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Abstract—In this paper, an expression for the asymptotic More recently, the study of the weight distribution of

growth rate of the number of small linear-weight codewords é  pinary LDPC codes has been extended to irregular ensembles.

irregular doubly-generalized LDPC (D-GLDPC) codes is derved. i hortant works in this area aré][9]. [10], [11]. In_[11] a
The expression is compact and generalizes existing resulfer let lution for th Wth rat ffh — ht di tfib
LDPC and generalized LDPC (GLDPC) codes. Assuming that compiete solution tor the gro rate or the weig ISthon

there exist check and variable nodes with minimum distance, ~Of binary irregular LDPC codes was developed. One of the
it is shown that the growth rate depends only on these nodes.PA main results of [[111] is a connection between the expected
important connection between this new result and the stabity  pehavior of the weight distribution of a code randomly chrose
condition of D-GLDPC codes over the BEC is highlighted. Such from the ensemble and the parameé(0)p'(1), A(z) and

a connection, previously observed for LDPC and GLDPC codes, . ) .
is now extended to the case of D-GLDPC codes. p(z) being the edge-perspective VN and CN degree distribu-

Index Terms—Doubly-generalized LDPC codes, irregular code tions, respectively. More specifically, it was shown that do

ensembles, weight distribution. code randomly chosen from the ensemble, one can expect an
exponentially small number of small linear-weight codesigr
|. INTRODUCTION if 0 < X (0)p/(1) < 1, and an exponentially large number of

Recently, low-density parity-check (LDPC) codes have beasmall linear-weight codewords X'(0)p'(1) > 1.
intensively studied due to their near-Shannon-limit perfo This result establishes a connection between the statistic
mance under iterative belief-propagation decoding. Binaproperties of the weight distribution of binary irreguladPC
regular LDPC codes were first proposed by Gallager in 1968des and the stability condition of binary irregular LDPC
[1]. In the last decade the capability of irregular LDP@odes over the binary erasure channel (BEC) [3], [4]¢f
codes to outperform regular ones in the waterfall region denotes the LDPC asymptotic iterative decoding threshold
the performance curve and to asymptotically approach (over the BEC, the stability condition states that we always
even achieve) the communication channel capacity has bd®wve
recognized and deeply investigated (see for instanice[B?], [ N p /
[, [5], [6], [7]). ¢ < [N (0)p'(1)] )

It is usual to represent an LDPC code as a bipartite graph Prior to the rediscovery of LDPC codes, binary generalized
i.e., as a graph where the nodes are grouped into two disjdi?PC (GLDPC) codes were introduced by Tanner in 1981 [8].
sets, namely, the variable nodes (VNs) and the check node§&SLDPC code generalizes the concept of an LDPC code in
(CNs), such that each edge may only connect a VN to a Ctiiat a degreea-CN may in principle be anys, ) linear block
The bipartite graph is also known as a Tanner graph [8]. tode,s being the code length aridthe code dimension. Such
the Tanner graph of an LDPC code, a generic degr&® a CN accounts fors — h linearly independent parity-check
can be interpreted as a lengghrepetition code, as it repeajs equations. A CN associated with a linear block code which is
times its single information bit towards the CNs. Similady not a SPC code is said to beganeralized CNIn [8] regular
degrees CN of an LDPC code can be interpreted as a lengthGLDPC codes (also known as Tanner codes) were investigated,
single parity-check (SPC) code, as it checks the parity ef tthese being GLDPC codes where the VNs are all repetition
s VNs connected to it. codes of the same length and the CNs are all linear block

The growth rate of the weight distribution of Gallager'sodes of the same type.
regular LDPC codes was investigated id [1]. The analysis The growth rate of the weight distribution of binary GLDPC
demonstrated that, provided that the smallest VN degreecisdes was investigated in [12], [13], [14], [15]. In_[12] the
at least 3, for large enough codeword leng¢h the expected growth rate is calculated for Tanner codes with BCH check
minimum distance of a randomly chosen code in the ensemblamponent codes and length-2 repetition VNs, leading to
is a linear function of\V. an asymptotic lower bound on the minimum distance. The
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Fig. 1. Structure of a D-GLDPC code.

