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Abstract—In this paper, an expression for the asymptotic
growth rate of the number of small linear-weight codewords of
irregular doubly-generalized LDPC (D-GLDPC) codes is derived.
The expression is compact and generalizes existing resultsfor
LDPC and generalized LDPC (GLDPC) codes. Assuming that
there exist check and variable nodes with minimum distance2,
it is shown that the growth rate depends only on these nodes. An
important connection between this new result and the stability
condition of D-GLDPC codes over the BEC is highlighted. Such
a connection, previously observed for LDPC and GLDPC codes,
is now extended to the case of D-GLDPC codes.

Index Terms—Doubly-generalized LDPC codes, irregular code
ensembles, weight distribution.

I. I NTRODUCTION

Recently, low-density parity-check (LDPC) codes have been
intensively studied due to their near-Shannon-limit perfor-
mance under iterative belief-propagation decoding. Binary
regular LDPC codes were first proposed by Gallager in 1963
[1]. In the last decade the capability of irregular LDPC
codes to outperform regular ones in the waterfall region of
the performance curve and to asymptotically approach (or
even achieve) the communication channel capacity has been
recognized and deeply investigated (see for instance [2], [3],
[4], [5], [6], [7]).

It is usual to represent an LDPC code as a bipartite graph,
i.e., as a graph where the nodes are grouped into two disjoint
sets, namely, the variable nodes (VNs) and the check nodes
(CNs), such that each edge may only connect a VN to a CN.
The bipartite graph is also known as a Tanner graph [8]. In
the Tanner graph of an LDPC code, a generic degree-q VN
can be interpreted as a length-q repetition code, as it repeatsq
times its single information bit towards the CNs. Similarly, a
degree-s CN of an LDPC code can be interpreted as a length-s
single parity-check (SPC) code, as it checks the parity of the
s VNs connected to it.

The growth rate of the weight distribution of Gallager’s
regular LDPC codes was investigated in [1]. The analysis
demonstrated that, provided that the smallest VN degree is
at least 3, for large enough codeword lengthN , the expected
minimum distance of a randomly chosen code in the ensemble
is a linear function ofN .

More recently, the study of the weight distribution of
binary LDPC codes has been extended to irregular ensembles.
Important works in this area are [9], [10], [11]. In [11] a
complete solution for the growth rate of the weight distribution
of binary irregular LDPC codes was developed. One of the
main results of [11] is a connection between the expected
behavior of the weight distribution of a code randomly chosen
from the ensemble and the parameterλ′(0)ρ′(1), λ(x) and
ρ(x) being the edge-perspective VN and CN degree distribu-
tions, respectively. More specifically, it was shown that for a
code randomly chosen from the ensemble, one can expect an
exponentially small number of small linear-weight codewords
if 0 ≤ λ′(0)ρ′(1) < 1, and an exponentially large number of
small linear-weight codewords ifλ′(0)ρ′(1) > 1.

This result establishes a connection between the statistical
properties of the weight distribution of binary irregular LDPC
codes and the stability condition of binary irregular LDPC
codes over the binary erasure channel (BEC) [3], [4]. Ifq∗

denotes the LDPC asymptotic iterative decoding threshold
over the BEC, the stability condition states that we always
have

q∗ ≤ [λ′(0)ρ′(1)]
−1

. (1)

Prior to the rediscovery of LDPC codes, binary generalized
LDPC (GLDPC) codes were introduced by Tanner in 1981 [8].
A GLDPC code generalizes the concept of an LDPC code in
that a degree-s CN may in principle be any(s, h) linear block
code,s being the code length andh the code dimension. Such
a CN accounts fors − h linearly independent parity-check
equations. A CN associated with a linear block code which is
not a SPC code is said to be ageneralized CN. In [8] regular
GLDPC codes (also known as Tanner codes) were investigated,
these being GLDPC codes where the VNs are all repetition
codes of the same length and the CNs are all linear block
codes of the same type.

The growth rate of the weight distribution of binary GLDPC
codes was investigated in [12], [13], [14], [15]. In [12] the
growth rate is calculated for Tanner codes with BCH check
component codes and length-2 repetition VNs, leading to
an asymptotic lower bound on the minimum distance. The
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Fig. 1. Structure of a D-GLDPC code.

same lower bound is developed in [13] assuming Hamming
CNs and length-2 repetition VNs. Both works extend the
approach developed by Gallager in [1, Chapter 2] to show
that, for sufficiently largeN , the minimum distance is a linear
function ofN . The growth rate of the number of small weight
codewords for GLDPC codes with a uniform CN set (all CN
of the same type) and an irregular VN set (repetition VNs
with different lengths) is investigated in [14]. It is shown
that for sufficiently largeN , a minimum distance increasing
linearly with N is expected when either the uniform CN set
is composed of linear block codes with minimum distance at
least 3, or the minimum length of the repetition VNs is 3.
On the other hand, if the minimum distance of the CNs and
the minimum length of the repetition VNs are both equal to 2,
then for a randomly selected GLDPC code in the ensemble we
expect a minimum distance growing as a linear or sublinear
function ofN (for largeN ) depending on the sign of the first
order coefficient in the growth rate Taylor series expansion.
The results developed in [14] were further extended in [15] to
GLDPC ensembles with an irregular CN set (CNs of different
types). It was there proved that, provided that there exist CNs
with minimum distance2, a parameterλ′(0)C, generalizing
the parameterλ′(0)ρ′(1) of LDPC code ensembles, plays in
the context of the weight distribution of GLDPC codes the
same role played byλ′(0)ρ′(1) in the context of the weight
distribution of LDPC codes. The parameterC is defined in
Section III.

