
Controllability Gramian Spectra of Random Networks
Victor M. Preciado∗ & M. Amin Rahimian

Abstract—We propose a theoretical framework to study the
eigenvalue spectra of the controllability Gramian of systems with
random state matrices, such as networked systems with a ran-
dom graph structure. Using random matrix theory, we provide
expressions for the moments of the eigenvalue distribution of
the controllability Gramian. These moments can then be used
to derive useful properties of the eigenvalue distribution of the
Gramian (in some cases, even closed-form expressions for the
distribution). We illustrate this framework by considering system
matrices derived from common random graph and matrix en-
sembles, such as the Wigner ensemble, the Gaussian Orthogonal
Ensemble (GOE), and random regular graphs. Subsequently, we
illustrate how the eigenvalue distribution of the Gramian can be
used to draw conclusions about the energy required to control
random system.

Index Terms—Controllability; Gramian spectrum; Complex
Networks; Random graphs; Random matrix theory.

I. INTRODUCTION

Controllability is a classical tool in systems theory, as
developed by Kalman et al. [1]. More recently, controllability
of complex networked systems has attracted much attention,
beginning with the study of leader-follower multi-agent sys-
tems in [2], [3], [4], [5], [6], followed by several works
considering the network controllability problem in special
topologies such as paths [7], circulant networks [8], grids
[9], distance regular graphs [10], and networks-of-networks
[11], as well as works which employ the concept of structural
controllability in networked settings such as [12], [13], [14].

The concept of controllability is closely related to the
minimum energy needed to steer a linear system through
its state space [1], [15], [16]. In particular, the minimum
input energy needed to drive the system from an initial to
a desired state can be expressed in terms of the inverse of
the controllability Gramian matrix, which we denote by W
[17], [16]. This relationship has motivated several Gramian-
based metrics to quantify the energy required to steer a system,
such as the trace of the Gramian inverse tr(W−1), the inverse
of the minimum eigenvalue 1/λmin(W ), or − log(det(W )),
[16]. These measures have found recent applications in the
analysis and design of networked control systems [18], [19],
[20]. These energy control metrics are closely related to the
Gramian eigenvalue spectrum, which is the central topic of
our work.

In this paper, we focus our attention on the eigenvalue
spectrum of the controllability Gramian of systems with ran-
dom state matrices. In this case, the controllability Gramian
is also a random (symmetric) matrix with random (real)
eigenvalues following a probability distribution, called the
Gramian spectral distribution. The study of the eigenvalues
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of random matrices started in the pioneering work of Wigner
[21], [22], Mehta and Gaudin [23], and Dyson [24], and has
attracted a great deal of attention since then. Over the last
decades, random matrix theory has become a mature field and
found applications in a wide variety of disciplines [25], [26].
A particularly relevant application of random matrix theory
can be found in the study of the eigenvalues of random graph
models [27], [28], [29], [30]. In this direction, many graph-
related matrices—such as the adjacency, the Laplacian, and
the normalized Laplacian—have been widely studied in the
literature. In contrast, theoretical results about the eigenvalues
of the controllability/observability Gramians of random graphs
and matrices are very scarce.

The are only a few works that attempt to address some
aspects of this problem [31], [32], [33]. The author in [31]
introduces a stochastic notion of controllability for jump
systems, where the state and input matrices vary between N
designated matrix pairs and the variations follow a Markov
process. Accordingly, the linear jump system is controllable
if transitions between any two states occur with positive
probability and in an almost surely finite length of time;
variations of this definition when the transitions occur with
probability one and the required time-span has finite ex-
pectation are also considered, and an algebraic criterion for
stochastic controllability is expressed as a rank condition on
the N state and input matrix pairs. Parallel results are derived
in [32], but for the case where the state matrix is given
by the Laplacian of a random graph process. In [33] the
authors address related observability problems by investigating
the recovery of sparse initial states using independent and
randomly populated measurement matrices and under certain
conditions on the state transition matrix.