same lower bound is developed in [13] assuming HammindPC (D-GLDPC) codes generalize the concept of GLDPC
CNs and length-2 repetition VNs. Both works extend theodes while facilitating much greater design flexibilityt@rms
approach developed by Gallager [d [1, Chapter 2] to shaw code rate[[18] (an analogous idea may be found in the
that, for sufficiently largeV, the minimum distance is a linearprevious work [19]). In a D-GLDPC code, the VNs as well
function of V. The growth rate of the number of small weightis the CNs may be of any generic linear block code types. A
codewords for GLDPC codes with a uniform CN set (all CNlegreeq VN may in principle be anyq, k) linear block code,
of the same type) and an irregular VN set (repetition VNg being the code length aridthe code dimension. Such a VN
with different lengths) is investigated in_[14]. It is showns associated wittk D-GLDPC code bits. It interprets these
that for sufficiently largeN, a minimum distance increasingbits as its local information bits and interfaces to the CN se
linearly with N is expected when either the uniform CN sethrough itsq local code bits. A VN which corresponds to a
is composed of linear block codes with minimum distance &hear block code which is not a repetition code is said to be a
least 3, or the minimum length of the repetition VNs is 3.generalized VNA D-GLDPC code is said to beegular if all
On the other hand, if the minimum distance of the CNs aruaf its VNs are of the same type and all of its CNs are of the
the minimum length of the repetition VNs are both equal to 2ame type and is said to lreegular otherwise. The structure
then for a randomly selected GLDPC code in the ensemble wka D-GLDPC code is depicted in Figl 1.
expect a minimum distance growing as a linear or sublinearin this paper the growth rate of the weight distribution
function of N (for large V) depending on the sign of the firstof binary irregular D-GLDPC codes is analyzed for small
order coefficient in the growth rate Taylor series expansioweight codewords. It is shown that, provided there exist
The results developed ih [14] were further extended in [05] both VNs and CNs with minimum distancz a parameter
GLDPC ensembles with an irregular CN set (CNs of different/ P~*(1/C) discriminates between an asymptotically small
types). It was there proved that, provided that there exid$ Cand an asymptotically large expected number of small linear
with minimum distance2, a parameten’(0)C, generalizing weight codewords in a D-GLDPC code randomly drawn from
the parameten’(0)p’(1) of LDPC code ensembles, plays ina given irregular ensemble (the functiaf(x) is defined
the context of the weight distribution of GLDPC codes thin Section[1ll). The parametet/P~'(1/C) generalizes the
same role played by (0)p/(1) in the context of the weight above mentioned paramete¥§0),’(1) and\’(0)C to the case
distribution of LDPC codes. The parametéris defined in where both generalized VNs and generalized CNs are present.
Section 111 The obtained result also represents the extension to the D-
Interestingly, this latter results extends to binary GLDPGLDPC case of the previously recalled connection with the
codes the same connection between the statistical preperstability condition over the BEC. In fact, it was proved [irg]1
of the weight distribution of irregular codes and the siapil that the stability condition of D-GLDPC codes over the BEC
condition over the BEC. In fact, it was shown [n [16] that thés given by
stability condition of binary irregular GLDPC codes oveeth . .
BEC is given by ¢ <P (1/0). ®3)

¢ < [)\’(O)C]fl. ) The paper is organized as follows. Sectioh Il defines the D-
GLDPC ensemble of interest, and introduces some definitions

Generalized LDPC codes represent a promising solution famd notation pertaining to this ensemble. Seclioh Il dsfine
low-rate channel coding schemes, due to an overall rate Idggher terms regarding the VNs and CNs which compose the
introduced by the generalized CNs [17]. Doubly-generdlizéd-GLDPC codes in the ensemble. Finally, Secfion IV states



and proves the main result of the paper regarding the growthThe growth rate of the weight distribution of the irregular

rate of the weight distribution. D-GLDPC ensemble sequenéé 1.} is defined by
Il. IRREGULARDOUBLY-GENERALIZED LDPC CoDE . 1
ENSEMBLE Gla) = lim 5, log Em,, [Nan] (7)

We define a D-GLDPC code ensemblel,, as follows, whereE,, denotes the expectation operator over the ensem-
wheren denotes the number of VNs. There arg different pje M,,, andN,, denotes the number of codewords of weight
CN typest € I. = {1,2,---,n.}, andn, different VN, of 3 randomly chosen D-GLDPC code in the enserblg.
typest € I, = {1,2,---,n,}. For each CN type& € I, The limitin (@) assumes the inclusion of only those positive
we denote byh,, s, andr, the CN dimension, length andintegersy, for which an € Z andE v, [Nay,] is positive (i.e.,
minimum distance, respectively. For each VN types I, \here the expression whose limit we seek is well defined).
we denote byk:, ¢; and p, the VN dimension, length and Note that the argument of the growth rate functiGie) is
minimum distance, respectively. Fore I., p; denotes the equal to the ratio of D-GLDPC codeword length to the number

fraction of edges connected to CNs of typeSimilarly, for of vNs; by (@), this captures the behaviour of codewordsdine
t € I,,, A denotes the fraction of edges connected to VNS ¢f the block length, as ir [11] for the LDPC case.