Interestingly, this latter results extends to binary GLDPC
codes the same connection between the statistical properties
of the weight distribution of irregular codes and the stability
condition over the BEC. In fact, it was shown in [16] that the
stability condition of binary irregular GLDPC codes over the
BEC is given by

q∗ ≤ [λ′(0)C]
−1

. (2)

Generalized LDPC codes represent a promising solution for
low-rate channel coding schemes, due to an overall rate loss
introduced by the generalized CNs [17]. Doubly-generalized

LDPC (D-GLDPC) codes generalize the concept of GLDPC
codes while facilitating much greater design flexibility interms
of code rate [18] (an analogous idea may be found in the
previous work [19]). In a D-GLDPC code, the VNs as well
as the CNs may be of any generic linear block code types. A
degree-q VN may in principle be any(q, k) linear block code,
q being the code length andk the code dimension. Such a VN
is associated withk D-GLDPC code bits. It interprets these
bits as its local information bits and interfaces to the CN set
through itsq local code bits. A VN which corresponds to a
linear block code which is not a repetition code is said to be a
generalized VN. A D-GLDPC code is said to beregular if all
of its VNs are of the same type and all of its CNs are of the
same type and is said to beirregular otherwise. The structure
of a D-GLDPC code is depicted in Fig. 1.

In this paper the growth rate of the weight distribution
of binary irregular D-GLDPC codes is analyzed for small
weight codewords. It is shown that, provided there exist
both VNs and CNs with minimum distance2, a parameter
1/P−1(1/C) discriminates between an asymptotically small
and an asymptotically large expected number of small linear-
weight codewords in a D-GLDPC code randomly drawn from
a given irregular ensemble (the functionP (x) is defined
in Section III). The parameter1/P−1(1/C) generalizes the
above mentioned parametersλ′(0)ρ′(1) andλ′(0)C to the case
where both generalized VNs and generalized CNs are present.
The obtained result also represents the extension to the D-
GLDPC case of the previously recalled connection with the
stability condition over the BEC. In fact, it was proved in [16]
that the stability condition of D-GLDPC codes over the BEC
is given by

q∗ ≤ P−1(1/C) . (3)

The paper is organized as follows. Section II defines the D-
GLDPC ensemble of interest, and introduces some definitions
and notation pertaining to this ensemble. Section III defines
further terms regarding the VNs and CNs which compose the
D-GLDPC codes in the ensemble. Finally, Section IV states
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and proves the main result of the paper regarding the growth
rate of the weight distribution.

II. I RREGULAR DOUBLY-GENERALIZED LDPC CODE

ENSEMBLE

We define a D-GLDPC code ensembleMn as follows,
wheren denotes the number of VNs. There arenc different
CN types t ∈ Ic = {1, 2, · · · , nc}, and nv different VN
types t ∈ Iv = {1, 2, · · · , nv}. For each CN typet ∈ Ic,
we denote byht, st and rt the CN dimension, length and
minimum distance, respectively. For each VN typet ∈ Iv,
we denote bykt, qt and pt the VN dimension, length and
minimum distance, respectively. Fort ∈ Ic, ρt denotes the
fraction of edges connected to CNs of typet. Similarly, for
t ∈ Iv, λt denotes the fraction of edges connected to VNs of
type t. Note that all of these variables are independent ofn.

The polynomialsρ(x) andλ(x) are defined by

ρ(x) =
∑

t∈Ic

ρtx
st−1

and
λ(x) =

∑

t∈Iv

λtx
qt−1 .

If E denotes the number of edges in the Tanner graph, the
number of CNs of typet ∈ Ic is then given byEρt/st, and
the number of VNs of typet ∈ Iv is then given byEλt/qt.
Denoting as usual

∫ 1

0 ρ(x) dx and
∫ 1

0 λ(x) dx by
∫
ρ and

∫
λ

respectively, we see that the number of edges in the Tanner
graph is given by

E =
n
∫
λ

and the number of CNs is given bym = E
∫
ρ. Therefore,

the fraction of CNs of typet ∈ Ic is given by

γt =
ρt

st
∫
ρ

(4)

and the fraction of VNs of typet ∈ Iv is given by

δt =
λt

qt
∫
λ

(5)

Also the length of any D-GLDPC codeword in the ensemble
is given by

N =
∑

t∈Iv

(
Eλt

qt

)

kt =
n
∫
λ

∑

t∈Iv

λtkt
qt

. (6)

Note that this is a linear function ofn. Similarly, the total
number of parity-check equations for any D-GLDPC code in
the ensemble is given by

M =
m
∫
ρ

∑

t∈Ic

ρtht

st
.

A member of the ensemble then corresponds to a permutation
on theE edges connecting CNs to VNs.

The growth rate of the weight distribution of the irregular
D-GLDPC ensemble sequence{Mn} is defined by

G(α) = lim
n→∞

1

n
logEMn

[Nαn] (7)

whereEMn
denotes the expectation operator over the ensem-

bleMn, andNw denotes the number of codewords of weight
w of a randomly chosen D-GLDPC code in the ensembleMn.
The limit in (7) assumes the inclusion of only those positive
integersn for which αn ∈ Z andEMn

[Nαn] is positive (i.e.,
where the expression whose limit we seek is well defined).
Note that the argument of the growth rate functionG(α) is
equal to the ratio of D-GLDPC codeword length to the number
of VNs; by (6), this captures the behaviour of codewords linear
in the block length, as in [11] for the LDPC case.