In this paper, we study the Gramian spectral distribution
of random systems, paying special attention to the Gramian
spectral moments (defined as the moments of the eigenvalue
distribution). In particular, we establish a connection between
the spectral moments of the (random) state matrix of a sys-
tem and the spectral moments of its (random) controllability
Gramian. We then exploit this connection to derive closed-
form expressions for the Gramian spectral distribution of
important random matrices, such as Wigner matrices, the
Gaussian Orthogonal Ensemble (GOE), or random regular
graphs. From the Gramian spectral distribution, we then draw
conclusions about the energy required to steer a random
system and study how this energy is affected by the system
parameters and the dimension of the state space.

The paper is organized as follows. Notation and preliminary
results are provided in Section II. Our main results are stated in
Section III and proofs are included in Appendix A. Illustrative
examples and additional discussions are presented in Section
IV and the paper is concluded in Section V.
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II. NOTATION & PRELIMINARY RESULTS

Notation.: Throughout the paper, R is the set of real
numbers, boldface letters denote random variables, E{·} is the
expectation operator, vectors are denoted by a bar over their
respective lower-case letters, matrices are denoted by upper
case letters, T denotes matrix transpose and In is the n × n
identity matrix. We use ∼ to indicate asymptotic equivalence
as n→∞, i.e., f(n) ∼ g(n) indicates that limn→∞

f(n)
g(n) = 1.

A. The Method of Moments

Let us consider a random system characterized by the matrix
pair (An, Bn), where An is a random n×n state matrix and
Bn is an input matrix. We investigate the limiting distribution
of the eigenvalues of the controllability Gramian associated
with the matrix pair (An, Bn) as n→∞. It is noted in [34],
[35] that the required control energy can increase unbounded
with the growing network size, unless Bn = In; hence, we
restrict attention to the case Bn = In. We also assume that
An is symmetric1. Given an n× n symmetric random matrix
C, let λ1(C) ≤ λ2(C) ≤ . . . ≤ λn(C) be n random variables
representing the n real eigenvalues of An. We consider the
random probability measure LC{·} = 1

n

∑n
i=1 δλi(C){·},

δλi(C) being Dirac’s delta function centered at λi(C), as the
random probability measure on the real line that assigns mass
uniformly to each of the n eigenvalues of the random matrix
C. The corresponding distribution Fn(x) = LC{(−∞, x]}
= 1

n |{i ∈ [n] : λi(C) ≤ x}|, is a random variable for
each x ∈ R and is referred to as the empirical spectral
distribution (ESD) for the random matrix C. The k-th spectral
moments of a random matrix C is the k-th moment of its
spectral density. These moments can be written as mk(C) :=
1
n

∑n
i=1 λi(C)k [25]. In our derivations, we also make use

of the centralized spectral moments, which are defined as
m̃k(C) := 1

n

∑n
i=1(λi(C)−m1(C))k.

In this paper, we will use the method of moments to
derive the limiting spectral distributions of the controllability
Gramians herein considered. According to this method, when
dealing with compactly supported distributions (as will be the
case for us), one can show that a sequence of empirical spectral
distributions Fn(·) converges in probability to some limiting
distribution F (·) by showing that the sequence of expected
moments for Fn(·), given by {

∫ +∞
0

xkdFn(x), k ∈ N}, con-
verges point-wise (for every k) to the corresponding moments
of F (·), given by {

∫ +∞
0

xkdF (x), k ∈ N} [26, Theorem 2.2.9
and Section 2.4.2].

In the following subsections, we describe two particular
random matrices that will be useful to illustrate our results.

B. Random Wigner Matrices: Semicircle Law

A Wigner matrix An is a random matrix where the entries
above the main diagonal are i.i.d. zero-mean with identical
variance σ2. In his seminal papers [21], [22], Eugene Wigner

1More general input and state matrices, such as random input matrices
and non-symmetric state matrices, are considered in an upcoming extended
version of this paper.

proved that the empirical spectral distribution of (1/
√
n)An

converges (in probability) to the semicircular density given by

fSC(x) =
1

2πσ2

√
4σ2 − x2, (1)

for x ∈ [−2σ, 2σ] and fSC(x) = 0, otherwise. The even-order
moment of the semi-circular distribution are given by mSC

2j =
σ2j

j+1

(
2j
j

)
; odd-order moments are zero. In fact, for this result to

hold we do not need the variables to be identically distributed
and the result continues to hold for independent zero-mean
entires with common variance σ2 [36], under certain mild
conditions on higher-order moments. An important special
case of Wigner’s random matrix is the Gaussian Orthogonal
Ensemble (GOE), in which the off-diagonal entries are real
Gaussian variables with mean zero and variance σ2. The
diagonal entries are real Gaussian variables with mean zero
and variance σ2/2. We will use this particular ensemble to
illustrate our results in Section IV.

