP, VRPTW 

The common form of VRP is the capacitated VRP (CVRP) wherein a set of vehicles of uniform capacity must visit 

customer places once and only once from a common depot at a minimum transit cost [12].  Multiple Depot VRP 

(MDVRP) is an extension of the CVRP with more number of depots. The objective here is to visit all the customer 

locations once and only once while minimizing the number of vehicles and travel distance. MDVRP can be traced 

back to 1976 when Gillet and Johnson published a paper on Multi Terminal Vehicle-Dispatch Algorithm [13]. In 

this paper, a heuristic algorithm was developed to obtain an approximate solution. Their purpose was to determine a 

set of routes by which vehicles from two or more terminals can service a collection of demand points keeping in 

mind the total distance traveled needs to be minimized. They employed a sweep algorithm where in the strategy was 

to partition the problem to single-terminal problem to significantly reduce the computation time. The solution was 

also extended to satisfy some of the constraints such as the vehicle load and the length of each route.  After this 

paper, much effort has been dedicated by researchers around the globe and many have come up with different 
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methods to solve this problem in an optimal way. [14], [15], [16] are some of the different methods that were used to 

solve MDVRP. In 2005, Lim and Wang [17] proposed a more practical variant of this problem and it was named 

MDVRP with fixed distribution of vehicles (MDVRPFD). They proposed this problem with a bound on the number 

of vehicles in a depot unlike the traditional MDVRP where the limit was unrealizable infinite number of vehicles. 

With an assumption of exactly one vehicle in each depot, they developed a binary programming model to obtain the 

solution and generalized the solution for n number of vehicles in a depot.  The LP formulation of MDVRP as shown 

in [17] is as follows. 

Consider M depots denoted by set D, and each depot k has exactly one vehicle vk. Each vehicle vk has a route Rk. 

There are N customers denoted as set C. The total demand on each route Rk does not exceed the capacity of the 

serving vehicle, Qk. Distance between the points (customers and depots) is ci j(i,,j ϵ C ∪ D). Demands of the 

customers is di (i ϵ C). 

 

 
Minimize   
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ijk 
 

,2,1  (2.25)  

   CjDkixijk  ,,1,0  (2.26)  

The decision variable xijk = 1 iff i immediately precedes customer j on the route Rk (i,jC  D, k  D); 0 otherwise.  

In the above formulation, constraints (2.21) - (2.23) imposes that each customer is visited exactly once, each route is 

served by at most one vehicle and same vehicle enters and leaves the customer respectively. Eq. (2.24) is for the 
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capacity restriction for each vehicle. Eq. (2.25) is for the generalized sub-tour elimination constraint which restricts 

that each vehicle vk has at least one route that leaves each customer set S visited by vk . In this paper, they also 

proposed a new one-stage approach where in the assignment of customers to depots and route calculations were 

done at the same level. VRP with time windows (VRPTW) is also a similar type of problem with an additional 

restriction in terms of time window associated with each customer. The objective here is to minimize the number of 

vehicles used and sum of travel time and waiting time needed to visit all customers.  

 

2.3.4 Min-Max VRP 

There is another important variant of VRP closely related to VRPTW called Min-Max VRP. This problem was first 

formulated Carlsson et al. in 2007 [18].  Unlike the traditional objective of minimizing the tour lengths of the 

vehicles, the purpose of this problem is to minimize the maximum length of a tour in VRP. Carlsson et al. developed 

two different heuristics to solve min-max MDVRP. The first heuristic is a linear programming based technique. 

Using this algorithm, the customers are assigned to depots and TSP routes are generated for each vehicle and its 

respective customers. Second heuristic namely region partition method is also developed which helps in generating 

fast approximate initial solutions. On the basis of a popular BHH theorem (1959) by Beardwood, Halton and 

Hammersley, they show that theoretically there exists a lower and upper bounds to the longest tour length, L, which 

denotes the optimal solution to min-max MDVRP. Using this upper bound, they developed a tour partition heuristic 

which generates a feasible solution for the MDVRP. Building upon this, they developed an asymptotic bound for L 

and they conclude that the optimal solution to min-max MDVRP with uniformly distributed points will numerically 

approach to a value proportional to kn / , which is the value of optimal TSP tour of all customers split by number 

of vehicles, under the constraint. Later they developed two different heuristics to solve the min-max MDVRP.  

The first heuristic was a linear programming based load balancing technique. In this heuristic, it is believed that the 

load on the vehicle must be balanced in terms of the nodes that each vehicle has to serve.  This intuition is valid 

considering the uniform distribution of cities (or nodes). This technique is further enhanced with global adjustments 

and generate near-optimal route with concorde TSP solver.  
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To mathematically formulate this problem, consider ‘n’ customer/delivery points, ‘m’ depot points and a total 

number of ‘k’ vehicles at the depots. All the vehicles are initially located at their respective depots. The vehicles are 

required to visit all customer points and return to the same depot from where they started their journey. The problem 

as stated earlier is to decide the tours of each vehicle so that the maximum distance travelled by any vehicle is 

minimized. Mathematically, the aim is to  

 

 

 

,)( subject to

 Minimize

N
i

S

i
i

STSP



 



 
 

(2.27)  

where N is the set of all customer locations, |N| = n, Si (⊂ N)  is the subset of customers assigned to vehicle  ‘i’ and 

TSP(Si) is the length of the optimal tour for a single Traveling Salesman Problem applied to vehicle i and the 

customer set Si.  

Similarly, the min-max MDVRP can also be formulated in LP framework. Consider uniformly distributed customer 

and depot locations. Initial assumption is depot has exactly one vehicle but this can be generalized later to any 

number of vehicles. Each node Xj is located at (xj, yj) where 1 ≤ j ≤ n and each vehicle Vi is located at (vi, wi) where 1 

≤ i ≤ k. Here ‘k’ is number of depots and ‘n’ is number of customer points. The distance cij between Xj and Vi is 

given by ),(),( iijjij wvyxc   

Consider decision variable xij to be a binary variable indicating if node Xj is assigned to vehicle Vi or not. 

Thus,  
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In (2.29), n/k fraction is assumed as an integer. This can also be generalized any fractional case. 

The second and an intriguing heuristic is based on the region partitioning based method. In this technique, noticing 

that a convex equitable partition yields an even division of points, they divided the service region into a set of 

subregions with equal area and generate good initial solutions by assigning the customer points in the depot region 

to the respective depot. 

 

2.4 Optimization Techniques 

Optimization techniques are the means by which the objective function can be maximized or minimized.  

2.4.1 Traditional Techniques 

The basic optimization problem being unconstrained optimization problems can be solved using Differential 

Calculus techniques. Other simple problems which have equality constraints (=) can be solved using techniques 

such as Lagrangian Multipliers. A bit more complex versions of optimization problems would involve inequality 

(≤ or ≥) relationships for the constraints. These kinds of problems can be mathematically computed using Linear 

Programming techniques. In linear programming technique, the objective function and constraints can be 

expressed as linear function of decision variables. These equations can be iteratively solved using well known 

methods such as simplex method. Integer programming problems, quadratic programming problems are variants of 

Linear programming techniques that can be used to solve some of the constrained optimization problems. These 

solutions are considered are ‘exact’ algorithms to solve optimization problem. As the current research is focused on 

combinatorial optimization problems such as TSP and VRP, it is important to know some of the previously 

attempted exact algorithms to solve these problems. In [20] and [21], Laporte covers various exact algorithms that 

were attempted to address TSP and VRP. For TSP, listed are some of the algorithms. a) Integer linear programming 

formulations [23] b) the branch-and-bound algorithms [24] c) the shortest spanning tree bound and related 

algorithms [25][26] d) the 2-matching lower bound and related algorithms [27][28]. For VRP, Laporte discusses 

following exact algorithms. a) The k-degree center tree and a related algorithm [29], and b) A three-index and a two-

index vehicle flow formulation [30].  
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2.4.2 Approximation Algorithms 