type t. Note that all of these variables are independent.of

The polynomialsp(z) and \(x) are defined by Definition 2.1: An assignmenis a subset of the edges
of the Tanner graph. An assignment is said to haegght k&
p(z) = Z pex* ! if it has k elements. An assignment is said to dfeeck-valid
tele if the following condition holds: supposing that each ed@e o
and the assignment carrieslaand each of the other edges carries
Az) = Z Azl a0, each CN recognizes a valid codeword.
tel,

Definition 2.2: A split assignments an assignment, to-
If E denotes the number of edges in the Tanner graph, thether with a subset of the D-GLDPC code bits (called a
number of CNs of type € I. is then given byEp;/s:, and codeword assignmentA split assignment is said to hagelit
the number of VNs of type € I, is then given byEX,/q.. weight(u,v) if its assignment has weight and its codeword
Denoting as usuafo1 p(z)dz andfo1 Az)dz by [pand [ X assignment has elements. A split assignment is said to be
respectively, we see that the number of edges in the Tanobeck-validf its assignment is check-valid. A split assignment
graph is given by is said to bevariable-validif the following condition holds:
P=_ supposing that each edge of its assignment carriésaad

IA each of the other edges carrie$),aand supposing that each
D-GLDPC code bit in the codeword assigment is set &nd
each of the other code bits is settpeach VN recognizes an
input word and the corresponding valid codeword.

and the number of CNs is given by = E [ p. Therefore,
the fraction of CNs of type € I. is given by

_ Pt
Yt = Stfp (4)

and the fraction of VNs of type € I, is given by

Note that for any D-GLDPC code, there is a bijective corre-
spondence between the set of D-GLDPC codewords and the set
of split assignments which are both variable-valid and khec

At valid.
Oy = 5
t Qth ( )
Also the length of any D-GLDPC codeword in the ensemble 1. FURTHER DEFINITIONS AND NOTATION

is given by . _ . .
The weight enumerating polynomial for CN typec 1. is

N=Y (%) ey — % T ke ©) given by

ter, It ter, I

Note that this is a linear function af. Similarly, the total A(z) = ZASf)iUU
number of parity-check equations for any D-GLDPC code in u=0 .
the ensemble is given by 1+ Z Ag)xu _

M= fﬂ g o e
P St
tel. Here A > 0 denotes the number of weighteodewords for

A member of the ensemble then corresponds to a permutatioNs of typet. Note thatAﬁ? > 0 for all t € I.. The bivariate
on the ¥ edges connecting CNs to VNSs. weight enumerating polynomial for VN typee I, is given



by IV. GROWTH RATE FORDOUBLY-GENERALIZED LDPC
CoODE ENSEMBLE

ke e
BW(z,y) = ZZBu%uyv The following theorem constitutes the main result of the
u=0v=0 paper.
ke  qt

(£) gty v Theorem 4.1:Consider an irregular D-GLDPC code en-
Y semble sequenc#,, satisfyingr = p = 2. For sufficiently
small o, the growth rate of the weight distribution is given by

Il
-
N
N
ﬁbd

Here BffZJ > 0 denotes the number of weightcodewords 1 )
generated by input words of weight for VNs of typet. Also, G(a) = alog [m] +0(a”) . (12)
for eacht € I, corresponding to the polynomi@® (z, y)

we denote the sets The theorem is proved next. For ease of presentation, thaf pro

S = {(i,§) € Z* - Bz(t]) > 0} 8) is broken into four parts.