C. Random Regular Graphs: McKay Law

Consider a random graph drawn uniformly over the space
of all undirected d-regular graphs on n vertices, where we
assume d > 2. As n→∞, the empirical spectral distribution
of the adjacency matrix of a random d-regular graph converges
in probability to the McKay law [37], whose density is given
by

fMK(x) =
d
√
4 (d− 1)− x2
2π (d2 − x2) ,

for |x| ≤ 2
√
d− 1, and fMK(x) = 0, otherwise. The moments

of the McKay distribution are given by

mMK

k =

k/2∑

r=1

(
k

r

)
k − 2r + 1

k − r + 1
(d− 1)

r
, (2)

for k even, and 0 for k odd. In our derivations, we shall
also make use of the centralized spectral moments of the
Laplacian matrix. Let Cn be the (random) adjacency matrix
of the graph (i.e., [Cn]ij = 1 if nodes i and j are connected,
and 0 otherwise). For a random d-regular graph, the Laplacian
matrix can be written as Ln = dIn−Cn. One can easily prove
that the centralized spectral moments of the Laplacian satisfy
E{m̃k(Ln)} ∼ mMK

k as n → ∞, in the case of random d-
regular graphs. This fact will be useful in future derivations.

III. MOMENT-BASED CHARACTERIZATION OF THE
GRAMIAN SPECTRUM

Consider a discrete-time (DT) linear time-invariant system
x [t+ 1] = Anx[t]+Bnu[t], where Bn = In, An is an n×n
random symmetric matrix, and u[t] ∈ Rn. Assuming An is
Schur stable and symmetric, the discrete-time controllability
Gramian is an n× n symmetric random matrix given by

Wd =
∞∑

τ=0

Aτ
n(A

T
n )
τ = (In −A2

n)
−1.



Similarly, for a continuous-time (CT) linear time-invariant
system described by d

dtx(t) = Anx(t) + u(t), when An

is an n × n Hurwitz stable, symmetric random matrix the
continuous-time controllability Gramian Wc is given by

Wc =

∫ ∞

0

eAnτeA
T
n τdτ =

∫ ∞

0

e2Anτdτ

= Vdiag
{∫ ∞

0

exp (2λi(An) τ)dτ
}n

i=1

VT , (3)

where in last equality we use the fact that An is symmetric
and, therefore, orthogonally diagonalizable.

In the following subsections, for both random discrete-
time and continuous-time systems, we first provide theorems
to relate the spectral moments of the state matrix An to
the spectral moments of the controllability matrix. Since the
spectral moments of An are well-understood for a number of
random matrix ensembles, our result allows us to calculate the
spectral moments of the controllability Gramian. Finally, using
the method of moments, we will characterize and completely
determine the limiting spectral distribution of the Gramian
matrix for a number of well-known random matrix ensembles.

A. Gramian of Random Discrete-Time Systems

In the following lemma, we provide a useful relationship
between the moments of the state matrix An and the moments
of the associated controllability gramian Wd for random
discrete-time systems.

Lemma 1 (Spectral Moments of DT Gramian). Let An be
an n × n symmetric, Schur-stable state matrix with spectral
moments given by mk := mk(An) for k ∈ N. Then,
the spectral moments of the controllability Gramian of the
discrete-time system (An, In) are given by

mk(Wd) =

∞∑

j=0

(
j + k − 1

k − 1

)
m2j . (4)

We will prove the above lemma in Appendix A. Lemma 1
can be used to, for example, characterize the Gramian spec-
trum when the state matrix An is a Wigner random matrix.
In particular, let An = (1/

√
n)Hn where Hn is a Wigner

random matrix with the second moment satisfying σ < 1/2.
Then, explicit expressions for the spectral moments of the
Gramian and the Gramian spectrum are given in the following
theorem:

Theorem 1 (The Wigner Ensemble). Consider a DT system
with state matrix An = 1√

n
Hn, where Hn is a Wigner random

matrix with independent zero-mean entries and common vari-
ance σ2 < 1/4, and the identity input matrix, Bn = In. Then,
the expected spectral moments of the controllability Gramian
Wd are asymptotically given by

mk(Wd) ∼ 2F1(
1

2
, k; 2, 4σ2), (5)

where 2F1 (a, b; c; z) is the hyper-geometric function2. Fur-
thermore, the limiting spectral distribution of Wd is charac-
terized by the following density function

fW (x) =

{
1

2πσ2x2

√
4σ2x−x+1

x−1 , if x ∈ [1, 1
1−4σ2 ].

0, otherwise.
(6)

While proving Theorem 1 in Appendix B, we provide a
series of tools that can be directly applied to many other
random matrix ensembles, as soon as they are Hurwitz stable.
In the particular case treated in Theorem 1, the assumption
σ2 < 1/4 guarantees the matrix ensemble An to be Hurwitz
stable. We now develop parallel results for random systems in
the continuous-time case.

B. Gramian of Random Continuous-Time Systems

Similarly to Subsection III-A, we first provide a lemma
(proved in Appendix C) that allows us to calculate the asymp-
totic spectral moments of the Gramian from those of the state
matrix An. We then apply this result to study the Gramian of
a system whose state matrix is related to the Laplacian of a
random regular graph.

Lemma 2 (Spectral Moments of the CT Gramian). Let
An be an n × n symmetric, Schur-stable state matrix with
spectral moments given by mk := mk(An) and centralized
spectral moments given by m̃k := m̃k(An) for k ∈ N. Then,
the spectral moments of the continuous-time controllability
Gramian Wc are given by:

mk(Wc) =
1

(−2)k
∞∑

j=0

(−k
j

)
m̃j

(m1)k+j
. (7)

In what follows, we illustrate the usage of Lemma 2
by considering the Laplacian matrix of a random d-regular
graph, described in Subsection II-C. Since the Laplacian
matrix is marginally stable (has an eigenvalue at zero), the
Gramian of the continuous-time system (−Ln, In) is ill-
defined. To overcome this issue, we use a stabilized version
of the Laplacian dynamics, where the state matrix is given
by An = −L̃n := −Ln − d

n11
T . Notice that this matrix

is not singular for connected graphs; thus, the Gramian of
the system (−L̃n, In) is well-defined and satisfies (3). The
following theorem, proved in Appendix D, provides explicit
expressions for the spectral moments of the Gramian and the
Gramian spectrum.

Theorem 2 (Random Regular Graphs). Consider a CT system
with input matrix In and state matrix An = −L̃n, where
L̃n is the stabilized Laplacian matrix of a random d-regular
graph with n nodes and d ≥ 3. Then, the asymptotic expected
spectral moments of the controllability Gramian Wc are given

2The hyper-geometric function is defined for |z| < 1 by the power series

2F1 (q, b; c; z) =
∑∞

j=0
(q)j(b)j

(c)j

zj

j!
, where (q)j = q(q+1) . . . (q+j−1).



by

mk(Wc) ∼
1

(2d)k

∞∑

j=0

(
2j + k − 1

2j

)
d−2jmMK

2j , (8)

where mMK
2j are the spectral moments of the McKay law,

defined in (2). Furthermore, the limiting spectral density of
Wc is given by

fL(x) =
1

4πx2

d

√
4 (d− 1)−

(
d− 1

2x

)2

d2 −
(
d− 1

2x

)2 , (9)

for x ∈
[

1
2d+4

√
d−1 ,

1
2d−4

√
d−1

]
, and fL(x) = 0, otherwise.

IV. EXAMPLES

To illustrate the applicability of our results we consider two
special cases where the state matrices are given by well-known
random matrix and graph models.

Example 1. Gaussian-weighted Erdős-Rényi Ensemble

To illustrate our results, we consider a state matrix with the
sparsity structure of an Erdős-Rényi random graph with edge
probability pn. Additionally, we assume that the weights of
the edges in the random graph are also random. In particular,
we assume the edge weights are Gaussian variables with
zero mean and variance σ2

n = α2

4pnn
for any 0 < α < 1.3

We call this random matrix ensemble the Gaussian-weighted
Erdős-Rényi Ensemble (GER) with parameters (n, pn, σ

2
n).