Definition 2.1: An assignmentis a subset of the edges
of the Tanner graph. An assignment is said to haveweightk
if it has k elements. An assignment is said to becheck-valid
if the following condition holds: supposing that each edge of
the assignment carries a1 and each of the other edges carries
a 0, each CN recognizes a valid codeword.

Definition 2.2: A split assignmentis an assignment, to-
gether with a subset of the D-GLDPC code bits (called a
codeword assignment). A split assignment is said to havesplit
weight(u, v) if its assignment has weightv and its codeword
assignment hasu elements. A split assignment is said to be
check-validif its assignment is check-valid. A split assignment
is said to bevariable-valid if the following condition holds:
supposing that each edge of its assignment carries a1 and
each of the other edges carries a0, and supposing that each
D-GLDPC code bit in the codeword assigment is set to1 and
each of the other code bits is set to0, each VN recognizes an
input word and the corresponding valid codeword.

Note that for any D-GLDPC code, there is a bijective corre-
spondence between the set of D-GLDPC codewords and the set
of split assignments which are both variable-valid and check-
valid.

III. F URTHER DEFINITIONS AND NOTATION

The weight enumerating polynomial for CN typet ∈ Ic is
given by

A(t)(x) =

st∑

u=0

A(t)
u xu

= 1 +

st∑

u=rt

A(t)
u xu .

HereA(t)
u ≥ 0 denotes the number of weight-u codewords for

CNs of typet. Note thatA(t)
rt > 0 for all t ∈ Ic. The bivariate

weight enumerating polynomial for VN typet ∈ Iv is given
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by

B(t)(x, y) =

kt∑

u=0

qt∑

v=0

B(t)
u,vx

uyv

= 1 +

kt∑

u=1

qt∑

v=pt

B(t)
u,vx

uyv .

Here B
(t)
u,v ≥ 0 denotes the number of weight-v codewords

generated by input words of weightu, for VNs of typet. Also,
for eacht ∈ Iv, corresponding to the polynomialB(t)(x, y)
we denote the sets

St = {(i, j) ∈ Z
2 : B

(t)
i,j > 0} (8)

and
S−
t = St\{(0, 0)} . (9)

We denote the smallest minimum distance over all CN types
by

r = min{rt : t ∈ Ic}

and the set of CN types with this minimum distance by

Xc = {t ∈ Ic : rt = r} .

We also define

Ct =
rtA

(t)
rt

st

for eacht ∈ Ic, and

C =
∑

t∈Xc

ρtCt . (10)

We note thatCt > 0 for all t ∈ Ic, soC > 0.
Similarly, we denote the smallest minimum distance over

all VN types by

p = min{pt : t ∈ Iv}

and the set of VN types with this minimum distance by

Xv = {t ∈ Iv : pt = p} .

In the specific case wherep = 2, we also introduce the
following definitions. For eacht ∈ Xv, define the setLt =

{i ∈ Z : B
(t)
i,2 > 0} – note that these sets are nonempty. Also

define the polynomialP (x) by

P (x) =
∑

t∈Xv

λt

∑

i∈Lt

2B
(t)
i,2

qt
xi (11)

and denote its inverse byP−1(x). Since all the coefficients
of P (x) are positive,P (x) is monotonically increasing and
therefore its inverse is well-defined and unique. Note that in
the caser = p = 2, bothC and the polynomialP (x) depend
only on the CNs and VNs with minimum distance equal to2.

Finally, note that throughout this paper, the notatione =
exp(1) denotes Napier’s number.

IV. GROWTH RATE FOR DOUBLY-GENERALIZED LDPC
CODE ENSEMBLE

The following theorem constitutes the main result of the
paper.

Theorem 4.1:Consider an irregular D-GLDPC code en-
semble sequenceMn satisfyingr = p = 2. For sufficiently
smallα, the growth rate of the weight distribution is given by

G(α) = α log

[
1

P−1(1/C)

]

+O(α2) . (12)

The theorem is proved next. For ease of presentation, the proof
is broken into four parts.

A. Number of check-valid assignments of weightǫm overγm
CNs of typet ∈ Ic

Considerγm CNs of the same typet ∈ Ic. Using generating
functions 1 , the number of check-valid assignments (over
these CNs) of weightǫm is given by

N
(γm)
c,t (ǫm) = Coeff

[(

A(t)(x)
)γm

, xǫm
]

where Coeff[p(x), xc] denotes the coefficient ofxc in the
polynomial p(x). We now use the following result, which
appears as Lemma 19 in [11]:

Lemma 4.2:Let A(x) = 1 +
∑d

u=c Aux
u, where1 ≤

c ≤ d, be a polynomial satisfyingAc > 0 andAu ≥ 0 for all
c < u ≤ d. Then, for sufficiently smallξ,

lim
ℓ→∞

1

ℓ
logCoeff

[

(A(x))
ℓ
, xξℓ

]

=
ξ

c
log

(
ecAc

ξ

)

+O(ξ2) (13)

The limit in (13) assumes the inclusion of only those positive
integers ℓ for which ξℓ ∈ Z and Coeff[(A(x))ℓ, xξℓ] is
positive (i.e., where the expression whose limit we seek is
well defined). A proof of this lemma may be found in the
Appendix; our proof is based on arguments from [10] and
Lagrange multipliers, and constitutes a different approach to
that taken in [11].