A. Number of check-valid assignments of weightoverym
S; = 8,\{(0,0)} . ) CNs of .typet el | |
Considerym CNs of the same typee I.. Using generating
We denote the smallest minimum distance over all CN typésnctionsf] , the number of check-valid assignments (over
by these CNs) of weightm is given by
r=min{r; : t € 1.}

and

N™ (em) = Coeff [ (4 (;c))vm 2]
and the set of CN types with this minimum distance by o .
where Coeff[p(z),2¢] denotes the coefficient af¢ in the
Xe={tel. : rv=r}. polynomial p(x). We now use the following result, which

_ appears as Lemma 19 in J11]:
We also define

re ALY Lemma 4.2:Let A(z) = 1+ Y.°__A,z", wherel <
Cy = —— ¢ < d, be a polynomial satisfyingl, > 0 and A,, > 0 for all

S
! ¢ < u < d. Then, for sufficiently smalg,
for eacht € 1., and

.1 )
C=3 nC. (10)  [Jim 7 logCoeff [(A(:c)) ,x“}
teX, £ ecA
=21 ° 0(&? 13
We note thatC; > 0 for all t € I., soC > 0. Og< I3 >+ (€ @3

Similarly, we denote the smallest minimum distance over

all VN types by The limit in (I3) assumes the inclusion of only those positiv

integers ¢ for which & € Z and Coeff[(A(x))¢, 2% is
positive (i.e., where the expression whose limit we seek is
and the set of VN types with this minimum distance by  well defined). A proof of this lemma may be found in the
Appendix; our proof is based on arguments fram|[10] and
Xo={tel, : pr=p}. Lagrange multipliers, and constitutes a different appnoiac
that taken in[[11].

p=min{p; : t € I,}

In the specific case wherg = 2, we also introduce the X : . ®
following definitions. For eacht € X, define the sefl, = Applying this lemma by substitutingl(z) = A™ (z), £ =
{i€Z : BY >0} - note that these sets are nonempty. Alsg/” and¢ = ¢/, we obtain that withy fixed, asm — oo we
define the ﬁolynomiaP(a:) by have, for sufficiently smalt,
oY) N('ym)(em) — Coeff [(A(t) (x))'ym gcem] _
; . ,t - 9
Pla)=>_ Ay — = ay
tex, ier, It € er Ay 2
v ¢ exp 4 m | — log f' + O(e%) (14)
and denote its inverse bi~!(x). Since all the coefficients ¢
of P(I) a.re .pOSItNe’.P(I) IS mpnotonlcally_lncreasmg and. IHere we make use of the following general res[it] [20]. betbe the
therefore its inverse is well-defined and unique. Note that jumber of ways of obtaining an outcomiec Z in experimentA, and let
the caser = p = 2, bothC and the polynomiaP(z) depend b; be the number of ways of obtaining an outcomes Z in experiment
0n|y on the CNs and VNs with minimum distance equaﬂto B. Also let ¢, be the number of ways of obtaining an outcorfigj) in
. . . the combined experimerit4, B) with sumi + j = k. Then the generating
Finally, note that .throughout this paper, the notatior=  functions A(z) = °, a;z’, B(x) = >, bja? andC(z) = 3, cpa are
exp(1) denotes Napier’s number. related byC(z) = A(z)B(x).



B. Number of check-valid assignments of weiglnt wherez = ¢*. Now using [16), we obtain

Next we derive an expression, valid asymptotically, for the 1
number of check-valid assignments of weight. For each ﬁ Z Cipiz"™ =0 .
t € I., let ¢m denote the portion of the total weighin tele
apportioned to CNs of type Thene; > 0 for eacht € I,
and Ztelc e = d. Also denotee = (e; €2 -+ €,.). The
number of check-valid assignments of weight satisfying
the constrainte is obtained by multiplying the numbers of 1 oo 1 e
check-valid assignments of weightn over~,m CNs of type Tp ; Pzt~ I t;; piCiz (19)
t, for eacht € I, © ©

¢,
m —2".
Nc(e) (0m) = H Nc(jtt )(etm) fp

tel.
_ o Applying this approximation, we obtaip = 0 if ¢t ¢ X, and
where the fractiony, of CNs of typet € I. is given by [4). ¢ — Kp,C, if t € X,, where K is independent of. Then

Asn — oo, we havem — oo and so we obtain using_(114) (I6) yieldsK = 6/C, and we obtain the solution
that for sufficiently smalb,

The left-hand side of this equation involves a sum of positiv
terms. Ford sufficiently small, we may approximate

(20)

- ptCt(S/C if t e X,
N (om) — €= { 0 otherwise.
(t)
IT exp {m liﬁ log <m> +O() } This solution satisfies {17). When substituted infia] (15), it
tel, Tt & yields the following result: ag — co

a5 (m(28)) 0]} 09 v enfuffun(2) o)