To counter the difficulty in generating exact solutions for NP-hard problems, approximate algorithms are developed 

which are suboptimal, for example within 2~3% of optimal solution. These algorithms are the methods through 

which a set of approximate solutions are recognized for an optimization problem defined in 2.1. Some of the initial 

approximate solutions for NP problems such as Subset-Sum, Bin-Packing, Maximum Satisfiability, Set Covering, 

Graph Coloring, and Maximum Clique can be seen in [19]. To solve combinatorial optimization problems such as 

TSP and VRP, plenty of approximation algorithms have been used. In [20] and [21], Laporte discussed various 

approximate algorithms that were used to solve TSP and VRP respectively. Here is a brief overview of some of 

them. He divided the heuristic or approximation algorithms into three classes: (i) tour construction procedure, (ii) 

tour improvement procedure, and (iii) composite algorithms. In tour construction, TSP solution is built by choosing 

next vertex at each step. In tour improvement procedure, the solution is improved by performing various exchanges. 

Composite algorithm would involve combining these two. Some of the tour construction procedures which the paper 

deals with are: a) the nearest-neighbor algorithm [31] – in this technique, next vertex is chosen based on the decision 

which is most advantageous; b) Insertion algorithms [31] – choose the third vertex based on some criteria like vertex 

yielding the least distance increment, vertex closest to the current tour; c) The patching algorithms[32] – this 

employs the notion that the assignment relaxation of the TSP provides a near optimal solution if the elements cij in 

cost matrix ‘c’ are uniformly distributed. Some of the tour improvement procedures that Laporte discusses include: 

a) the r-opt algorithm [33] – in this case, for any given tour, any ‘r’arcs are tentatively removed from the tour and 

they are reconnected in all possible ways to find a better solution. This strategy has been used in the proposed 

research and has been explained in the form of 2-opt heuristic route improvement strategy under Chapter 3. b) 

Simulated annealing [34] – this technique is used in analogy to the annealing technique used to obtain material 

stability. Here, the objective is to gradually perform changes to an initial solution in order to obtain minimum cost 

solution. c) Tabu search [35] – in this method, a list called ‘tabu list’ is constantly updated by inserting those 

examined solutions that are forbidden or suboptimal in order to avoid recycling of these sub-optimal solutions. 

Composite algorithms utilize both tour building and tour improvement strategies. In the current proposed research, 

composite algorithm has been used to achieve an optimal solution. Some of the VRP approximation algorithms 
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which are discussed in Laporte’s paper [21]  are a) Clark and Wright algorithm [36] – in this method, vehicle routes 

start with a vertex and the depot. At each iterative step, two routes are merged based on the largest saving that can 

be generated. b) The Sweep algorithm [37] - here they represent the vertices by their polar coordinates (i,i) where 

i is the angle and i is the ray length. By assigning the initial angle of 0
o 

to an arbitrary vertex and calculating the 

remaining angles,
 
this algorithm ranks the vertices in increasing order of their i. c) The Christofides-Mingozzi-Toth 

two phase algorithm [38] – this algorithm solves CVRP by constructing algorithm in two phases namely sequential 

route construction and parallel route construction.  

In late 90s, biologically inspired algorithms were published motivated by some of the naturally observed phenomena 

such as intelligence of swarm of birds in synchronized motion or swarm of ants in foraging etc. The sections which 

follow discuss in detail the theory and background of some of these algorithms as the proposed thesis attempts to 

solve the min-max MDVRP problem using one of the swarm intelligence techniques called Ant Colony 

Optimization. Therefore it is necessary to know the basics of these algorithms.  

 

2.5 Swarm Intelligence Based Algorithms 

Swarm intelligence is term used to describe a phenomenon associated with the naturally occurring intelligent 

behavior of biological species. This term was first used by Gerardo Beni and Jing Wang in [39]. Some of the 

behaviors like decentralization, cooperation, self-organization are typical for species such as ants, birds, and 

bacteria. These behaviors can be applied to the field of artificial intelligence to develop intelligent algorithms that 

can be applied to solve certain optimization problems in many fields. Some of the notable algorithms are Particle 

Swarm Optimization, Artificial Immune Systems, and Ant Colony Optimization. In [40], Bonabeau et al. applied 

optimization algorithms on businesses such as Southwest airline and Unilever in which they utilized social behavior 

of insects in order to optimize the cargo handling and factory equipment scheduling respectively. According to 

them, the term swarm intelligence can be paraphrased in the following way – “Social insects work without 

supervision. They achieve teamwork by individual interactions and with no connection to a non-neighbor. But 

collective behavior emerged from this group can be used to find efficient solutions to various problems and this 

emergent behavior can be termed as Swarm Intelligence”. In [41], the authors enlist some common properties found 



28 

 

in the swarm intelligent systems. They are a) system composes of many relatively homogenous individuals b) simple 

rules of interaction among individuals with each other or via the environment (stigmergy), and c) Absence of a 

coordinator or an external controller. Swarm intelligence has been applied in various fields such as airline cargo 

scheduling, crowd simulation in movies, communication networks, truck dispatching and many more. In fact, in the 

paper [40], it is said that applications of swarm intelligence are limited only by the imagination. This thesis uses one 

of swarm intelligence techniques called Ant Colony Optimization which originates from Ant System to solve the 

min-max MDVRP.  In what follows, a brief explanation of various concepts involved in Ant Colony Optimization is 

provided.  

2.5.1 Ant System 

The concept of Ant System was first introduced by Dorigo et al. in [42]. The basic idea underlying this ant based 

algorithm is to use a positive feedback mechanism, based on an analogy with the trail laying trail following behavior 

of some species of ants and some other social insects, and to reinforce those portions of good solutions that 

contribute to the quality of these solutions [41]. Since the algorithm involves simple rules of each ant with 

decentralized control, this technique is computationally efficient and fairly easy to implement. Some of the desirable 

characteristics of these ant systems as highlighted by [42] are versatility, robustness and decentralization. The search 

activity is carried using agents called ants. It has been observed in ant colonies that ants, in presence of multiple 

food sources, eventually pick one that is optimal in some manner such as proximity to the nest or the quality of food. 

This is an interesting observation that was studied by ethologists and it was proven that the ants leave a trail that 

consists of pheromone, a chemical which evaporates as a function of time. These pheromones act as a medium of 

communication between individual ants. An isolated, randomly moving ant encountering this previously laid 

pheromone trail will choose this path with high probability. Thus the more they travel along this path, the more 

pheromone is deposited and hence reinforcing the pheromone concentration. In [42], Dorigo et al. also showed this 

idea of ant foraging experimentally in analogy to the short distance problem. Figure 2-5 and Figure 2-6 explains the 

analogy between the real ants and the corresponding simulated ants’ scenario. Essentially, the idea behind this 

algorithm is that, at any given instance, the probability of an ant choosing a path out of many paths will be based on 

path chosen by its preceding ants. This idea has been efficiently used in developing algorithms for various 
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combinatorial optimization problems such as Travelling Salesman Problem (TSP), Quadratic Assignment Problem 

(QAP), Job-Scheduling Problem, Vehicle Routing Problem etc. Considering the relevancy to the proposed thesis, a 

brief explanation of Ant System/Ant Colony algorithm that was used to solve TSP and VRP has been provided in 

section 2.6.  