Applying this lemma by substitutingA(x) = A(t)(x), ℓ =
γm andξ = ǫ/γ, we obtain that withγ fixed, asm → ∞ we
have, for sufficiently smallǫ,

N
(γm)
c,t (ǫm) = Coeff

[(

A(t)(x)
)γm

, xǫm
]

→

exp

{

m

[

ǫ

rt
log

(

ertA
(t)
rt γ

ǫ

)

+O(ǫ2)

]}

(14)

1Here we make use of the following general result [20]. Letai be the
number of ways of obtaining an outcomei ∈ Z in experimentA, and let
bj be the number of ways of obtaining an outcomej ∈ Z in experiment
B. Also let ck be the number of ways of obtaining an outcome(i, j) in
the combined experiment(A,B) with sum i + j = k. Then the generating
functionsA(x) =

P

i aix
i, B(x) =

P

j bjx
j andC(x) =

P

k ckx
k are

related byC(x) = A(x)B(x).
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B. Number of check-valid assignments of weightδm

Next we derive an expression, valid asymptotically, for the
number of check-valid assignments of weightδm. For each
t ∈ Ic, let ǫtm denote the portion of the total weightδm
apportioned to CNs of typet. Then ǫt ≥ 0 for eacht ∈ Ic,
and

∑

t∈Ic
ǫt = δ. Also denoteǫ = (ǫ1 ǫ2 · · · ǫnc

). The
number of check-valid assignments of weightδm satisfying
the constraintǫ is obtained by multiplying the numbers of
check-valid assignments of weightǫtm overγtm CNs of type
t, for eacht ∈ Ic,

N (ǫ)
c (δm) =

∏

t∈Ic

N
(γtm)
c,t (ǫtm)

where the fractionγt of CNs of typet ∈ Ic is given by (4).
As n → ∞, we havem → ∞ and so we obtain using (14)

that for sufficiently smallδ,

N (ǫ)
c (δm) →

∏

t∈Ic

exp

{

m

[

ǫt
rt

log

(

ertA
(t)
rt γt
ǫt

)

+O(ǫ2t )

]}

= exp

{

m

[
∑

t∈Ic

(
ǫt
rt

log

(
eρtCt

ǫt
∫
ρ

))

+O(δ2)

]}

(15)

The number of check-valid assignments of weightδm,
which we denoteNc(δm), is equal to the sum ofN (ǫ)

c (δm)
over all admissible vectorsǫ. However, the asymptotic expres-
sion asn → ∞ will be dominated by the distributionǫ which
maximizes the argument of the exponential2 . Therefore, our
next step is to maximize the function

f(ǫ) =
∑

t∈Ic

ǫt
rt

log

(
eρtCt

ǫt
∫
ρ

)

subject to the constraints

g(ǫ) =
∑

t∈Ic

ǫt = δ (16)

and
ǫt ≥ 0 ∀t ∈ Ic . (17)

We solve this optimization problem using Lagrange multipli-
ers, ignoring for the moment the final constraint. Since

∂f

∂ǫt
=

1

rt
log

(
ρtCt

ǫt
∫
ρ

)

;
∂g

∂ǫt
= 1

for all t ∈ Ic, we have to solve thenc equations (whereµ is
the Lagrange multiplier)

1

rt
log

(
ρtCt

ǫt
∫
ρ

)

+ µ = 0 ∀t ∈ Ic (18)

together with (16), for the(nc + 1) unknowns{µ, ǫ}. First,
(18) yields

ǫt =
ρtCt
∫
ρ
zrt ∀t ∈ Ic

2Observe that asm → ∞,
P

t exp(mZt) → exp(mmaxt{Zt})

wherez = eµ. Now using (16), we obtain

1
∫
ρ

∑

t∈Ic

Ctρtz
rt = δ .

The left-hand side of this equation involves a sum of positive
terms. Forδ sufficiently small, we may approximate

1
∫
ρ

∑

t∈Ic

ρtCtz
rt ≈

1
∫
ρ

∑

t∈Xc

ρtCtz
rt (19)

=
C
∫
ρ
zr . (20)

Applying this approximation, we obtainǫt = 0 if t /∈ Xc, and
ǫt = KρtCt if t ∈ Xc, whereK is independent oft. Then
(16) yieldsK = δ/C, and we obtain the solution

ǫt =

{
ρtCtδ/C if t ∈ Xc

0 otherwise.

This solution satisfies (17). When substituted into (15), it
yields the following result: asn → ∞

Nc(δm) → exp

{

m

[
δ

r
log

(
eC

δ
∫
ρ

)

+O(δ2)

]}

(21)

C. Number of variable-valid split assignments of split weight
(τn, σn) over γn VNs of typet ∈ Iv

Considerγn VNs of the same typet ∈ Iv. We now evaluate
the number of variable-valid split assignments (over these
VNs) of split weight(τn, σn). Using generating functions3 ,
this is given by

N
(γn)
v,t (τn, σn) = Coeff

[(

B(t)(x, y)
)γn

, xτnyσn
]

where Coeff[p(x, y), xcyd] denotes the coefficient ofxcyd in
the bivariate polynomialp(x, y). We make use of the following
lemma from [10, Theorem 2].

