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Abstract—The paper is proposing a methodology for modeling
a gate-level netlist using a Graph Convolutional Network (GCN).
The model predicts the overall functional de-rating factors of
sequential elements of a given circuit. In the preliminary phase
of the work, the important goal is making a GCN which able to
take a gate-level netlist as input information after transforming
it into the Probabilistic Bayesian Graph in the form of Graph
Modeling Language (GML). This part enables the GCN to learn
the structural information of netlist in graph domains. In the
second phase of the work, the modeled GCN trained with a
functional de-rating factor of a very low number of individual
sequential elements (flip-flops). The third phase includes the
understanding of GCN model’s accuracy to model an arbitrary
circuit netlist. The designed model validated for two circuits.
One is the IEEE 754 standard double precision floating point
adder and the second one is the 10-Gigabit Ethernet MAC IEEE
802.3 standard. The predicted results compared to the standard
fault injection campaign results of the error called Single Event
Upset (SEU). The validated results are graphically pictured in
the form of the histogram and sorted probabilities and evaluated
with the Confidence Interval (CI) metric between the predicted
and simulated fault injection results.

Index Terms—Probabilistic Graph Model (PGM), Graph Con-
volutional Neural Network (GCN), Functional De-rating, Single-
Event Upset (SEU). Gate-Level Netlist, Graph Modeling Lan-
guage (GML)

I. INTRODUCTION

System engineering advances and focusing on the integra-
tion of small-scale technologies in the system building process.
The realization of full potential micro- and nanoscale de-
vices highlights the challenges faced by electronics businesses
industries in maintaining or improving their technological
competitiveness. System engineering and its challenges keep
the design engineers more concentrating on the reliability
issues with their designed systems. Focusing on the reliability
problems occurring with micro- and nanoscale technology de-
velopment and its impact on everything from the design phase
to actualized products in the health, automotive, aerospace,
communication, and many other fields, the system design
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engineers considering all possible methodological precautions
to prevent reliability issues based on their criticality. The
industrial customers demanding high-quality reliable devices
and in order to meet the requirements, research and design de-
partments proposing different metrics which ensures a default
standard quality and reliability. One of the major threats in
the system’s reliability is the Single Event Effects (SEE) due
to the cosmic rays and electromagnetic radiation. Cosmic rays
are particles that hit the Earth’s atmosphere from space. They
include protons, helium nuclei (like « radiation), and electrons
(like S radiation). The radiations like gamma and X rays,
which are electromagnetic and indirectly ionizing radiations.
The two major consequences of the SEE are Single Event
Transients (SET) and Single Event Upset (SEU). The effect of
SEU and SET at the functional level of the circuit is known as
functional de-rating factors. They are more closely examined
here with help of exhaustive and accelerated fault injection
campaigns.

The important aspect of the fault injection campaign is the
more reliable and accurate information over other different
mathematical models. In contrary to this point, the effort in
terms of time is non-feasible from the perspective of a de-
signer. The effort in the non-feasible dimension of work can be
reduced by implementing different statistical and mathematical
models. This research goal achieving through the proposed
model and automate the assessment of different reliability
factors within feasible time constraints and making a trade-
off with accuracy.

A. Motivation

Even though above-explained networks are eligible to do
deep learning, the implemented model predominantly depend-
ing on the neural network as referenced in [1] and [2]. The
cited paper [1] extends the current neural networks to a new
model called Graph Neural Network (GNN) and process the
data in graph domains. There is a lot of scientific areas of
engineering which deals the information in the graph domains.
This point is considered to be a decisive moment of the thought
towards a representation of the gate-level circuit information
in graph domains and feeding to a graph neural network



for processing it. Here, the implemented model adopts a
form of Graph Convolutional Network (GCN) proposed by
Thomas.N.Kipf in [3], which is another version of gener-
ally called graph neural networks. This model is particularly
briefed in section IV and V.