The number of check-valid assignments of V‘éei@m, C. Number of variable-valid split assignments of split virig
which we denoteN..(om), is equal to the sum iV, )(5m) (tn,on) overyn VNs of typet € I,

over all admissible vectors However, the asymptotic expres-
sion asn — oo will be dominated by the distributioa which
maximizes the argument of the exponerﬁaITherefore, our
next step is to maximize the function

Consideryn VNs of the same type € I,,. We now evaluate
the number of variable-valid split assignments (over these
VNs) of split weight(7n, on). Using generating functior,
this is given by

€ eptC't)
€)= —1lo yn
fle) ; Tt & <€tfp Nﬂ")(Tn,an) = Coeff [(B(t) (a:,y)) ,xmy‘m}
subject to the consraints where Coeff[p(z,y), zy¢] denotes the coefficient af*y< in
g(e) = Z =0 (16) the bivariate polynomial(z, y). We make use of the following
L lemma from [10, Theorem 2].
and Lemma 4.3:Let
e>0 Vtel.. a7) v d
We solve this optimization problem using Lagrange mulipli B(z,y) =1+ Z ZBu,UCC"y”
ers, ignoring for the moment the final constraint. Since u=1v=c
of 1 p:C, dg wherek > 1 and1 < ¢ < d, be a bivariate polynomial
5e, = 7,08 afp) 9, satisfying B,, > Oforall 1 < u < k, ¢ < v < d.

) . For fixed positive rational numberé and 0, consider the
for all t € I., we have to solve the. equations (wherex is gt of positive integer¢ such thatél € Z, §¢ € 7 and

the Lagrange multiplier) Coeff [(B(z,y))!, 2¢y?‘] > 0. Then either this set is empty,
1 p:Cy or has infinite cardinality; ift is one such?, then so isjt
— log (—> +u=0 Vtel. (18)

T e fp
. . 3We use the following result on bivariate generating furti@0]. Leta; ;
together with [(IB), for then. + 1) unknowns{y, €}. First, be the number of ways of obtaining an outcofagj) € Z2 in experimentA,

@) yields and |(?tbk,z be the number of ways of obtaining an outco(\ﬁgl) €7%in
0:Cy experimentB. Also let ¢, 4 be the number of ways of obtaining an outcome
¢ =——2"t Vtel, ((¢,4), (k,1)) in the combined experimentA, B) with sumsi + k = p
fp and j + I = q. Then the generating functiond(z,y) = Zi’j a;, 'y,
B(z,y) = > beazyt and C(z,y) = 3, , cp,qzPy? are related by
2Observe that asr — oo, Y, exp(mZ;) — exp(m max¢{Z¢}) C(z,y) = A(z,y)B(z, y).



for every positive integerj. Assuming the latter case, the Next, we note that the expected number of D-GLDPC

following limit is well defined and exists:

lim
£L—00

% log Coeff {(B (z,9))" :v“y‘%]

= max Z 1,5 log
(i,9)€S

(h2) e

whereS = {(i,j) € Z* : B;; > 0}, n = (0i5),j)es, and
the maximization is subject to the constraidty; . c s 7i,; =
1, Z(Z Hes i =¢, Z(Z fes I = 6 andn; ; > 0 for all
(1,5) € S.

Applying this lemma by substituting(z, y) = B®(z,y),
l=9n,€&=r71/vandf = o/v, we obtain that withy fixed,
asn — oo

Ns_jtn)(Tn,an) Coeff KB(t (z, y)) n,:c Yy } (23)
{ B
— exp < ) } (24)
M;

®)
where the maximization ovey® = (ﬁf;)(zg)est is subject

¥

£ exp {nXt(V)(T, U)} (25)

to the constraints_; ;) .s, 775,] L > jess ”71(,7) =1/,

Z(i,j)es; m;; =o/y andnm >0 for all (4,5) € S; (recall
that the setsS; and.S;” are given by[(B) and{9)).

t

ny max Z 771 1og
(i,5) €St

D. Growth rate of the weight distribution of the irregular D-
GLDPC code ensemble sequence

Recall that the number of check-valid assignments of wei

dm is N.(dm); also, the total number of assignments of weight
om is (fn) Therefore, the probability that a randomly chosen

assignment of weighim is check-valid is given by

wom) /(5

6m> '
Here we adopt the notationm Bn; also we have
E = m/[p = n/ [ X The binomial coefficient may be
asymptotically approximated using the fact, based onisgid

approximation, that as — oo [11]