 

 

      (a)                                          (b)                                        (c)                     (d) 

Figure 2-5: Ant Foraging Behavior 

(a) Ants moving from Start point (S) to Destination (D) (b) An obstacle is introduced (c) Ants try to find a 

path avoiding the obstacle (d) All ants converge to the same path 
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                   (a)                                      (b)                                        (c)                                         (d) 

Figure 2-6: Probabilistic Representation of Ant Foraging Behaviour in terms of Pheromone Concentration 

(a) Hypothetical distances from A-O1 is 0.5, and A-O2 is 1. (b) At t=0, 50 ants choose either of the paths AO1 

or AO2 with equal probability (c) At t=1, 35 ants choose path AO1 as the pheromone concentration  is more 

(d) At t = large, all the ants choose this path 

2.6 Application of Ant System based Algorithms to solve TSP and VRP 

2.6.1 Application to TSP  

Swarm intelligence using the foraging strategies of ants was first applied to TSP [43]. This optimization technique is 

called ant-colony optimization. In this technique, as explained in the earlier section, artificial ants search the solution 

space. Artificial ants are slight different than biological ants. For instance, artificial ants are endowed with working 

memory which can be used to memorize the already visited cities. This memory MK is updated after every time step. 

In the ant colony system, according to Dorigo et al., an ant ‘k’ in city ‘r’ chooses the city ‘s’ based on three 

variables. First, the tabu list, which is nothing but the list of cities that are not visited: the set of cities Ji
k 

that ant k 

still has to visit when it is at city ‘r’. Second is visibility, which represents the local information and is the heuristic 

desitability to visit city ‘s’ when in city ‘r’. Third, pheromone trail φ(r,s) at time ‘t’ for each edge measure the 
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learned desirability to visit city ‘s’ when in city ‘r’.  Following probabilistic formula shown in Eq. (2.32) is 

universally applied to different applications with small modifications.  

 

 
     ),(),(maxarg ururs    if 0qq   

else s = S 

(2.32)  

 

where ),( ur is the amount of pheromone trail on edge (r,u), ),( ur is a heuristic function, which is inverse of 

distance between cities r and u, β is a parameter which weighs relative importance of pheromone trail and distance, 

q is a random value, q0 is a parameter (0≤q0≤1). Function argmax in (2.32) represents the exploitation which favors 

transition towards cities that are at shorter distances and the edges which have large amount of pheromone. Biased 

exploration is represented by the ‘else’ term in (2.32).  The factor β represents weightage of heuristic desirability in 

comparison to pheromone concentration. The parameter q0 determines the relative importance of exploitation versus 

exploration. S is a random variable selected according to the probabilistic distribution function shown in Eq. (2.33) 
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(2.33)  

                        

where pk(r, s) probability with which ant k chooses to move from city r to city s.   

Pheromone trail is updated locally as well as globally. Global updating is required in order to reward edges that 

belong to short tours. It is similar to reinforcement learning where the better solutions get reinforced. Global 

pheromone update formula is given by Eq. (2.34) 

 ),(),()1(),( srsrsr    

where 
1)_(),(  tourshortestsr  

 

(2.34)  

 

Local trail updating is similar to the pheromone evaporating behavior. It is applied in order to avoid greedy search 

and to restrict the ants from choosing the strongest edge always. This is given by the formula as shown in Eq. (2.35). 
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where 0 is a parameter. 

 

(2.35)  

 

In general, any ant system algorithm typically consists of heuristic desirability, probabilistic transition rule (ant 

interactions), and global and local pheoromone update rule. Using these functions, in [43], Dorigo et al. solves the 

TSP with much optimized results upto 1577-city problem. In another paper by Dorigo et al. [44], they share the 

complete detailed algorithm that was used to solve the TSP. This algorithm forms the basis of the proposed thesis in 

order to solve VRP and consequently min-max MDVRP. In this paper, they analyze the computational performance 

in comparison with different algorithms such as simulated annealing, elastic net, self-organizing maps etc. Based on 

the performance analysis, a disadvantage they found is getting stuck in local minima. This issue has been addressed 

using several approaches such as introduction of randomness in choosing the next city as well as via mechanisms 

such as r-opt techniques [33] as explained in 2.4.2.  These 2-opt and 3-opt techniques are explained in detail in 

section 3.3.2 of this thesis. Also they mention these heuristics in order to classify ant colony system which according 

to them is tour constructive heuristics and these algorithms such as r-opt techniques are tour improvement strategies. 

This paper brings out the idea of merging tour constructive and tour improvement heuristics in order to obtain an 

optimal solution. In [45], Stutzle clearly distinguishes the differences between Ant System and Ant Colony 

Optimization techniques. Also, he explains couple of tour improvement strategies such as Candidate lists and 

Fastening the trail update.  Stutzle quotes three versions of Ant System (AS) when it was first introduced. They are 

ant-density, ant-quantity and ant-cycle. In ant-density and ant-quantity, the pheromone is updated after every ant 

transition from one city to another. But in ant-cycle, the pheromone update is done only after the ants construct the 

complete tour and the amount of pheromone deposited is a function of the tour quality. Since ant-cycle performed 

better compared to the other two, this was eventually called as Ant System technique. Ant Colony System (ACS or 

ACO) is an improvement to the performance of Ant System. The improvement is in terms of the pheromone update. 

In ACO, the concept of elitist strategy was introduced which was already discussed at the beginning of this section 

called global pheromone update rule. The notion is to reinforce those set of arcs that belong to the best tour since the 

start of the algorithm. Thus Stutzle in [45] bring out three major distinctions that can be marked from AS to ACO. 

First, an aggressive action rule of ACS. Second, the pheromone-update methodology. Third, pheromone 
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evaporation, which is proportional to time, for all the arcs.  

Even though the improvisation techniques will be in discussed in detail in further sections, a brief explanation of two 

improvisation strategies dealt in this paper [45] can be provided at this point of time. Candidate lists, for every city, 

typically consists of a fixed number of neighboring cities in increasing order of distances. Instead of choosing a next 

city from an entire set of cities, using this list for choosing a city from the current city will considerably improve the 

performance Another strategy called fastening the trail update is application of pheromone evaporation to the arcs 

that connect from city ‘i’ to i’s candidate list. This reduces the computational time from order O(n
2
) to O(n).  

 

2.6.2 Application to VRP 

ACO algorithm was applied to solve SDVRP by Bullnheimer et al. in 1997 [46], where a hybrid ant system 

algorithm was presented and then improved using specific information (savings, capacity utilization). In their 

approach, the artificial or simulated ants construct vehicle routes by successively choosing the next cities using a 

probabilistic transition rule similar to TSP. If the probability ‘p’ value for transition to a particular j
th

 city from the i
th

 

city is higher, then chances of that city getting chosen as the next city is more. In 2004, Bell and McMullen [47] 

developed multiple ant colony method to solve the vehicle routing problem. This method used separate specialized 

ant groups with unique pheromone deposits for each vehicle to solve the VRP. This separation was intended to 

differentiate paths typically used in first vehicle route from those used by subsequent vehicles. It is believed that this 

technique is more useful when the size of the problem and the number of vehicles required increase.  Also, their 

paper reinstated the route improvement strategies such as 2-opt heuristic and candidate list technique which were 

initially proposed by Bullnheimer et al. The same has been applied in this thesis in obtaining more accurate results 

for the VRP solution. In [48], Rizzoli et al. studied ACO application to variants of VRP such as CVRP, VRPTW, 

TDVRP and DVRP. They presented two case studies for VRP with time windows. And finally they showed the 

application of ACO to industry size problems for a super market chain in Switzerland and Pick-up and Delivery 

problem for an industry in Italy. They showed the improvement in vehicle route performances by ACO application 

and thus proving that this is a process for strategic planning in real world applications. They used an interesting 

heuristic desirability function based on the savings algorithm in [49]. This is given by Eq. (2.36) 
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where g and f are parameters. 