B. Organization of the Paper

The introduced paper includes nine sections in total. Section
I generalizes the facts and issues in the field of reliability
engineering and followed by the main motivation of this work
as well as the organizational structure of the paper. Section
IT gives a background introduction to neural networks and
different reliability factors of the micro-electronic systems.
This part dedicated to explaining the background of this
work. In Section III, the main methodological implementation
overview is given, whereas in section IV and V, GCN model
and it’s neuron implementation explained with mathematical
equations. That is, sections IV and V together constitutes
the methodology and model architecture and their in-depth
view. Section VI illustrates the results and their validations
in terms of 95 % Confidence Interval (CI), histograms and
sorted order of FDR probabilities. Section VII describes the
main model drawbacks. Future works and their importance
with their probability to achieve, are discussed in section VIII
and In Section IX, the whole work and it’s holistic approaches
are concluded.

II. BACKGROUND
A. Interpretation of Standard Electrical Terms

1) SEE Analysis Concepts: As the term suggests, a single
event effect (SEE) results as the penetration consequences of
the energetic radiation particle. The main consequence effects
are classified as two categories destructive and non-destructive.
The Single Event Upset (SEU) and Single Event Transient
(SET) are considered to be non-destructive and soft-errors.
The radiation hazards like Single Event Latchup (SEL) are
categorized under hard-errors (or) destructive-type faults. An
elaborate explanation for different radiation hazards can be
referenced from [4]. This work is mainly contributing to the
derating analysis of Single Event Upset in sequential elements.
The quantitative analysis of SEE is based on different derating
factors, called Functional derating, Logical derating, Temporal
derating, and Electrical derating.

2) Electrical Derating: The Electrical Derating (EDR)
evaluating the effect of modeled logic SET pulse that has the
same effect in the circuit as the original analog SET pulse.
SET pulse can be modeled logically as an inversion of the
output signal amplitude of combinational cells in gate-level
abstraction. The effect of such types of anomalies with various
electrical factors like electrical pulse width and electrical
amplitude range defines how well a transient error obstructs
the standard signal propagation in the given circuit.

3) Temporal Derating: Temporal Derating (or) Time de-
rating associate to the opportunity window ascribed to SEE
error (SET (or) SEU) and it’s probability to be latched to

the downstream sequential elements like Flip-Flop, Latch and
Memory.

4) Logical Derating: The logical vulnerability of the SEU
within the combinational cell network based on their logic
functions is quantified with masking effect probability, termed
as Logical Derating (LDR) factor.

5) Functional Derating: Functional Derating evaluates
how likely the soft error propagate to make an observable
impact on the functioning of the circuits or systems.

B. The reasoning of Graph Convolutional Neural Network

Artificial Intelligence

Machine Learning

Fig. 1. A relational analysis of Artificial Intelligence (AI), Machine Learning
(MI) and Deep Learning (DL)

The part actually gives a clear idea of the relationship
between Artificial Intelligence (AI), Machine Learning (ML)
and Deep Learning (DL) to the reader. The main point of
view is, Deep Learning or Deep Neural Networks (DNN) or
Artificial Neural Networks (ANN) are commonly considered
as a subset of machine learning which in turns derived from
the concept of artificial intelligence. The machine learning
in which data parsed for learning phase and then apply
the learned dependencies of the data features to arrive at
a decision, whereas, in case of deep learning algorithms, it
appears in layers to create an Artificial Neural Network (ANN)
that can learn and make intelligent decisions on its own. The
artificial intelligence considered to be a global idea of ML and
DL and it can be defined by a way of enabling the machine
(e.g. a computer) to attain a given task based on a stipulated
set of rules called an algorithm.

As mentioned in the above paragraph, the deep neural
networks are able to make intelligent decisions on its own,
the work which experimented here mainly based on a neural
network, called Graph Convolutional Neural Network. Intelli-
gent network like GCN is actually different from traditional
neural networks algorithm and slightly varied from traditional
Convolutional Neural Networks (CNN). A normal neural
network consists of staked hidden layers, where each of the



neurons (or) nodes from the current layer receives input from
all the nodes from the previous layer, commonly known as
dense layers. Then performs a dot product of the data at the
input of the neuron and the weights of the neuron and passed
through an activation function respectively. These determined
values passing to the successive layers by concatenating the
input, hidden and output layers together. CNN is different from
the traditional way of constructing the dense layered neural
network. In CNN, the initial input features are convolved with
kernel input filters and then down-sampled through a pooling
layer and finally directed to a normal fully connected neural
network.