(o) o0 o102 (5) + 002}

(valid for 0 < o < 7 < 1) which yields, in this case,

i) e s (57) <o)
—exp<in |flog| =—— |+ O

( 5n pym|fleg| 5 ™ (8%)

asn — oo. Applying this together with the asymptotic

expression[(21), and assuming sufficiently smgllwe find
that asn — oo (exploiting the fact that [ p =3 [ ))

Puaiig(8n) — exp{nY (5)}

Paiig(0m) =

(26)

where

Y(B) = glo

g (;—ﬁ) — Blog (ﬁ—;/\> +0(8%) .

codewords of weightvn in the ensembleM,, is equal to the
sum overs of the expected numbers of split assignments of
split weight(an, Sn) which are both check-valid and variable-
valid, denotedV"*

an,Bn*

N’UC

om[}n :

Z Em, [

This may then be expressed as

Eum,, [N,

EM n [Nan] =

> Paia(Bn) >
B

> ar=a
> Be=8

[T N (cun, i)

tel,

| |

where the fractiord; of VNs of typet € I, is given by [5)
and the second sum is over all partitions @fand 8 into
n, €elements, i.e., we have;,3; > 0 for all ¢t € I,, and
Zte[u Qy = Q, Ztelv Be = B.

Now, using [2B){(2b), a® — oo we have for eacht € I,

NS{") (agn, fin) — exp {nXt(Jt)(Oét, Bt)} ,

B
( ) @
m;

(t)
)(i.jyes, is subject to

where, for each € I,

(at,Bt)—(Stmax Z 771 ) Jog
n

(4,7)€S: i,

and the maximization oven® = (5"

, i,j
constraints

S ol = (28)
(i,5)€St
Z ”71(3' =/ (29)
(i,7)€S;
Z Jﬁz(tj) = Bt/ (30)
(i,)€S,
and
0 >0 V(i) €S . (31)
Therefore, recalling(26), we have thatas— co,
EMn [Nan] —
> exp{ [Z X (e, Be) + Y (B) } (32)
B Y o=« tel
> Be=p

Next, for eacht € I, we define

log ( )
770 0

(t)

Fy(n") = 70,0

S

(i,5)€Sy



Note that the expressioh ([32) is dominatednas: oo by the Z fesr jy” = By, and'y Y >0 for all (i,7) € S, . We
term which maximizes the argument of the exponential. Tho@serve “that this maX|m|zat|0n may be recast as

we may write
eBYs,
0.
G 5 ) cBy) —max | D D yleg 7Y
(a)—max max Z 1tm Z ;. ; log 0 te€ly (4,5)es, J

o=a | i i i
= s J + 201 ( 5 ) — B(~) log (_e )
A
B‘[ where the maximization, which is now ovey =
t . . .
_ Blog (ﬁj")\) N O(ﬁz)} (33) (%‘(,g?)tefv,(z‘,j)es;v is subject to the constraints

where the maximization ovep® = (nft)) ;. neg- (for each tely (i5)eS;

t € 1,) is subject to constraint§ (29) and (30} together with ®

m(tj) > 0 for all (i, §) € S; . and~;; >0 forall t € I, (i,5) € Sy, and where

We next have the following lemma. B(y) = Z Z j'7'(t') '
Lemma 4.4:The expressiony_,.; 6:F(n™) is O(a?) tel, (i, j)es:

for anyn® satisfying the optimization constrainfs [28)3(&1)

Making the substitutionxf?

S, , we obtain

A proof of this lemma is given in the Appendix. It follows

from Lemmal44 that the expression,.; d:F:(n ®) is BWs
) _ (t) €D 0t

O(a?) for the maximizingn(®. Also, sinces/a is bounded ~ G(a) = amax | Y > 1) log

between two positive constants, any expression whi¢h(i#) Y Lier, (i,))eS; av,

must necessarily also @(a?). Therefore
+ 2v) lo ) —z(w)lo —
eB() r 08 az(v) [ A & az(v) [ A
G(a) = max max [Z(Stmax Z 77l(tj) og< () )
th 5 Ltel, (i.)eS; i.j where the maximization over = (V'(t))tel (i.j)es; is subject
3 eC e to the constraint ., > ;yes- w( =1 andy ) > 0 for
+=log ( o ) —Blog ( 7~ | | +0(?) alltel,, (i,j) € S;, and where
roC\BJ A BIA vr (4,7) €5t
where the optimization is (as before) subject to the comga 2(v) = Z Z jVi(.,tj) :
(29) and [3D) together With]ltj > 0 for all (i,j) € S;. tely (i,j)eS;