 

(2.36)  

2.7 Introduction to Computational Complexity 

Study of computational complexities of different techniques to solve these combinatorial optimization problems is 

by itself an important area of research. To give a basic example of the determination of computational complexities, 

let us consider a TSP example. Through a brute force method, the possible number of tours and thus the order of 

complexity is shown in the below table.  

 

No. of cities Possible number of tours 

3 1 

5 12 

10 181440 

15 43589145600 

35 147616399519802000000000000000000000000 

50 304140932017134000000000000000000000000000000000000000000000000 

 

Through is method as we can observe that the complexity is of the order of O(n!). Similarly, It can be shown that the 

use of dynamic programming method to calculate TSP is of the order of O(c
n
) c>1. But the application of ant colony 

method to TSP reduces the number of function evaluations to O(r*n
2
). This is because the objective function 

considered for every local search in terms of Ant Colony Optimization is linear, which means the order of 

complexity is O(n), and this kind of search is carried out n times because of n ants(considering no. of ants = no. of 

cities) which makes it order O(n
2
) complexity. Considering r iterations, the number of function evaluations is at 

most by a factor of O(r*n
2
). It is interesting to analyze the computational complexity of ACO techniques for this 

min-max MDVRP. A thorough study in the similar area was conducted by Neumann et al. in [59]. Here they show 

the analysis of computational complexities of simple ACO algorithms applied to variants of TSP. 
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Chapter 3. Approach 

3.1 Min-Max SDVRP 

Ant colony optimization technique is used in this research to solve the min-max MDVRP. The approach is based on 

the ant colony optimization method used by Bullnheimer et al. [46] in solving the traditional SDVRP. The 

traditional SDVRP can be represented by a complete weighted digraph G = (V,A,d) where V = {v0,v1,..,vn} is a set of 

vertices and  A =  {(vi,vj) : i ≠ j } is a set of arcs. The vertex v0 denotes the depot; the other vertices of V represent 

cities or customers. A cost variable is associated with each arc called dij that can represent distance or travel time 

between city i and city j. The aim is to find minimum cost vehicle routes. Artificial ants searching the solution space 

simulate real ants searching the environment; the objective value corresponds to the quality of food sources and an 

adaptive memory corresponds to the pheromone trails. To aid the search procedure through a set of possible 

solutions, the artificial ants are provided with local heuristic functions. Ant colony algorithms typically use some 

parameters that include heuristic desirability, pheromone updating rule, and probabilistic transition rule as explained 

in 2.6.1. The definitions of these parameters are problem specific and are critical to solve the optimization problem 

in consideration. For the min-max SDVRP, the definitions of these parameters are similar to the TSP problem. The 

heuristic desirability of visiting city j from city i (or the visibility) is represented by ηij and is equal to reciprocal of 

dij as shown in Eq. (3.1). 
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ij
d
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  (3.1)  

 

Another heuristic desirability function that can also be implemented to solve this problem is given by Eq. (3.2) 

 

 jiijjiij ddfdgdd 0000   
(3.2)  

Where di0 is the distance between depot and city i. g and f are optimizing parameters. 

The probabilistic transition rule is indicated by pij which represents the probability of choosing city j from city i, and 

is given by Eq. (3.3) 
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(3.3)  

  

Here,  ij is the pheromone concentration on path from i to j, jj vVv : feasible cities, α and β represent the 

biases for pheromone trail and visibility respectively, and they represent parameters to weigh pheromone 

concentration (which represents learnt knowledge for more global solution) with respect to visibility (which 

represents local heuristic desirability) in the transition rule. 

The pheromone update rule is given by Eq. (3.4) 
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The details of individual terms of Eq. (3.4) are explained in the algorithm in the Table 2  

The artificial ants construct vehicle routes by successively choosing the next cities using probabilistic transition rule 

shown in Eq. (3.3). If the probability ‘p’ value for transition to a particular j
th

 city from the i
th

 city is more, then the 

chances of that city getting chosen as the next city is high. During every transition, the tour length is calculated and 

whenever the choice of next city would lead to an infeasible solution, i.e., if the tour length exceeds the vehicle 

distance constraint (the maximum distance that a vehicle can travel) L, then the depot is chosen as the next city (so 

that the tour of that vehicle is finished) and a new tour is started for a new vehicle. The vehicle capacity L is a 

critical parameter in finding out the min-max solution to the proposed problem. This parameter, as proven by 

Carlsson et al. in [18], is bounded between two values as per the following lemma: 

Lemma 1: For a general planar graph representing the VRP,  
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In Eq. (3.5), N denotes the set of customer points, D denotes set of depots, k denotes number of vehicles in a depot, 

d(A,B) denotes the largest distance between an arbitrary pair of points in two different sets A and B as shown in Eq. 

(3.6), i.e.,  
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(3.6)  

 

A proof of the above lemma is provided in reference [18].        

 Since L represents the distance constraint, it is the maximum distance travelled by a vehicle. The approach here is 

based upon finding the least value of L, called L*, that will still lead to a valid solution of the traditional SDVRP. 

This solution of traditional SDVRP will also be the solution of the min-max SDVRP. Thus this constraint on L acts 

as a critical parameter in finding out the in finding out the min-max solution. Solving the min-max SDVRP boils 

down to finding the minimum L, called L*, that can still solve the traditional SDVRP using the existing vehicles. A 

high level description of the algorithm used to solve the min-max SDVRP is shown in Table 2. Explained in Table 

2, is the proposed algorithm to obtain an approximate solution to min-max SDVRP. It may be mentioned that text 

between /* and */ represent the comments explaining the steps. 

 

Table 2: Ant Colony Optimization Algorithm to Solve the Min-Max SDVRP 

Ant Colony Optimization Algorithm to Solve the Min-Max SDVRP 

/*Initialization*/ 

1. V = set of x,y coordinates of the cities, V0  = x,y coordinate of the depot 

2. L_max =  VVd
k

VTSP
,2

)(
0  

3. L_min = 
k

VVTSP )( 0
 

4. While (L>L_min) 

a. For every edge (i,j) do 

 τij(0) =  τ0 

End For 
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/*Main Loop*/ 

b. For t = 1 to t_max do 

Initialize Length_tour and tour T
k
 

For k = 1 to m do 

   Build tour T
k
 (t) by applying n - 1 times the following step 

    Choose the next city j with probability, 

0     

 if   
][][
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    Calculate length of the tour Length_tour 

               If Length_tour + d0(j) > L 

               Choose depot as the next city 

               Calculate the Length_tour accordingly 

               End If 

End For 

Find minimum of Length _tour and tour T 

If an improved tour is found then 

 Update it as T_opt and L_opt 

End If 

Count the number of vehic, no_of_vehic based on number of times the ant has visited depot in the tour T_opt 

and also find tour of each vehicle, L_opt_vehic 

Using 2-opt Heuristic, if possible Obtain a better T_opt and L_opt 

For every edge (i,j) do 

Update pheromone trails by applying the rule: 
*

1
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   End For 

c. If no_of_vehic ≤ k, where k is the number of vehicles in the depot 

L = L – δL and go to ‘b’ until no_of_vehic = k+1 and the respective L is L* 

Else L = L + δL 

End If 

End While 

5. Print T_opt, L_opt, L* 

6 .Stop 

α = 1, β = 5, ρ = 0.25, Q = 100, τ0 =10
-6

, σ = 5 

3.2 Extension of min-max SDVRP to min-max MDVRP 

The approach used in this thesis to solve the min-max MDVRP is to decompose the problem into multiple SDVRPs 

and use the method proposed in 3.1 to solve those SDVRPs. The decomposition is carried out by dividing the region 

into equitable convex partitions. Once equitable partitions are found, solving min-max MDVRP reduces to solving 

min-max SDVRP for each partitioned region. However, it is necessary to achieve the partitioning in a way such that 

solving min-max SDVRP for partitions would correspond to solving the complete min-max MDVRP. In order to 

show that,  first present a result proven by Beardwood et al. in [50]  as a lemma below which can be used for 

arguing that, under certain assumptions, partitioning the polygon (convex polygon hull of the entire domain of 

customer points) equally would lead to an optimal partitioning for our problem.    