Lemma 4.3:Let

B(x, y) = 1 +

k∑

u=1

d∑

v=c

Bu,vx
uyv

where k ≥ 1 and 1 ≤ c ≤ d, be a bivariate polynomial
satisfying Bu,v ≥ 0 for all 1 ≤ u ≤ k, c ≤ v ≤ d.
For fixed positive rational numbersξ and θ, consider the
set of positive integersℓ such thatξℓ ∈ Z, θℓ ∈ Z and
Coeff [(B(x, y))ℓ, xξℓyθℓ] > 0. Then either this set is empty,
or has infinite cardinality; ift is one suchℓ, then so isjt

3We use the following result on bivariate generating functions [20]. Letai,j
be the number of ways of obtaining an outcome(i, j) ∈ Z

2 in experimentA,
and letbk,l be the number of ways of obtaining an outcome(k, l) ∈ Z

2 in
experimentB. Also let cp,q be the number of ways of obtaining an outcome
((i, j), (k, l)) in the combined experiment(A,B) with sums i + k = p
and j + l = q. Then the generating functionsA(x, y) =

P

i,j ai,jx
iyj ,

B(x, y) =
P

k,l bk,lx
kyl and C(x, y) =

P

p,q cp,qx
pyq are related by

C(x, y) = A(x, y)B(x, y).
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for every positive integerj. Assuming the latter case, the
following limit is well defined and exists:

lim
ℓ→∞

1

ℓ
logCoeff

[

(B(x, y))ℓ , xξℓyθℓ
]

= max
η

∑

(i,j)∈S

ηi,j log

(
Bi,j

ηi,j

)

(22)

whereS = {(i, j) ∈ Z
2 : Bi,j > 0}, η = (ηi,j)(i,j)∈S , and

the maximization is subject to the constraints
∑

(i,j)∈S ηi,j =
1,
∑

(i,j)∈S iηi,j = ξ,
∑

(i,j)∈S jηi,j = θ andηi,j ≥ 0 for all
(i, j) ∈ S.

Applying this lemma by substitutingB(x, y) = B(t)(x, y),
l = γn, ξ = τ/γ and θ = σ/γ, we obtain that withγ fixed,
asn → ∞

N
(γn)
v,t (τn, σn) = Coeff

[(

B(t)(x, y)
)γn

, xτnyσn
]

(23)

→ exp






nγmax

η(t)

∑

(i,j)∈St

η
(t)
i,j log

(

B
(t)
i,j

η
(t)
i,j

)





(24)

, exp
{

nX
(γ)
t (τ, σ)

}

(25)

where the maximization overη(t) = (η
(t)
i,j )(i,j)∈St

is subject

to the constraints
∑

(i,j)∈St
η
(t)
i,j = 1,

∑

(i,j)∈S
−

t

iη
(t)
i,j = τ/γ,

∑

(i,j)∈S
−

t

jη
(t)
i,j = σ/γ andη(t)i,j ≥ 0 for all (i, j) ∈ St (recall

that the setsSt andS−
t are given by (8) and (9)).

D. Growth rate of the weight distribution of the irregular D-
GLDPC code ensemble sequence

Recall that the number of check-valid assignments of weight
δm isNc(δm); also, the total number of assignments of weight
δm is

(
E
δm

)
. Therefore, the probability that a randomly chosen

assignment of weightδm is check-valid is given by

Pvalid(δm) = Nc(δm)
/( E

δm

)

.

Here we adopt the notationδm = βn; also we have
E = m/

∫
ρ = n/

∫
λ. The binomial coefficient may be

asymptotically approximated using the fact, based on Stirling’s
approximation, that asn → ∞ [11]

(
τn

σn

)

→ exp
{

n
[

σ log
(eτ

σ

)

+O(σ2)
]}

(valid for 0 < σ < τ < 1) which yields, in this case,
(
n/
∫
λ

βn

)

→ exp

{

n

[

β log

(
e

β
∫
λ

)

+O(β2)

]}

as n → ∞. Applying this together with the asymptotic
expression (21), and assuming sufficiently smallβ, we find
that asn → ∞ (exploiting the fact thatδ

∫
ρ = β

∫
λ)

Pvalid(βn) → exp{nY (β)} (26)

where

Y (β) =
β

r
log

(
eC

β
∫
λ

)

− β log

(
e

β
∫
λ

)

+O(β2) .

Next, we note that the expected number of D-GLDPC
codewords of weightαn in the ensembleMn is equal to the
sum overβ of the expected numbers of split assignments of
split weight(αn, βn) which are both check-valid and variable-
valid, denotedNv,c

αn,βn:

EMn
[Nαn] =

∑

β

EMn
[Nv,c

αn,βn] .

This may then be expressed as

EMn
[Nαn] =

∑

β

Pvalid(βn)
∑

P

αt=α
P

βt=β

[
∏

t∈Iv

N
(δtn)
v,t (αtn, βtn)

]

where the fractionδt of VNs of type t ∈ Iv is given by (5)
and the second sum is over all partitions ofα and β into
nv elements, i.e., we haveαt, βt ≥ 0 for all t ∈ Iv, and
∑

t∈Iv
αt = α,

∑

t∈Iv
βt = β.