III. OVERVIEW OF THE WORK

A better overview of the work portrayed in figure 2. Before
stepping into the detailed structure of the whole work, it is
very relevant to brief the importance of mapping the gate
level netlist into the probabilistic graph model. The more
the mapping achieve accuracy, the more the model delivers a
valid result because the graph structure maintains the required
statical information. In order to execute the preliminary aim of
the work, different user-defined Verilog Procedural Interface
(VPI) functions had written and it in turn applied to extract all
the relevant details of the gate level netlist and formatted into a
probabilistic graph model through GML attributes. As stepping
forward into the successor stage of the work, GCN adopted
as the model in order to learn the whole designed probabilis-
tic graph. The more comprehensively explained hierarchical
architecture of GCN updated in the successive sections.

The netlist representation in graph domains subsequently
used to extract the adjacency matrix, which represented by
A in the figure 2. Correspondingly, a feature matrix X also
obtained by the random walk method using the node2vec
algorithm. The random walk method gives a feature vector
corresponding to a node with respect to its neighboring nodes.
The feature vector is mainly based on transition probabilities
from source to target nodes and also the degree of nodes.

These are the two main inputs given to the GCN model.
GCN then commenced learning the whole netlist as a proba-
bilistic graph. As soon as, it processes the adjacency matrix
and feature matrix, a model of the netlist is delivered. After
that, this model is used for the training phase and testing
phase for accomplishing the FDR prediction goal. Finally, the
predicted data is compared with the fault injection campaign
FDR data.

The whole deep learning framework was implemented in
MXNet.

IV. GRAPH CONVOLUTIONAL NETWORK
A. Recent Literature History

Different prodigious research work had been introduced in
the past decades of years, for generalizing the conventionally
established neural network like Recurrent Neural Network
(RNN) or Convolutional Neural Network (CNN) for working
on arbitrarily structured graphs, even though it is a great
challenging problem.

Gate-level Netlist

I o | e ProbabilisticGraph

X- Feature matrix
A - Adjacency
Matrix

Fault Injection campaign

GCN Model

Model
Validation

Fig. 2. Systematic block diagram of the scientific work

This work is mainly based on the GCN neural network.
A similar spectral approach introduced in [5]. By the GCN
model, it is able to exemplify the spectral rule approach in
the graphical learning process and it achieves significantly
faster training times with higher predictive accuracy and also
reaching state-of-the-art classification results on a number of
benchmark graph datasets.

B. Architecture

Figure 3 provide a architectural view of GCN. The work
made a GCN model of two hidden layers as given in figure 3.
The first layer in this work contains 4 hidden nodes and the
second layer contains 2 hidden nodes. These two hidden layers
stacked between the input layer and the output layer. The input
layer contains a number of nodes which equivalent to the gate-
level netlist elements of the circuits. It varies from circuit to
circuit. The model can able to model even for a large number
of elements of the circuit by this time. But it is difficult to say
a limit now. Both hidden layer’s nodes activated by the non-
linear function called a hyperbolic tangential function (Tanh).
During the training phase, the model is updating at each
step and optimized by an adaptive learning rate optimization
algorithm called *Adam’ [6]. The dimension of the hidden



layers can be chosen by arbitrarily and it depends on the parsed
adjacency matrix.

Outputs

Tanh @ o Tanh

Hidden Layer € R™! Hidden Layer € R"?

GCN input layer GCN hidden layers GCN output layer

Fig. 3. GCN model [3]

C. Model

The Graph Convolutional Network is a powerful neural
network architecture for machine learning on graphs. Fol-
lowing paper [3], revealing the fact that most of the graph
neural networks has been addressing a common architecture
in general, which lead to the name called Graph Convolutional
Neural Networks (GCN). The convolution name comes after
using the filter parameters shared across all locations of the
graph.

1) Model Definition: The created probabilistic graph model
of the gate-level netlist embedded into the GCN network with
the intention of learning the function of features in the graph.
The graph described as a G = (v,e), where v represents
vertices or nodes and € represents the edges between the
vertices. The graph characterized as,

® : Every nodes 7 is attributed with feature vector x; of
dimension D. So for N nodes, we have feature matrix X : N X
D.

® : Another important parameter is the adjacency matrix A,
which indicates the graph structure.

©® : The propagation rule will produce a node-level output
of Z: N x F, where the F represents a feature vector of each
output node.