 

Lemma 2: If Xi ,1≤ i ≤ ∞ are independently and identically distributed (i.i.d) random variables with bounded support 

in R
d
, then the length Ln under the usual Euclidean metric of the shortest path through the points {X1, X2,….Xn} 

satisfies 

 
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d
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n dxxf
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L
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)1( )(  (3.7)  

 

In Eq. (3.7), f(x) is the density of the absolutely continuous part of the distribution of the Xi, and βTSP,d is a positive 

constant that depends on d but not on the distribution of the Xi.  
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Based on the above lemma, we can deduce a proof for our 2-dimensional problem [51]. Assuming the cities are 

uniformly distributed and the function Σf(x) dx is the area of the partitioned subregion A, Ln for our problem is the 

route length that was calculated and it is apparent with a few substitutions (d=2, n = ‘k’ no. of cities), that route 

length of each vehicle is asymptotically proportional to the square root of the area of subregion.  

Mathematically it can be represented as shown in Eq. (3.8), 

 2

1

2

1 A

n

L
TSPd

n   (3.8)  

Thus establishing an asymptotic relation between tour length and area, it is appropriate to divide the area into 

equitable partitions as the lengths of optimal tours in each partitions would approximately be the same. Because, for 

example, if an area of subregion (A1) is larger than subregion (A2), then route length (L1) of that area A1 becomes 

longer and hence the time taken to cater to that area increases which should not be the case since it is a min-max 

problem. Hence, the most optimal heuristic is to divide the area into equal partitions.  

3.2.1 Region Partitioning 

A brief overview of the studies that have been carried out in finding equitable partitions of a region is presented in 

this section. This is pertinent as our solution implements these methods in generating a solution to the min-max 

MDVRP. In 1942, Stone and Tukey [52] proposed a basic partition theorem called Ham Sandwich Theorem (HST) 

which states that “given n measurable objects in n-dimensional space, it is possible to divide all of them in half with 

respect to their measure with a (n-1)-dimensional hyperplane”. In a computational geometry perspective as proposed 

by [53], a discrete HST can be interpreted as follows. For a planar case of finite sets of red and blue points, there 

exists a line dividing both red and blue points into sets of equal size. 

A generalized Ham Sandwich theorem was proven by Bespamyatnikh et al. in [54]. In this paper, they demonstrated 

that given gn red points and gm blue points in the plane in general position, there existed an equitable subdivision of 

the plane into g disjoint convex polygons each of which contains n red points and m blue points. The Ham Sandwich 

theorem is a subset of this problem given the specific case of g=2.  Other notable partitioning techniques that has 

been discussed in [60] are a) Triangulation method, b) Hertel-Mehlorn(HM algorithm, c) Chazelle’s complex cubic 

algorithm. Although these methods are relevant, the most relevant method to solve the proposed thesis was chosen 
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from Carlsson’s region partitioning method. On the basis of the generalized Ham Sandwich Theorem, Carlsson et al. 

developed an algorithm to find equitable convex partitions in a polygon [51]. This problem was addressed with a 

motivation to obtain a solution to the MDVRP. Region partition is a key step in this vehicle routing problem as the 

customers need to be allocated to vehicles in a load balancing manner. For a min-max type of a problem, since the 

travel times of the vehicle has to be minimum in order to obtain optimal solution, partitioning the polygon equitable 

was the primal factor. 

Going back to our step of partitioning the given area, based on the technique used by the Carlsson in [51], we have 

the following important assumption: customer points in the 2-d plane are uniformly distributed. A well-known 

partitioning method in the field of computational geometry is the Voronoi diagram. The method in particular is the 

Centroidal Voronoi Tessellation. Here, given points are separated based on the relative closeness/density and a 

centroidal point is calculated and a hyperplane is drawn by considering the fact that the set of points that are closer  

 

Figure 3-1: A convex equitable partition for a case of 10 depots 
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to centroid come under one voronoi cell. In our case these cells can be considered as subregions. But the drawback 

of this method is that it does not always divide the area into equal partitions. And if the partitions are not of same 

area, then we have already proved that it will be a suboptimal solution. Hence we implement a different method that 

was proposed by Carlsson et al. This method uses an approximation algorithm to find the location of partition by 

performing binary searches over the given set of depot points and customer points [18]. Based on this method any 

given polygon can be partitioned so that 

a) All the partitions are convex polygons. 

b) All the partitions contain exactly one depot 

c) All the partitions have equal area 

A sample figure representing a partitioned region that was obtained using the above method is shown in Figure 3-1.  

 

3.2.2 Min-Max MDVRP Algorithm 

Explained in Table 3 is the proposed algorithm to obtain an approximate solution to min-max MDVRP. It may be 

mentioned that text between /* and */ represent the comments explaining the steps. Also, the subroutine 

sdvrp(V,V0) is the subroutine representing the min-max SDVRP solution shown in Table 2. 

 

Table 3: Ant Colony Optimization Algorithm to Solve the Min-Max MDVRP 

Ant Colony Optimization Algorithm to Solve the Min-Max MDVRP 

/*Inputs*/ 

1. cust_points = get_custpoints()  /*set of x,y coordinates of the cities */ 

2. depot = get_depotpoints()    /*set of x,y coordinates of the depots*/ 

/*Generate convex hull*/ 

3. poly_points = [cust_points; depot]   /*set of combination of depot and cust_points*/ 

4. poly_vertices = convhull(poly_points) /*get the vertices of the convex hull using convhull function*/ 

/*Region Partitioning using Carlsson algorithm*/ 

5. subregions = region_partition(poly_vertices,depot) /*get the vertices of the partitioned polygon and also get the 
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depot points corresponding to these set of subregion vertices*/ 

/*Main Loop*/ 

no_of_depots = size(depot) 

6. For i = 1 to no_of_depots do 

IN = inpolygon() /*assign the cust_points that are in partition i to depot i, basically check the points if it 

inside or outside the polygon which is in focus*/ 

V = cust_points(IN)  /*V is the customer points that are inside region ‘i’*/ 

V0 = depot(i)  /*depot(i) corresponds to the x,y coordinate of the i
th

 depot*/ 

/*Generate the min-max SDVRP tour and calculate optimum tour length and optimum vehicle tour for each 

vehicle*/ 

[opt_vehic_tour opt_tour_length] =  sdvrp(V,V0) 

End For 

/*Plot the Vehicle Tours*/ 

7. For i = 1 to no_of_depots do 

For k=1 to no_of_vehic do 

plot() /*Plot the vehicle tour*/ 

End For 

End For 

 

3.3 Tour Improvement Strategies 

3.3.1 Candidate List 

Candidate list technique was first shown by Bullnheimer et al. in [55]. In this technique, a list of cities in the 

increasing order of distance from the current city will be assigned to each city. Only the closest cities will be 

included in the candidate list and are made available for selection of the next city to be visited in the route.  
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Figure 3-2: Candidate List Technique 

Ant in City ‘A’ can choose City ‘C’ which is in City ‘A’s candidate list, while ‘NC’ is not in candidate list 

An example is provided in Figure 3-2, where the candidate cities are marked with red circles for a current city A. 