In what follows, for convenience of presentation we Sha,ﬂssummg the conditiom = 2, we may write
temporarily omit theD(a?) term in the expression for growth

rate. G(a) = amax (K1 (v) + K2(v)log o)
Next we make the substitutiomf, = 5t771 forall t € I, v
(i,§) € S;". This yields where o
BWs Kalv) = 2 Z Z Vig -
G(a) = max _max [ max Z %(t]) log (%) rel (a)es,
b %%Fg er, 7 (i,/)ESr 7 i Next, assuming the conditign= 2, we make the observation
t o that
+ é lo <£) — ﬁ]o (L) . (t)
r e\ B E\B A )= Y =2y 3 uf
tel, (i,§)€S, tely, (i,5)€S;

where the maximization ovey®) = (v J))(Z jes; (for each

. . with equality if and only ifv*) = 0 for all ¢ I, S,
t € 1,) is subject to the constralntg (i) eS Z'ylfj = qy, q y y Wi € L, (i,]) €

W|th j > 2. ThereforeKs(v ) > 0 with equality if and only

“Here we use the following standard notation: the real-whfuection f (x) if I/ j =0forallt € I, (i,5) € §, with j > 2. Letv; and
is said to beO(g(z)) if and only if there exist positive real numbetsand Y2 D€ two distributions satisfying the optimization consttsj

e, both independent of, such that and suppose thakz(v1) > 0 and K(r2) = 0. Then for
()] < kg(z) YO<z<e. sufficiently smallc, we must have

Ki(v1) + Ka(vi)loga < K1 (va) + Ka(va) loga .



This follows from the fact that the inequality forall t € X,, ¢ € L, and for some Lagrange multiplier

A € R. Substituting back intd (34) and usirig {37) yields
Ky(vi)loga < Ki(v2) — Ki(v1) 9 d(34) ng{37) y

will always be satisfied fora sufficiently small (since log R = Z Z L@ (/\i “log <5(’7))>
loga — — oo asa — 0, and recalling tha#s(v1) > 0). 52 )

.. R teX, i€l
Therefore, for sufficiently smalk, the vectorv which s(9)

maximizes K (v) + K»(v)loga must satisfy»{) = 0 for + s(v) log (7> =X (40)
allt e 1,,(i,j) € S, with 7 > 2. Note that this implies that

the maximum, and hence the growth rate, depends only P&, the maximum value of the functidng R(v) is equal to
the check and VNs with minimum distance equabtoAlso, the Lagrange multiplier. Thus we have

recall that for eacht € X, the setL, = {i € Z : Bfg) > 0};

we contract the vectar to include only variablewi(g where Bz(tQ) - o 5
t € X, andi € L; (since only these may assume positive (R \s(@)s;) "2
values).
The growth rate may be written as forall t € Xy, t € Ly. SUbStltUtlng this into the LHS Omg)

and recalling the definitio_(11), we obtain

(h) - syl

BW
G(a —amax{z ZVZ 1Og< z(2t)6t>

teXy i€ Ly
teX, 1€l
+ s(v) log %] 2 amax (log R(v)) (34) ~(t
“ - S Y ans
where 1 teX, i€Ls Cs(&
¢2 (35)
2C [ A where we have used](5),_(35) arid](36). This completes the
and where the functioa(v) is given by proof of the theorem. Note thalf (12) is a first-order Taylor
. series expansion around = 0 which directly generalizes
Z Z V( ). (36) the results of[[111] and [15] (for irregular LDPC and GLDPC
teX, i€Ly codes respectively) to the case of irregular D-GLDPC codes.

Our result indicates that for this case also, the parame-
ter 1/P~1(1/C) plays an analagous role to the parameter
X(0)p'(1) for irregular LDPC codes, and to the parameter

The maximization over = (uffg)tefu,@t in (34) is subject
to the constraints

Z Z iv 1(2> = (37) X(0)C for irregular GLDPC codes.
tel, icLy
and V. CONCLUSION
(t) >0 Vie X,,i€L,. (38)