Now, using (23)-(25), asn → ∞ we have for eacht ∈ Iv

N
(δtn)
v,t (αtn, βtn) → exp

{

nX
(δt)
t (αt, βt)

}

,

where, for eacht ∈ Iv,

X
(δt)
t (αt, βt) = δt max

η(t)

∑

(i,j)∈St

η
(t)
i,j log

(

B
(t)
i,j

η
(t)
i,j

)

(27)

and the maximization overη(t) = (η
(t)
i,j )(i,j)∈St

is subject to
the constraints

∑

(i,j)∈St

η
(t)
i,j = 1 (28)

∑

(i,j)∈S
−

t

iη
(t)
i,j = αt/δt (29)

∑

(i,j)∈S
−

t

jη
(t)
i,j = βt/δt (30)

and

η
(t)
i,j ≥ 0 ∀(i, j) ∈ St . (31)

Therefore, recalling (26), we have that asn → ∞,

EMn
[Nαn] →

∑

β

∑

P

αt=α
P

βt=β

exp

{

n

[
∑

t∈Iv

X
(δt)
t (αt, βt) + Y (β)

]}

. (32)

Next, for eacht ∈ Iv we define

Ft(η
(t)) = η

(t)
0,0 log

(

1

η
(t)
0,0

)

−
∑

(i,j)∈S
−

t

η
(t)
i,j .
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Note that the expression (32) is dominated asn → ∞ by the
term which maximizes the argument of the exponential. Thus
we may write

G(α) = max
β

max
P

αt=α
P

βt=β

{
∑

t∈Iv

δtmax
η(t)

[
∑

(i,j)∈S
−

t

η
(t)
i,j log

(

eB
(t)
i,j

η
(t)
i,j

)

+ Ft(η
(t))

]

+
β

r
log

(
eC

β
∫
λ

)

− β log

(
e

β
∫
λ

)

+O(β2)

}

(33)

where the maximization overη(t) = (η
(t)
i,j )(i,j)∈S

−

t

(for each
t ∈ Iv) is subject to constraints (29) and (30) together with
η
(t)
i,j ≥ 0 for all (i, j) ∈ S−

t .
We next have the following lemma.

Lemma 4.4:The expression
∑

t∈Iv
δtFt(η

(t)) is O(α2)

for anyη(t) satisfying the optimization constraints (28)-(31)4.

A proof of this lemma is given in the Appendix. It follows
from Lemma 4.4 that the expression

∑

t∈Iv
δtFt(η

(t)) is
O(α2) for the maximizingη(t). Also, sinceβ/α is bounded
between two positive constants, any expression which isO(β2)
must necessarily also beO(α2). Therefore

G(α) = max
β

max
P

αt=α
P

βt=β

[
∑

t∈Iv

δt max
η(t)

∑

(i,j)∈S
−

t

η
(t)
i,j log

(

eB
(t)
i,j

η
(t)
i,j

)

+
β

r
log

(
eC

β
∫
λ

)

− β log

(
e

β
∫
λ

)]

+O(α2)

where the optimization is (as before) subject to the constraints
(29) and (30) together withη(t)i,j ≥ 0 for all (i, j) ∈ S−

t .
In what follows, for convenience of presentation we shall
temporarily omit theO(α2) term in the expression for growth
rate.

Next we make the substitutionγ(t)
i,j = δtη

(t)
i,j for all t ∈ Iv,

(i, j) ∈ S−
t . This yields

G(α) = max
β

max
P

αt=α
P

βt=β

[
∑

t∈Iv

max
γ(t)

∑

(i,j)∈S
−

t

γ
(t)
i,j log

(

eB
(t)
i,j δt

γ
(t)
i,j

)

+
β

r
log

(
eC

β
∫
λ

)

− β log

(
e

β
∫
λ

)]

where the maximization overγ(t) = (γ
(t)
i,j )(i,j)∈S

−

t

(for each

t ∈ Iv) is subject to the constraints
∑

(i,j)∈S−

t

iγ
(t)
i,j = αt,

4Here we use the following standard notation: the real-valued functionf(x)
is said to beO(g(x)) if and only if there exist positive real numbersk and
ǫ, both independent ofx, such that

|f(x)| ≤ kg(x) ∀ 0 ≤ x ≤ ǫ .

∑

(i,j)∈S
−

t

jγ
(t)
i,j = βt, andγ

(t)
i,j ≥ 0 for all (i, j) ∈ S−

t . We
observe that this maximization may be recast as

G(α) = max
γ

[
∑

t∈Iv

∑

(i,j)∈S
−

t

γ
(t)
i,j log

(

eB
(t)
i,j δt

γ
(t)
i,j

)

+
β(γ)

r
log

(
eC

β(γ)
∫
λ

)

− β(γ) log

(
e

β(γ)
∫
λ

)]

where the maximization, which is now overγ =
(γ

(t)
i,j )t∈Iv ,(i,j)∈S

−

t

, is subject to the constraints
∑

t∈Iv

∑

(i,j)∈S
−

t

iγ
(t)
i,j = α

andγ(t)
i,j ≥ 0 for all t ∈ Iv, (i, j) ∈ S−

t , and where

β(γ) =
∑

t∈Iv

∑

(i,j)∈S
−

t

jγ
(t)
i,j .

Making the substitutionν(t)i,j = γ
(t)
i,j /α for all t ∈ Iv, (i, j) ∈

S−
t , we obtain

G(α) = αmax
ν

[
∑

t∈Iv

∑

(i,j)∈S
−

t

ν
(t)
i,j log

(

eB
(t)
i,j δt

αν
(t)
i,j

)

+
z(ν)

r
log

(
eC

αz(ν)
∫
λ

)

− z(ν) log

(
e

αz(ν)
∫
λ

)]

where the maximization overν = (ν
(t)
i,j )t∈Iv ,(i,j)∈S

−

t

is subject

to the constraints
∑

t∈Iv

∑

(i,j)∈S
−

t

iν
(t)
i,j = 1 andν(t)i,j ≥ 0 for

all t ∈ Iv, (i, j) ∈ S−
t , and where

z(ν) =
∑

t∈Iv

∑

(i,j)∈S−

t

jν
(t)
i,j .