Hence an ant in the city ‘A’ can’t choose city ‘NC’ which is far away from the city ‘A’ unlike city ‘C’. This is a 

logical assumption as it is most unlikely that an ant will choose city ‘NC’ in building the route. Usually, the 

candidate list size will be set to [n/4] where ‘n’ is the total number of customers. This application of candidate list 

route improvement technique has two advantages. First, the calculation time is less because the probability 

calculation for all the cities is not necessary. Second, the solution quality is improved because selection probabilities 

are no longer undermined by highly unlikely customers. In [48], Bell et al. experimented with different candidate list 

sizes and study the impact of the selection size with respect to the problem size.  
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3.3.2 r-opt heuristic 

This tour improvement strategy was shown by Lin et al. in [56]. They implemented a local exchange procedure after 

a locally optimum tour is found. This technique is commonly called r-opt heuristic and ‘r’ can be 2, 3... In this 

thesis, 2-opt heuristic is used wherein all possible pairwise exchange of cities are made in order to find any better 

solution.  

 

Figure 3-3: Vehicle routes in a typical VRP solution and sequential local exchange procedure 

For example, consider Figure 3-3 and say for 1
st
 vehicle the optimal tour obtained using ant colony optimization 

technique is D-1-2-3-4-5. This 2-opt heuristic technique performs a sequential exchange of the cities and calculate 

the distances for all the pairwise permutations like for the set D-1-2-3, distances for D-1-3-2, D-2-3-1 and D-3-2-1 

are calculated and if an overall improvement of tour length is obtained, the respective tour is used as an optimal tour. 

This adds greatly to the number of combinations that are explored by ant colony search technique and can be used in 

finding the best solution before applying the pheromone update rule.  
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Chapter 4. Results and discussions 

A MATLAB based program was developed to implement the proposed solution for min-max variant of SDVRP and 

MDVRP. The proposed algorithm was verified using a number of simulations. In this chapter, results are presented 

starting from min-max SDVRP solution and extending to min-max MDVRP solution. To validate the results 

obtained, a comparison with the existing method proposed by Carlsson et al [18] has been carried out. A MATLAB 

program that implements the Carlsson’s Linear Programming based algorithm is freely available over the internet 

[57]. Going forward, this Carlsson’s Linear Programming based method is acronymically mentioned as LP based 

method. It may be noted that their program does not work for 2 vehicle problems, and hence the results provided 

here do not include their results for 2 vehicle problems. 

4.1 Min-Max SDVRP Results 

To demonstrate the performance of our algorithm, we present results from three simulated scenarios: i) Scenario 1 

with 15 cities; ii) Scenario 2 with18 cities; and iii) Scenario 3 with 25 cities. In each of these scenarios, the number 

of vehicles varies from 1 to 4/5. The second set of scenarios has no. of vehicles fixed: (iv) Scenario 4 with 150 cities 

and 7 vehicles; and (v) Scenario 5 with 300 cities and 13 vehicles. 

Figure 4-1 shows the solution obtained for scenario (i) and the comparison in terms of distance with LP based 

method has been made in Table 4. Figure 4-1a was obtained when the vehicle distance constraint (the distance it can 

travel) was L_max. This particular case is equivalent to TSP because there is only one vehicle involved with a 

capacity more than TSP. The same can be observed through the results obtained. The distance travelled by that 

vehicle is the TSP distance which is 323.59. Figure 4-1b was obtained when the number of vehicles (no_of_vehic) 

was set to 2. Here the L* was found to be 230. In this case, vehicle 1 travels 173 units of distance, while vehicle 2 

travels 205 units of distance with the total distance travelled being 378. Figure 4-1c was obtained when the number 

of vehicles was set to 3. In this case, L* obtained was 180. The total distance travelled, however, increases to 427 

from 378. Here, vehicle 1 travels 173 units, vehicle 2 travels 164 units, and vehicle 3 travels 89 units. Figure 4-1d 

was obtained when the number of vehicles was set to 4. L* obtained in this case was 170 with vehicle 1 travelling 

154 units, vehicle 2 travelling 89 units, vehicle 3 travelling 164 units, and vehicle 4 travelling 112 units. 
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Figure 4-1: Results obtained using the proposed ant colony based approach for Scenario 1 (1 Depot 15 City 

problem) 

Figure 4-2 show the corresponding results obtained from LP based method. Figure 4-2a shows the 1 vehicle case 

and it can be observed that it is same as Figure 4-2a which is nothing but the TSP solution and the total distance 

being TSP length which is 323.59 units. Figure 4-2b shows the 3 vehicles case where the lengths traversed by 

vehicles are: vehicle 1: 178 units, vehicle 2: 201 units, and vehicle 3: 136 units Hence, total length is 515 and 

maximum length being 201 which is of vehicle 2. Figure 4-2c shows the 4 vehicles case. The lengths traversed in 

this case are vehicle 1: 143 units, vehicle 2:  211 units, vehicle 3:  101 units and vehicle 4: 133 units. Thereby, total 

length is equal to 588 units and maximum length is 211 units. Table 4 compares the results obtained from the 

proposed ant colony based method with respect to the LP based method. 
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Figure 4-2: Results obtained using LP based approach developed by Carlsson et al. in case of Scenario 1 (1 

Depot 15 Customer problem) 

 

Table 4: Comparison of Ant Colont Based and LP Based technique to solve min-max SDVRP for Scenario 1 

No. of Vehicles Distance Travelled                               

(Ant Colony Based) 

Distance Travelled                         

(LP Based Method) 

1 Vehic 1 = 323.59* Vehic 1 = 323.59 

   

2 Vehic 1 = 173  

Vehic 2 = 205** 

   

3 
Vehic 1 = 173** Vehic 1 = 178 

Vehic 2 = 164 Vehic 2 = 201** 

Vehic 3 = 89 Vehic 3 = 136 

   

4 

Vehic 1 = 154 Vehic 1 = 143 

Vehic 2 = 89 Vehic 2 = 211* 

Vehic 3 = 164** Vehic 3 = 101 

Vehic 4 = 112 Vehic 4 = 133 

* denotes the TSP solution for the problem  

** denotes the maximum distance travelled in a set of vehicle routes 
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Table 5: Comparison of Ant Colont Based and LP Based technique to solve min-max SDVRP for Scenario 2 

No. of Vehicles Distance Travelled                               

(Ant Colony Based) 

Distance Travelled                         

(LP Based Method) 

1 Vehic 1 = 340.14* Vehic 1 = 340.14 

   

2 Vehic 1 = 258**  

Vehic 2 = 189 

   

3 
Vehic 1 = 135 Vehic 1 = 184 

Vehic 2 = 219** Vehic 2 = 284 

Vehic 3 = 197 Vehic 3 = 229** 

   

4 

Vehic 1 = 135 Vehic 1 = 168 

Vehic 2 = 189 Vehic 2 = 181 

Vehic 3 = 183 Vehic 3 = 213** 

Vehic 4 = 197** Vehic 4 = 198 

* denotes the TSP solution for the problem  

** denotes the maximum distance travelled in a set of vehicle routes 

 

Table 5 shows the comparison of results obtained for scenario (ii). The plot is not shown in order to avoid repetition 

of similar type of figures. It is observed that in each set of tours starting from 1 vehicle (nothing but a TSP) to 4 

vehicle tour, maximum distance travelled by a vehicle in case of Ant colony optimization method is lower than the 

LP based method. 