® : Every neural network layer can be represented as in
equation 1.

HY = f(HO, A) (1)

Where H(+1) represents the any hidden layer node matrix
at (I + 1)*" level and it equivalent to the function of previous
hidden layer node matrix H' at [*" level and the adjacency
matrix A. H can be taken as the feature matrix X at initial
level, ie H(®) = X and Z at final level. Z represents the graph
level output.

2) Model Propagation Rule: In this whole paper, an exact
propagation model for the Graph Neural Network is adapted
to tackle the prediction problem.

A simple form of the layer-wise propagation rule abbrevi-
ated as:

f(H' A) = o(AH'W?) )

Where, W' is the [*" neural network weight matrix and o()
is the activation function like Rectified Linear Unit (ReLU),
while this work utilizes a hyperbolic tangent activation func-
tion (Tanh). Even though the above propagation rule seems to
be very simple, it was proved to be very powerful. The major
disadvantage of this kind of model is the adjacency matrix A,
which not normalized so that multiplication of A with feature
matrix will change the scale of feature matrix completely. The
second problem as mentioned by the authors of this model is,
the model does not consider the self-features by a node itself.
And the problem is completely taken away by providing an
identity matrix for the nodes.

The major problem overcame by a normalizing matrix A.
Normalization achieved by an inverse diagonal node degree
matrix D, such as the rows of D™ 'A sums to 1. So the
multiplication becomes more similar to taking the average
of neighboring nodes. This lead to symmetric normalization
ie, D-2AD~%, and it more than just a mere averaging of
neighboring features. These combined methods used in this
work as a propagation rule which exactly similar to the way
implemented in paper [3] and final layer-wise propagation rule
provided as:

F(H' A) = (D2 AD s H'W?) 3)

where, A=A+1T ; with I defined as identity matrix and D is
the diagonal degree node matrix of A.

3) Input Feature Matrix: In order to generate a feature
matrix corresponding to the nodes in the probabilistic graph,
we use a node2vec algorithm provided by [7]. node2vec is an
algorithmic framework for learning continuous feature repre-
sentations of nodes in networks. According to this algorithm, it
maps nodes to the low-dimensional feature space which max-
imizes the likelihood of preserving network neighborhoods of
nodes. This objective is optimizing by the stimulated biased
random walks. It preserves a spectrum of equivalences from
homophily to overall structural equivalence, by anticipating a
balanced exploration-exploitation trade-off.

V. GCN NEURON MODEL

Figure 4 represents a single slice of neuron pipeline which
implemented in the neural network. The GCN model neigh-
borhood aggression is typically different from the basic neigh-
borhood aggregation algorithm as mentioned in 4. It is clear
that to mention that, no bias factor is added and trained in the
model. A similar weight matrix W} used for the self-node
embedding and neighbor nodes embedding. This improves
and achieves more parameter sharing across the network and
down-weights the higher degree neighbors. The important
thing to notice is the normalization factor which varies across
the neighbors instead of a simple average. In equation 4, the
node v is abbreviated for the node targeted for embedding
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Fig. 4. A neuron model for embedding nodes

process, while N (u) in equation 5 represents the neighbouring
nodes of v. h¥ given in equation 5 is k‘* layer node v
aggregator as indicated in figure 5. The equation 5 pictorially
represented in figure 4. o() indicates a non-linear function,
simply named as an activation function in figure 4.

h = X, 4)
i Z hk—l
hv =0 Wk = (5)
wenmyue VI N@ [ N @) |
Z, = h¥ (6)

The variable h? shows a node v at the input layer and its
input equivalent to the node v features vector X, extracting
using a node2vec algorithm. The variable h’* denotes node
embedding of a node v at the last layer K of neural network
and the output node’s embedding with its features space
abbreviated as Z,,.

O\gﬂ\eg;ato’yﬁg%e

hff
@) /

@)

Fig. 5. Aggregation model of a node

Figure 5 shows an aggregator node in the network which
collects related information and features of neighboring nodes.