Assuming the conditionr = 2, we may write

G(α) = αmax
ν

(K1(ν) +K2(ν) logα)

where

K2(ν) =
z(ν)

2
−
∑

t∈Iv

∑

(i,j)∈S
−

t

ν
(t)
i,j .

Next, assuming the conditionp = 2, we make the observation
that

z(ν) =
∑

t∈Iv

∑

(i,j)∈S
−

t

jν
(t)
i,j ≥ 2

∑

t∈Iv

∑

(i,j)∈S
−

t

ν
(t)
i,j

with equality if and only ifν(t)i,j = 0 for all t ∈ Iv, (i, j) ∈ S−
t

with j > 2. ThereforeK2(ν) ≥ 0 with equality if and only
if ν

(t)
i,j = 0 for all t ∈ Iv, (i, j) ∈ S−

t with j > 2. Let ν1 and
ν2 be two distributions satisfying the optimization constraints,
and suppose thatK2(ν1) > 0 and K2(ν2) = 0. Then for
sufficiently smallα, we must have

K1(ν1) +K2(ν1) logα < K1(ν2) +K2(ν2) logα .
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This follows from the fact that the inequality

K2(ν1) logα < K1(ν2)−K1(ν1)

will always be satisfied forα sufficiently small (since
logα → −∞ asα → 0, and recalling thatK2(ν1) > 0).

Therefore, for sufficiently smallα, the vectorν which
maximizesK1(ν) + K2(ν) logα must satisfyν(t)i,j = 0 for
all t ∈ Iv, (i, j) ∈ S−

t with j > 2. Note that this implies that
the maximum, and hence the growth rate, depends only on
the check and VNs with minimum distance equal to2. Also,
recall that for eacht ∈ Xv, the setLt = {i ∈ Z : B

(t)
i,2 > 0};

we contract the vectorν to include only variablesν(t)i,2 where
t ∈ Xv and i ∈ Lt (since only these may assume positive
values).

The growth rate may be written as

G(α) = αmax
ν

[ ∑

t∈Xv

∑

i∈Lt

ν
(t)
i,2 log

(

B
(t)
i,2δt

ν
(t)
i,2

)

+ s(ν) log
s(ν)

φ

]

, αmax
ν

(logR(ν)) (34)

where
φ ,

1

2C
∫
λ

(35)

and where the functions(ν) is given by

s(ν) =
∑

t∈Xv

∑

i∈Lt

ν
(t)
i,2 . (36)

The maximization overν = (ν
(t)
i,2 )t∈Iv ,i∈Lt

in (34) is subject
to the constraints

h(ν) =
∑

t∈Iv

∑

i∈Lt

iν
(t)
i,2 = 1 (37)

and
ν
(t)
i,2 ≥ 0 ∀t ∈ Xv, i ∈ Lt . (38)

Let the vectorν which maximizes (34) be denoted byν̃. Then,
our task is to show that

R(ν̃) , R̃ =
1

P−1(1/C)

i.e., that

P

(
1

R̃

)

=
1

C
, (39)

where the parameterC and the polynomialP (x) are defined
in (10) and (11), respectively. We show this using Lagrange
multipliers, ignoring for the moment the constraint (38). We
have

∂ logR(ν)

∂ν
(t)
i,2

= log

(

B
(t)
i,2δt

ν
(t)
i,2

)

+ log

(
s(ν)

φ

)

;
∂h(ν)

∂ν
(t)
i,2

= i

so that, at the maximum,

log

(

Bi,2δt

ν̃
(t)
i,2

)

+ log

(
s(ν̃)

φ

)

= λi

for all t ∈ Xv, i ∈ Lt, and for some Lagrange multiplier
λ ∈ R. Substituting back into (34) and using (37) yields

log R̃ =
∑

t∈Xv

∑

i∈Lt

ν
(t)
i,2

(

λi − log

(
s(ν̃)

φ

))

+ s(ν̃) log

(
s(ν̃)

φ

)

= λ (40)

i.e., the maximum value of the functionlogR(ν) is equal to
the Lagrange multiplier. Thus we have

B
(t)
i,2

(R̃)i
=

(
φ

s(ν̃)δt

)

ν̃
(t)
i,2

for all t ∈ Xv, i ∈ Lt. Substituting this into the LHS of (39)
and recalling the definition (11), we obtain

P

(
1

R̃

)

=
∑

t∈Xv

∑

i∈Lt

2λt

qt

B
(t)
i,2

(R̃)i

=
∑

t∈Xv

∑

i∈Lt

ν̃
(t)
i,j

Cs(ν̃)
=

1

C

where we have used (5), (35) and (36). This completes the
proof of the theorem. Note that (12) is a first-order Taylor
series expansion aroundα = 0 which directly generalizes
the results of [11] and [15] (for irregular LDPC and GLDPC
codes respectively) to the case of irregular D-GLDPC codes.
Our result indicates that for this case also, the parame-
ter 1/P−1(1/C) plays an analagous role to the parameter
λ′(0)ρ′(1) for irregular LDPC codes, and to the parameter
λ′(0)C for irregular GLDPC codes.

V. CONCLUSION

An expression for the asymptotic growth rate of the weight
distribution of D-GLDPC codes for small linear-weight code-
words has been derived. The expression assumes the existence
of minimum distance2 check and variable nodes, and in-
volves the evaluation of a polynomial inverse, derived from
the minimum distance2 variable nodes, at a point derived
from the minimum distance2 check nodes. This generalizes
known results for LDPC codes and GLDPC codes, and also
generalizes the corresponding connection with the stability
condition over the BEC.