Let An be an instance from this ensemble. The variance
of the entries of An are pnσ

2
n = α2/4n, and they have

zero mean. According to the semicircle law, as n → ∞
the eigenvalue distribution is supported in the range [−α, α];
thus, An is Schur stable. The limiting spectral density of
GER (n, pn, σ

2
n) can be derived from (1) as fGER(x) =

(2/πα2)
√
α2 − x2, for x ∈ [−α, α] and 0 otherwise. Fig. 1

shows the histogram of eigenvalues of An from a Gaussian-
weighted Erdős-Rényi Ensemble with parameters n = 1000,
pn = 2 log n/n = 0.006, and α = 0.5.

Similarly, the limiting spectral moments of GER are
mGER

2k = (α2 )
2k 1
k+1

(
2k
k

)
, and mGER

j = 0 for j odd. The
trace of the Gramian inverse, tr(W−1

d ), is a Gramian-based
control energy metric that quantifies the average steering
energy along all directions in the state space. Accordingly,
for the controllability Gramian of a random DT system with
a state matrix drawn from the GER (n, pn, σ

2
n), we have

that asymptotically E{tr(W−1
d )} ∼ limn→∞ E{tr(In −A2

n)}
= limn→∞(n − nE {m2 (An)}). For the particular case of
GER, we have that E{m2(An)} ∼ mGER

2 = α2/4 so that
E{tr(W−1

d )} ∼ n(1− α2/4), and the average control energy
increases linearly with the increasing size n. Notice that the
control energy decreases as α, which is related to the variance
of the edge weights, increases. Fig. 2 shows the histogram of
eigenvalues of controllability Gramian for An using the same
parameters as in Fig. 1.

3In fact, we can use any distribution (not necessarily the normal density)
that has zero mean, with variance σ2

n.

Fig. 1. Eigenvalue Histogram of a Gaussian-weighted Erdős-Rényi ensemble
with parameters n = 1000, pn = 2 logn/

√
n, and α = 0.5 is given by a

semi-circular density that is supported over [−0.5, 0.5].

Fig. 2. Eigenvalue Histogram of the Gramian of a discrete-time system with
the state-matrix An given by a Gaussian-weighted Erdős-Rényi ensemble
with the same parameters as in Fig. 1. The Gramian spectrum in this case
follows the limiting spectral density fW given in Theorem 1.

Example 2. Random Regular Graph Laplacian Dynamics

As a second example, consider the stabilized Laplacian dy-
namics on a random d-regular graph considered in Theorem 2.
In Fig. 3 we have plotted the histogram of the eigenvalues of
the stabilized Laplacian L̃n with d = 3 and n = 1000. The
eigenvalue spectrum of the associated controllability Gramian
is plotted in Fig. 4. Here, we use 1/λmin(Wc) as a measure of
the worst-case minimum required control energy for making
a unit transfer in the state space. Applying Theorem 2 we
get that 1/λmin(Wc) ∼ 2d + 4

√
d− 1; hence, the minimum

required energy increases with the increasing degree.



Fig. 3. Eigenvalue Histogram of the stabilized Laplacian L̃n := Ln+
d
n
11T

with d = 3 and n = 1000. The limiting spectral distribution in this case is
given by the McKay law (Subsection II-C), shifted so that the eigenvalue
spectrum is centered around d = 3.

Fig. 4. Eigenvalue Histogram of the Gramian of the stabilized Laplacian
dynamics on a random d-regular graph with d = 3 and n = 1000. The
limiting spectral distribution of the Gramian in this case has the density
function fL given in Theorem 2.

V. CONCLUSIONS

In this paper, we have introduced a theoretical framework
to study the eigenvalue spectra of the controllability Gramian
of systems with random state matrices. Using tools from
random matrix theory, such as the method of moments, we
have derived expressions for the spectral moments of the
controllability Gramian for both continuous- and discrete-time
systems. We have used these moments to derive closed-form
expressions for the spectral distribution of the Gramian of ran-
dom systems derived from popular random matrix and graph
ensembles. Finally, we have illustrated how the eigenvalue
distribution of the Gramian can be used to draw conclusions

about the energy required to control a random system.