An expression for the asymptotic growth rate of the weight
Let the vectow which maximizes(34) be denoted By Then, distribution of D-GLDPC codes for small linear-weight cede
our task is to show that words has been derived. The expression assumes the egistenc
_ 1 of minimum distance2 check and variable nodes, and in-
R(w) £ R = A0 volves the evaluation of a polynomial inverse, derived from
(1/C) the minimum distance variable nodes, at a point derived
i.e., that from the minimum distance@ check nodes. This generalizes
P (l) _ 1 , (39) known results for LDPC codes and GLDPC codes, and also
¢ generalizes the corresponding connection with the stabili
where the parametef and the polynomiaP(z) are defined condition over the BEC.
in (I0) and [(11L), respectively. We show this using Lagrange

multipliers, ignoring for the moment the constraintl(38)e W APPENDIX
have
® PROOF OFLEMMA [4.2
dlog R(v) 4,20t s(v) oh(v) .
T 0 = log ( N0 ) + log (7) ; PO =1 First consider the set of positive rational numbérsuch
0,2 02 0,2 that¢él € Z and Coeff({A(z)},2%¢) > 0. Then it is easy to
so that, at the maximum, see that either this set is empty, or it has infinite cardiygili
. t is one sucH, then so isjt for every positive integej (proof
log Bi20t +log <S(V)) =\ routine by induction). The former case is not of interest$o u
ﬂfg) ¢ here. In the latter case, the following limit is well definetba



exists [10, Theorem 1]: It is easy to see that this solution satisfi€s](44). Finally,
substituting the solutiori_ (47) intd_(45) gives

1 ¢
lim = log Coeff |(A i
Palint [( (@)= } mgxf(ﬁ) = (§_1> log (1_§> +§10g<0?c>
. C (& (&
= max Bilog ( Z) (42) A
ZGZS Bi — <§ _ 1) <_§ + 0(52)) + §1og (2)
c c £
whereS = {i € Z : A, > 0}, B = (Bi)ics, and the B 51 ecA, 0
maximization is subject to the constraints I g +0(&) -
_ Zﬁi 1 42) This completes the proof of the lemma.
i€S PROOF OFLEMMA
) Consider anynY) which satisfies the optimization con-
h(B) = Zlﬂi =< (43)  straints [(28)i(31). Sincer = >, au, a small implies that
ies ay is small for everyt € I,,. From constrain{(29) we conclude
and that nftj) is small for everyt € I,, (i,j) € S;, and son)
B3>0 Vies. (44) is close tol for all ¢ € I,,. Formally, for anyt € I,, the term

in the sum ovem®) in 27) corresponding tdi, j) = (0,0)

We solve this optimization problem using Lagrange multinay be written as (here we use28), and the Taylor series of

pliers, ignoring for the moment the final constraint. Definin log (1 — x) aroundz = 0)

Zﬂ110g<ﬁl> (45) (2)1og<n ) ( Sl )1og(1— > m(,?)

i€s (i,9)€S; (i,9)€S,
we have
_ ) _ (t (®)
of A\ 9y on =( _Z,m’-" 1)< Z 5+(( Z i) )>
P log ; o = 1 ; =1 ('L#J)est (ZJ)GS (17‘])65
9B; eBi Bi 0B;
. _ Z n(t)+0(( Z ,,7()) )
for all i € S. Therefore we obtain - ” - "
(i,5)€S, (i,9)€S,
log Ai T+ pi=0 (46) Therefore we have
el ) (t)
Fy(n® ‘ <k 48
for all i € S, where\ and . are Lagrange multipliers. These W] < t((. %:S 771,7) “o
1,

equations, together with (42) aid143), yi¢l§|+2) equations
in the (]S| 4 2) unknowns{\, 11, 3}. Settingi = 0 in (48) for somek; > 0 independent o(n”}(Z jes; - Itfollows that

yields
fo=e"! S abm®)| < Y6 |Em)| < Yo X ul)
and substituting this back intG (46) gives teh tely el aesy (49)
B; = BoA;zt where §, = k;6; for eacht € I,. Also, by [29) we have

Y iess nftj) < oy /6, and therefore
for all i € S, wherez = e#. So from [43B)

Bo S A = ¢ Soa( X a) SZ(g;)a% (50)

— tel, (i,5)€S; tel,
1€
Denoted = max;cz, {0;/67}; then, combining[{49) and(50),

2
Z 5iF(nM)| <6 Z a? <4 <Z at> = da?

tely, tely, tely,

Now for sufficiently small¢, we may approximate
Bo > iAiz' ~ BocAczt .
icS

Applying this approximation; is nonzero only foi € {0,c}. and thus the expression, ., 4,Fi(n'"))is O(a?), as desired,
Therefore, from[(42) and_(43) we obtain the solution
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