APPENDIX

PROOF OFLEMMA 4.2

First consider the set of positive rational numbersℓ such
that ξℓ ∈ Z and Coeff({A(x)}ℓ, xξℓ) > 0. Then it is easy to
see that either this set is empty, or it has infinite cardinality; if
t is one suchℓ, then so isjt for every positive integerj (proof
routine by induction). The former case is not of interest to us
here. In the latter case, the following limit is well defined and
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exists [10, Theorem 1]:

lim
ℓ→∞

1

ℓ
logCoeff

[

(A(x))
ℓ
, xξℓ

]

= max
β

∑

i∈S

βi log

(
Ai

βi

)

(41)

where S = {i ∈ Z : Ai > 0}, β = (βi)i∈S , and the
maximization is subject to the constraints

g(β) =
∑

i∈S

βi = 1 (42)

h(β) =
∑

i∈S

iβi = ξ (43)

and

βi ≥ 0 ∀i ∈ S . (44)

We solve this optimization problem using Lagrange multi-
pliers, ignoring for the moment the final constraint. Defining

f(β) =
∑

i∈S

βi log

(
Ai

βi

)

(45)

we have

∂f

∂βi

= log

(
Ai

eβi

)

;
∂g

∂βi

= 1 ;
∂h

∂βi

= i

for all i ∈ S. Therefore we obtain

log

(
Ai

eβi

)

+ λ+ µi = 0 (46)

for all i ∈ S, whereλ andµ are Lagrange multipliers. These
equations, together with (42) and (43), yield(|S|+2) equations
in the (|S| + 2) unknowns{λ, µ,β}. Setting i = 0 in (46)
yields

β0 = eλ−1

and substituting this back into (46) gives

βi = β0Aiz
i

for all i ∈ S, wherez = eµ. So from (43)

β0

∑

i∈S

iAiz
i = ξ

Now for sufficiently smallξ, we may approximate

β0

∑

i∈S

iAiz
i ≈ β0cAcz

c .

Applying this approximation,βi is nonzero only fori ∈ {0, c}.
Therefore, from (42) and (43) we obtain the solution

βi =







1− ξ/c if i = 0
ξ/c if i = c
0 otherwise.

(47)

It is easy to see that this solution satisfies (44). Finally,
substituting the solution (47) into (45) gives

max
β

f(β) =

(
ξ

c
− 1

)

log

(

1−
ξ

c

)

+
ξ

c
log

(
cAc

ξ

)

=

(
ξ

c
− 1

)(

−
ξ

c
+O(ξ2)

)

+
ξ

c
log

(
cAc

ξ

)

=
ξ

c
log

(
ecAc

ξ

)

+O(ξ2) .

This completes the proof of the lemma.

PROOF OFLEMMA 4.4

Consider anyη(t) which satisfies the optimization con-
straints (28)-(31). Sinceα =

∑

t∈Iv
αt, α small implies that

αt is small for everyt ∈ Iv. From constraint (29) we conclude
that η(t)i,j is small for everyt ∈ Iv, (i, j) ∈ S−

t , and soη(t)0,0

is close to1 for all t ∈ Iv. Formally, for anyt ∈ Iv the term
in the sum overη(t) in (27) corresponding to(i, j) = (0, 0)
may be written as (here we use (28), and the Taylor series of
log (1− x) aroundx = 0)

η
(t)
0,0 log

(

1

η
(t)
0,0

)

=
( ∑

(i,j)∈S
−

t

η
(t)
i,j−1

)

log
(

1−
∑

(i,j)∈S
−

t

η
(t)
i,j

)

=
( ∑

(i,j)∈S
−

t

η
(t)
i,j−1

)
(

−
∑

(i,j)∈S
−

t

η
(t)
i,j+O

(( ∑

(i,j)∈S
−

t

η
(t)
i,j

)2)
)

=
∑

(i,j)∈S
−

t

η
(t)
i,j +O

(( ∑

(i,j)∈S
−

t

η
(t)
i,j

)2)

Therefore we have
∣
∣
∣Ft(η

(t))
∣
∣
∣ ≤ kt

( ∑

(i,j)∈S
−

t

η
(t)
i,j

)2

(48)

for somekt > 0 independent of{η(t)i,j }(i,j)∈S
−

t

. It follows that
∣
∣
∣
∣
∣

∑

t∈Iv

δtFt(η
(t))

∣
∣
∣
∣
∣
≤
∑

t∈Iv

δt

∣
∣
∣Ft(η

(t))
∣
∣
∣ ≤

∑

t∈Iv

δ′t

( ∑

(i,j)∈S
−

t

η
(t)
i,j

)2

(49)
where δ′t = ktδt for each t ∈ Iv. Also, by (29) we have
∑

(i,j)∈S
−

t

η
(t)
i,j ≤ αt/δt and therefore

∑

t∈Iv

δ′t

( ∑

(i,j)∈S
−

t

η
(t)
i,j

)2

≤
∑

t∈Iv

(
δ′t
δ2t

)

α2
t (50)

Denoteδ = maxt∈Iv{δ
′
t/δ

2
t }; then, combining (49) and (50),

∣
∣
∣
∣
∣

∑

t∈Iv

δtFt(η
(t))

∣
∣
∣
∣
∣
≤ δ

∑

t∈Iv

α2
t < δ

(
∑

t∈Iv

αt

)2

= δα2

and thus the expression
∑

t∈Iv
δtFt(η

(t)) isO(α2), as desired.
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