For scenarios (iii), a similar simulation exercise has been done and the results obtained are shown in Figure 4-3 and 

Figure 4-4 and the comparison carried out is also tabulated in Table 6. 
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Figure 4-3: Results obtained using the proposed ant colony based approach for Scenario 3 (1 Depot 25 City 

problem) 
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Figure 4-4: Results obtained using LP based approach for Scenario 3 (1 Depot 25 City problem) 

Table 6: Comparison of Ant Colony Based and LP Based technique to solve min-max SDVRP for Scenario 3 

No. of Vehicles Distance Travelled                       

(Ant Colony Based) 

Distance Travelled                        

(LP Based) 

1 Vehic 1 = 471.17* Vehic 1 = 470.89* 

   

2 Vehic 1 = 290**  

Vehic 2 = 240 

   

3 
Vehic 1 = 173 Vehic 1 = 171 

Vehic 2 = 240** Vehic 2 =  282** 

Vehic 3 = 217 Vehic 3 = 197 

   

4 

Vehic 1 = 173 Vehic 1 = 231 

Vehic 2 = 217** Vehic 2 = 224** 

Vehic 3 = 216 Vehic 3 = 222 

Vehic 4 = 128 Vehic 4 = 117 

   

5 

Vehic 1 = 173 Vehic 1 = 136 

Vehic 2 = 196 Vehic 2 = 239** 

Vehic 3 = 201 Vehic 3 = 194 

Vehic 4 = 202** Vehic 4 = 203 

Vehic 5 = 187 Vehic 5 = 140 
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Figure 4-5: Comparison of Results obtained for Ant Colony Based and LP Based technique for Scenario 5 (7 

Vehicles – 150 Cities) 

 

 

Table 7: Comparison of Vehicle Distances Ant Colony Based and LP Based technique for Scenario 4 

Distance travelled by each vehicle                      

(Ant Colony Based) 

Distance travelled by each vehicle                        

(LP Based) 

Vehic 1 = 219.75 Vehic 1 = 226.82 

Vehic 2 = 229.00 Vehic 2 = 209.97 

Vehic 3 = 232.20 Vehic 3 = 217.36 

Vehic 4 = 220.68 Vehic 4 = 197.77 

Vehic 5 = 222.36 Vehic 5 = 269.93** 

Vehic 6 = 231.88 Vehic 6 = 202.36 

Vehic 7 = 235.81** Vehic 7 = 196.87 

** denotes the maximum distance travelled in a set of vehicle routes 
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Figure 4-6: Comparison of Results obtained for Ant Colony Based and LP Based technique for Scenario 5 (13 

Vehicles – 300 Cities) 

 

Table 8: Comparison of Vehicle Distances Ant Colony Based and LP Based technique for Scenario 4 

Distance travelled by each vehicle                      

(Ant Colony Based) 

Distance travelled by each vehicle                        

(LP Based) 

Vehic 1 = 220.03 Vehic 1 = 135.44 

Vehic 2 = 229.26 Vehic 2 = 139.82 

Vehic 3 = 239.90** Vehic 3 = 173.13 

Vehic 4 = 236.38 Vehic 4 = 199.97 

Vehic 5 = 228.82 Vehic 5 = 196.41 

Vehic 6 = 212.26 Vehic 6 = 208.86 

Vehic 7 = 232.30 Vehic 7 = 192.78 

Vehic 8 = 235.73 Vehic 8 = 226.17 

Vehic 9 = 228.43 Vehic 9 = 208.88 

Vehic 10 = 228.99 Vehic 10 = 208.10 

Vehic 11 = 231.57 Vehic 11 = 246.47** 

Vehic 12 = 231.53 Vehic 12 = 219.66 

Vehic 13 = 226.17 Vehic 13 = 211.91 

** denotes the maximum distance travelled in a set of vehicle routes 

 

Figure 4-5 represents the scenario (iv) and the corresponding comparison that has been carried out in terms of 

distance travelled by each vehicle is shown in Table 7. It can be observed that the maximum distance travelled in ant 

colony based algorithm(235.81) is lesser than the LP based algorithm(269.93) and thus strengthening the fact that 
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ant colony optimization fairs well even for large number of cities in terms of accuracy of the solution. A similar 

observation extends to scenario (v) which is shown in Figure 4-6 and tabulated in Table 8. 

To further validate the repeatability of the optimal results, a number of simulations were performed for a typical 

SDVRP problem of 1 Depot - 3 Vehicle - 30 City scenario and results were compared between ant colony based 

approach with LP based approach. Figure 4-7 shows the result obtained using Carlsson LP based method. Figure 4-8 

represents a sample result obtained using Ant Colony based approach. A total of 40 simulation runs were performed 

to validate the correctness and repeatability of the solution obtained through the proposed ant colony based 

algorithm. Comparison in terms of this maximum distance travelled by a vehicle in a simulation run has been made 

in Figure 4-9 between ant colony based and LP based techniques. It is observed that the curve obtained from Ant 

colony based method (shown as dashed red line) is always lower that the curve obtained using LP based method 

(shown as continuous blue line). This establishes that Ant Colony based method consistently performs well in terms 

of the optimality of the results.  

 

 

Figure 4-7: Result Obtained for 3-Vehicle 30 City Problem using LP Based Method 
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Figure 4-8: A Sample Result* obtained for the same 3-vehicle 30 city scenario using Ant Colony Based 

approach during the Simulation Exercise 

*Result May not be Optimal. 
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Figure 4-9: Comparison of Maximum Tour Lengths of Vehicle for a 3 Vehicle, 30 City Problem 

4.2 Min-Max MDVRP Results 

Min-Max SDVRP was extended to Min-Max MDVRP as explained in the section 3.2. Before we discuss the results, 

let us capture some of the assumptions that are made: a) Customer points and depot points are uniformly distributed 

over 2-d space b) the vehicle capacities remain the same throughout all depots. This thesis presents results for three 

scenarios: i) Scenario 1 with 4 depots and 80 cities; ii) Scenario 2 with 4 depots and 140 cities; iii) Scenario 3 with 5 

depots and 140 cities 

Figure 4-10 compares the solution for scenario (i) between Carlsson based method and the Ant Colony based 

method. Each depot has two vehicles.  

Table 9 compares the distances traversed by each vehicle for the scenario. The maximum vehicle distance in ant 

colony based method is by vehicle 1 in depot 3 which is 125.35 units. Comparing with the Carlsson’s LP-based 

method where the maximum distance is 131.47 units (vehicle 2 in 2nd depot), it is clear that ant colony based 

method improves on LP-based method in this case. Two more cases demonstrating improved performance of the ant 



57 

 

colony solution over the Carlsson’s algorithm in terms of optimality of solution are shown with the results tabulated 

in Table 10 and Table 11. Figure 4-11and Figure 4-12 represent these cases respectively. 

 

 

Figure 4-10: For the case of Scenario 1 (80 Customers and 4 depots)  

(A) Results obtained using LP based approach (B) Results obtained using Ant Colony based approach 

 

Table 9: Comparison of Ant Colony based and LP based technique to solve min-max MDVRP for Scenario 1 

Depot No.  
Distance Travelled by Each 

Vehicle(L_opt_vehic)                      

(Ant Colony based method) 

Distance Travelled by Each Vehicle                      

(LP based method) 

1 Vehic 1 = 111.60 Vehic 1 = 114.05 

Vehic 2 = 129.20* Vehic 2 = 110.96 

   

2 Vehic 1 = 94.21 Vehic 1 = 108.48 

Vehic 2 = 100.39 Vehic 2 = 131.47* 

   

3 Vehic 1 = 125.35 Vehic 1 = 104.38 

Vehic 2 = 114.59 Vehic 2 = 92.37 

   

4 Vehic 1 = 118.97 Vehic 1 = 102 

Vehic 2 = 97.71 Vehic 2 = 124.65 

* denotes the maximum distance travelled in a set of vehicle routes 
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Figure 4-11: For the case of Scenario 2 (140 customers and 4 depots).  