APPENDIX
PROOFS OF THE MAIN RESULTS

A. Proof of Lemma 1

Given the input matrix Bn = In and a symmetric state
matrix An = AT

n with spectral moments given by mk :=
1
n

∑n
i=1 λi(An)

k = 1
n tr(Ak

n), we can write the spectral
moments of the DT Gramian Wd :=

∑∞
τ=0 A

2τ
n , as follows:

mk(Wd) :=
1

n
tr(Wk

d) =
1

n
tr



( ∞∑

τ=0

A2τ
n

)k


=
1

n
tr
[
(I −A2

n)
−k] .

From the Taylor expansion (I−A2
n)
−k =

∑∞
j=0

(
j+k−1
k−1

)
A2j
n ,

we have that:

mk(Wd) =
1

n
tr



∞∑

j=0

(
j + k − 1

k − 1

)
A2j
n




=
∞∑

j=0

(
j + k − 1

k − 1

)
1

n
tr(A2j

n )

=
∞∑

j=0

(
j + k − 1

k − 1

)
m2j ,

as stated in Lemma 1.

B. Proof of Theorem 1

We begin by showing that the spectral moments of the
Gramian are asymptotically given by (5). Starting form (4)
and replacing the moments mk of the Wigner ensemble, we
obtain

1

n
E
{

tr[Wk
d ]
}
=
∞∑

j=0

(
j + k − 1

k − 1

)
σ2j 1

j + 1

(
2j

j

)

=
∞∑

j=0

(
j + k − 1

k − 1

)
(4σ2)j

2−2j(2j)!
j!(j + 1)!

. (10)

Next, we can write (2j)! = (2j)(j!)(3× 5× 7× . . . (2j − 1))
so that

2−2j(2j)!
j!(j + 1)!

=
2−j(3× 5× 7× . . . (2j − 1))

(j + 1)!

=
(1/2)(1/2 + 1)(1/2 + 2)(1/2 + 3) . . . (1/2 + j − 1)

2(2 + 1)(3 + 1) . . . (2 + j − 1)

=
(1/2)j
(2)j

, (11)



where (q)j = q(q + 1) . . . (q + j − 1). Replacing (11) in (10)
yields

1

n
E
{

tr[Wk]
}
=
∞∑

j=0

(
j + k − 1

k − 1

)
(1/2)j
(2)j

(4σ2)j

=
∞∑

j=0

(k)j(1/2)j
(j!)(2)j

(4σ2)j

= 2F1(
1

2
, k; 2, 4σ2),

when
∣∣4σ2

∣∣ < 1, as we wanted to prove.

We now proceed to determine the limiting spectral density
of the Gramian when An is a random matrix from the Wigner
ensemble. We begin by noting two identities, which hold true
for hyper-geometric functions

2F1(
1

2
, k; 2, 4σ2) = (1−4σ2)−k 2F1(k,

3

2
; 2,

4σ2

4σ2 − 1
), (12)

2F1(a, b; c; z) = B(b, c− b)−1
∫ 1

0

xb−1(1− x)c−b−1
(1− zx)a dx,

(13)
for c > b > 0 and |z| < 1, where B(·, ·) is the Beta function.4

The first formula follows from Kummer solutions to Gaussian
hyper-geometric differential equation, after a proper change
of variables [38, Section 3.7]. The second one is an integral
representation of hyper-geometric functions known as Euler
formula [38, Section 3.6]. We can use (13) to rewrite the left-
hand side of (12) as follows

2F1(
1

2
, k; 2, 4σ2)

=
(
1− 4σ2

)−k 2

π

∫ 1

0

x
1
2 (1− x)− 1

2 (1− 4σ2

4σ2 − 1
x)−k dx

=
2

π

∫ 1

0

x
1
2 (1− x)− 1

2

(
1− 4σ2 + 4σ2x

)−k dx

= − 1

2πσ2

1∫

1/(1−4σ2)

√
4yσ2 − y + 1

4yσ2

√
4yσ2

y − 1
yk

dy
y2

=

1/(1−4σ2)∫

1

1

2πσ2y2

√
4yσ2 − y + 1

y − 1
yk dy

=

∫

R
ykfW (y) dy,

where we have used the fact that B( 32 ,
1
2 ) = π/2, together with

the change of variables y−1 = 1−4σ2+4σ2x, x = 4yσ2−y+1
4yσ2 ,

and dx = − dy
4σ2y2 for the integration. Hence, the moments of

the spectral distribution in (6) are indeed given by the spectral
moments in (5). Therefore, the claim in our theorem follows
from the method of moments.