VI. RESULT : MODELING AND VALIDATIONS

As mentioned earlier in the paper, the model tested with two
circuits. The very first one is the double precision floating point
adder which extracted from the double precision floating point
core as a submodule, which meets the IEEE 754 standard and
available in the OpenCores website. The second circuit is also
accessible from OpenCores as 10-Gigabit Ethernet project,
where Management Data Input/Output (MDIO) function of
this module designed to meet 10-Gigabit Ethernet IEEE 802.3
standard. In MAC design based on the Xilinx LogiCORE
10-Gigabit Ethernet MAC, the transmitter and the receiver
incorporate the reconciliation layer. Therefore the receive
engine, as well as transmit engine, will be specifically designed
to interface the client and the physical layer.

A. Double precision floating point adder
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Fig. 6.  An overall FDR confidence interval (CI) comparison between
predicted and stimulated data

Figure 6 actually represents the confidence interval com-
parison of the predicted Functional Derating (FDR) data of
flip-flops with the FDR data generated from random fault
injection campaign. The CI calculated in python, by finding
the mean of the flip-flop’s FDR distribution and their FDR
distribution error for 95% confidence interval. There are no
electrical features extracted from the circuit’s gate-level netlist
to train the upholding neural network model. The training had
done with less than 10 flip flops FDR. The overall comparison
indicates the prediction almost following the stimulated SEU
fault’s FDR data.

As observed from the histogram graph depicted in figure
7, the prediction of the FDR probability distribution function
(PDF) of the flip-flops comparatively very close to the original
PDF of the flip-flops.

Figure 8 compares the sorted FDR value of simulated
and predicted data. This sorted FDR plot only shows how
an overall functional derating curve behaves with respect to
flip flops. In fact, it does not provide any individual flip-flip
comparison. The work is currently extending to do that. This
comparison plotted to provide an intuition to the reader that
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the model is actually able to get a reasonable approximation
with respect to their independent structural information. This
is specifically understandable when the sorted FDR graph in
figure 12 from Ethernet MAC compared here, which entirely
different from floating point adder.

B. Ethernet MAC

Here the modeling tries to validate on Ethernet MAC circuit.
This reveals how powerful is this algorithm to predict on the
completely different histogram with a training sequence of
5 flip-flops (ie, less than 1 % of overall flip-flop number).
Figure 9 represents the overall confidence interval comparison
of the predicted FDR data with FDR data obtained from fault
injection campaign on the sequential elements in each clock-
cycle independently. Figure 10 represents the PDF where
some of the data points are filtered, which considered being
outliers within the data space and plotted the remaining data.
Simultaneously figure 11 detailing the histogram comparison
for full data obtained through the simulation process but
here accuracy of the histogram prediction achieved through
a comparatively higher number of epochs.
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VII. MODEL DRAWBACK

Even though GCN models are achieving their accuracy
within a reasonable period of time, the stability for providing
good results can be degraded if we increase the number of
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hidden layers of graph convolutional neural networks beyond
a certain number. This fact is very important if we consider
very large circuits. But some researchers coming with new
optimization methods to overcome the challenges faced by
GCN.

VIII. FUTURE WORK
A. Individual flip-flop’s FDR prediction

All the above analysis explaining an overall distribution
and overall data envelope comparison (like histogram com-
parison), but the algorithm is not producing a comparison of
individual FDR data prediction. This aim could be achievable.
This clearly concluded from figure 13 because the individ-
ual predicted FDR of trained flip-flop sequence pretty well
approximating to it’s the original FDR. This example taken
from the case of floating point adder circuit.

Now after examining the trained sequence and it’s predicted
values from figure 13, we can hope to extend this work with
the training phase composed of a higher number of flip-flops
for achieving more accurate values.

B. Classification or clustering of registers based on FDR

It is already beginning to contemplate a future important
application based on this model. It is the ability to do clus-
tering registers based on the trained and predicted FDR. Once
the model started to succeed in the prediction of individual
FDR, then the classification aim will eventuate in reality.

IX. CONCLUSION

The works implemented in this paper depict the importance
of modeling of FDR due to the soft error called SEU in
microelectronic systems using a GCN network. An achieved
goal by this model is the modeling of an arbitrary circuit with
good accuracy and can predict the distribution of FDR derating
factors. The detailed graphical comparison of predicted and
stimulated FDR data for two completely different circuits,
explicitly shows the prediction capability of the model. Future
work for predicting more accurate individual flip-flop’s FDR
data going on, which may result in another dimension of
applications including clustering of registers.
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