(A) Results obtained using LP based approach (B) Results obtained using Ant Colony based approach 

 

Table 10: Comparison of Ant Colony based and LP based technique to solve min-max MDVRP for Scenario 2 

Depot No. 
Distance Travelled by Each 

Vehicle(L_opt_vehic)                      

(Ant Colony based method) 

Distance Travelled by Each Vehicle                      

(LP based method) 

1 
Vehic 1 = 110.97 Vehic 1 = 97.91 

Vehic 2 = 114 Vehic 2 = 111.65 

Vehic 3 = 25.24 Vehic 3 = 114.39 

   

2 
Vehic 1 = 114.57 Vehic 1 = 171.40* 

Vehic 2 = 103.83 Vehic 2 = 105.09 

Vehic 3 = 95.11 Vehic 3 = 85.85 

   

3 
Vehic 1 = 115.94 Vehic 1 = 120.27 

Vehic 2 = 105.66 Vehic 2 = 142.12 

Vehic 3 = 102.22 Vehic 3 = 113.29 

   

4 
Vehic 1 = 116.28* Vehic 1 = 82.57 

Vehic 2 = 112.56 Vehic 2 = 79.89 

Vehic 3 = 91.21 Vehic 3 = 67.70 

* denotes the maximum distance travelled in a set of vehicle routes 
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Figure 4-12: For the case of Scenario 3 (140 customers and 5 depots). 

(A) Results obtained using LP based approach (B) Results obtained using Ant Colony based approach 

 

Table 11: Comparison of Ant Colony based and LP based technique to solve min-max MDVRP for Scenario 3 

Depot No. 
Distance Travelled by Each 

Vehicle(L_opt_vehic)                      

(Ant Colony based method) 

Distance Travelled by Each Vehicle                      

(LP based method) 

1 Vehic 1 = 108.15 Vehic 1 = 89 

Vehic 2 = 96.66 Vehic 2 = 94.48 

   

2  Vehic 1 = 117.17 Vehic 1 = 89.41 

Vehic 2 = 104.08 Vehic 2 = 96.95 

   

3 
Vehic 1 = 114.02 Vehic 1 = 73.46 

Vehic 2 = 116.20 Vehic 2 = 94.47 

Vehic 3 = 46.99 Vehic 3 = 110.20 

   

4 
Vehic 1 = 118.03 Vehic 1 = 85.84 

Vehic 2 = 76.18 Vehic 2 = 126.05* 

Vehic 3 = 113.65 Vehic 3 = 106.80 

   

5 
Vehic 1 = 81.90 Vehic 1 = 99.15 

Vehic 2 = 112.65 Vehic 2 = 104.73 

Vehic 3 = 118.96* Vehic 3 = 65.25 

* denotes the maximum distance travelled in a set of vehicle routes 
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Figure 4-13: Result Obtained 5 Depot 16-Vehicle 140 City Problem using LP Based Method 

Similar to SDVRP, an extensive simulation exercise has been carried out to validate the repeatability of the solution 

obtained through ant colony optimization technique. A sample 5 depot - 16 vehicles - 140 city problem was chosen 

as a test bed to compare the results. A sample result obtained using Carlsson LP based technique is shown in Figure 

4-13. The Ant Colony based approach was used for 40 simulation runs. A sample result is also shown in Figure 

4-14. A comparison was made in terms of the maximum distance travelled by any vehicle in a set of vehicle tours 

and was plotted in Figure 4-15. Continuous blue line represents the longest tour obtained using the LP method, 

while the red dashed line represents the longest tour of a vehicle using the ant colony based method. From the 

figure, it is deduced that ant colony based technique fairs well consistently in comparison with Carlssson LP based 

technique in terms of optimality of the solution. Finally, a plot showing 300 simulation runs is shown in Figure 4-16. 

The difference between Figure 4-15 and Figure 4-16 being the former is a plot obtained for a constant set of inputs 
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while the latter is generated by different set of inputs. Inputs here is the depot and customer locations given by x,y 

coordinates. 

 

Figure 4-14: A Sample Result* obtained for the same 5 depot 16-vehicle 140 city scenario using Ant Colony 

Based approach during the Simulation Exercise 
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Figure 4-15: Comparison of Maximum Tour Lengths of Vehicle for a 5 Depot-16 vehicle-140 City Problem 
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Figure 4-16: Comparison of Maximum Tour Lengths of Vehicle for a 140 City Problem 

Some of the observations that can be made from the results are as follows. It is observed that the vehicle lengths in 

the ant colony approach are almost uniform (few exceptions) validating the claim made using Lemma 2 in section 
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3.2 that equal partitioning would lead to equitable distributions of cities and hence the lengths of the tours of cities. 

Since the area has been partitioned equally, these lengths are also distributed equally. Getting a guaranteed optimal 

solution to this problem is known to be NP hard, however approximate methods, such as proposed here, can improve 

significantly on the time required to calculate a solution. It may be noted that the proposed approach makes an 

assumption regarding the uniform distribution of cities. In practice, the cities may not be distributed uniformly, in 

which case the results may not be as optimal. However, these sub-optimal solutions can be used with other 

optimization methods to obtain a near-optimal solution. Moreover, this approximation will get better as the total 

number of cities increases. Thus, this is a good initial guess for the solution, but for smaller sets of cities there will 

probably be a need to exchange cities between tours after this initial partitioning is done. A drawback of this method 

is the calculation time required to achieve the solution. For the cases from Figure 4-10 - Figure 4-12, the 

approximate time taken to achieve the solution is 200 – 250 seconds. On the other hand, Carlsson method was able 

to solve in few seconds. This is because the method used by Carlsson et al. utilizes the well-known Concorde TSP 

solver [58]  which can get to near-exact TSP solution within a few seconds. One way to improve the running time is 

to use the inherent distributed nature of the problem once the area is partitioned, and to perform the calculation of 

the each SDVRP on a separate processor. 



64 

 

Chapter 5. Conclusion and future work 

The paper presents an ant colony optimization based algorithm to solve an interesting class of problem called min-

max MDVRP. Unlike a traditional MDVRP, which minimizes the total distance travelled, the min-max MDVRP 

minimizes the maximal distance travelled by a vehicle. This version of problem holds immense applications for 

time-critical problems. The proposed approach makes use of the distance constraint in traditional MDVRP to find its 

optimal value. This optimal distance constraint, when used in a traditional MDVRP, minimizes the maximal 

distance travelled by a vehicle. Verification of the proposed technique has been carried with the help of extensive 

simulations, and results have been compared with the results obtained using a known LP based algorithm. It has 

been established that the results obtained using the proposed ant colony based approach provides more optimal 

results although takes more calculation time as compared to the LP based algorithm.  A brief introduction to 

computational complexity has been provided in 2.7 and the idea here is to help the practitioners to achieve gain 

insights in the complex behaviors of such algorithms which will enable in developing better algorithms in future 

compared to existing ones. Thus the future scope of this thesis could be to understand the complexity of the problem 

and bring out a compare it with existing methods.  Implementation of some of the tour improvement heuristics like 

2-opt or 3-opt with the candidate list method have been carried out in order to expedite convergence towards the 

solution. The min-max MDVRP problem was subdivided into many min-max SDVRPs by partitioning equally the 

region consisting of depots and cities.  The partition of the polygon was carried out with an existing method 

developed by Carlsson.  Some of the established convex partitioning techniques have also been listed and future 

work here is to explore better ways of achieving optimal convex partition. The technique has been validated with 

theory and with extensive simulations, and results have been compared with the results obtained using an existing 

method developed by Carlsson. Future work includes using parallel processing programming techniques to expedite 

the convergence towards the solution and integrating this method with other optimization techniques to achieve 

more optimal solutions in cases where we have non-uniform distribution or smaller number of cities.
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