4The Beta function is defined in terms of the Gamma function as B(x, y) =
Γ(c)

Γ(b)Γ(c−b)
.

C. Proof of Lemma 2

Since the CT Gramian Wc satisfy (3), its spectral moments
are given by

mk(Wc) =
1

n
tr

[(∫ ∞

0

e2Anτdτ
)k]

=
1

n

n∑

i=1

(∫ ∞

0

e2λi(An)τdτ
)k

,

Since
∫∞
0
e2λi(An)τdτ = −1/(2λi(An)), we have that,

mk (Wc) =
1

n(−2)k
n∑

i=1

(λi(An))
−k. (14)

The Taylor expansion of x−k around m1 is given by

x−k =
∞∑

j=0

(−k
j

)
(m1)

−k−j(x−m1)
j

We can now replace for (λi(An))
−k in (14) to get

mk(Wc) =
1

n(−2)k
n∑

i=1

∞∑

j=0

(−k
j

)
(λi(An)−m1)

j

(m1)k+j

=
1

(−2)k
∞∑

j=0

(−k
j

)∑n
i=1(λi(An)−m1)

j

n(m1)k+j

=
1

(−2)k
∞∑

j=0

(−k
j

)
m̃j

(m1)k+j
,

as claimed in Lemma 2.

D. Proof of Theorem 2

Given that An = −L̃n, we can replace for the mo-
ments of An in (7). Hence, using the asymptotic moments
m1 = 1

nTr(−L̃n) ∼ −d and m̃j = mMK
j , as discussed in

Subsection II-C, (7) becomes

E{mk(Wc)} ∼
1

(−2)k
∞∑

j=0

(−k
j

)
(−d)−k−jmMK

j

=
1

(2d)
k

∞∑

j=0

(
2j + k − 1

2j

)
1

d2j
mMK

2j

where in the last equality, we have used
(
j+k−1
j

)
(−1)j =

(−k
j

)

and substituted j by 2j to account for the fact that mMK
j = 0

for j odd. This proves the expression claimed in (8) for the
asymptotic spectral moments of the CT Gramian.

Once we have a closed-form expression for the expected
spectral moments of the Gramian, we need to prove that these
moments correspond to those of the density in (9). We begin



by calculating the moments of (9) as follows
∫

R

xkfL(x)dx

=

1/(2d−4
√
d−1)∫

1/(2d+4
√
d−1)

xkd

√
4 (d− 1)−

(
d− 1

2x

)2

4πx2
(
d2 − (d− 1

2x )
2
) dx

=

2
√
d−1∫

−2
√
d−1

d
√

4 (d− 1)− u2
(d− u)k(2π)2k(d2 − u2)du, (15)

where in the last equality we have used the change of variables
u = d − (1/2x). We now use the Taylor expansion of
(d− u)−k around d, which is given by

(d− u)−k =
∞∑

j=0

(
j + k − 1

j

)
uj

dk+j
.

Using this expansion in (15), we get that
∫

R
xkfL(x)dx =

1

2k

∞∑

j=0

(
j + k − 1

j

)
d−k−j × . . .

2
√
d−1∫

−2
√
d−1

ujd
√

4 (d− 1)− u2
2π(d2 − u2) du

a
=

1

2k

∞∑

j=0

(
2j + k − 1

2j

)
d−k−2jmMK

2j

=
1

(2d)
k

∞∑

j=0

(
2j + k − 1

2j

)
d−2j × . . .

j∑

r=1

(
2j

r

)
2j − 2r + 1

2j − r + 1
(d− 1)

r

= E{mk(Wc)},

where in (
a
=) we have used the fact that mMK

j = 0 for j.
Having thus shown that the moments of fL(·) coincides with
those of the Gramian spectrum the proof follows from the
method of moments, described in Section II.
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