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ABSTRACT

We analyze the impact of speaker adaptation in end-to-end
automatic speech recognition models based on transform-
ers and wav2vec 2.0 under different noise conditions. By
including speaker embeddings obtained from x-vector and
ECAPA-TDNN systems, as well as i-vectors, we achieve
relative word error rate improvements of up to 16.3% on
LibriSpeech and up to 14.5% on Switchboard. We show
that the proven method of concatenating speaker vectors to
the acoustic features and supplying them as auxiliary model
inputs remains a viable option to increase the robustness of
end-to-end architectures. The effect on transformer models
is stronger, when more noise is added to the input speech.
The most substantial benefits for systems based on wav2vec
2.0 are achieved under moderate or no noise conditions.
Both x-vectors and ECAPA-TDNN embeddings outperform
i-vectors as speaker representations. The optimal embedding
size depends on the dataset and also varies with the noise
condition.

Index Terms— speaker adaptation, automatic speech
recognition, end-to-end systems, transformer, wav2vec 2.0

1. INTRODUCTION

Speaker adaptation in automatic speech recognition (ASR)
attempts to reduce the mismatch between training and test
speakers, thereby achieving lower word error rates. Currently,
there are two major approaches to address the speaker mis-
match problem in neural network based models. The first
approach operates in the feature space, either by normaliz-
ing acoustic features to make them speaker-independent [1,
2], or by introducing additional speaker-related knowledge
(e.g. i-vectors [3] or x-vectors [4]) into the acoustic model
[5, 6]. The second approach attempts to modify the acous-
tic model to match the testing conditions by learning speaker
or environment-dependent transformations on the inputs, out-
puts, or hidden representations of the neural network [7, 8,
9]. Supplying speaker information as an auxiliary input to
acoustic models has been a popular method to achieve speaker
adaptation in hybrid HMM-DNN models [10, 11]. Several
studies apply the feature space approach to more recent end-

to-end (E2E) architectures. End-to-end ASR models directly
map acoustic features to a word sequence. Popular E2E archi-
tectures based on transformers [12] and wav2vec 2.0 (W2V2)
[13] have outperformed the conventional hybrid HMM-DNN
framework in ASR tasks.

Most studies on E2E systems include the speaker infor-
mation in one of the lower layers of a neural network or in
the attention blocks of transformer models. The most widely
used speaker representation remain i-vectors [6, 14, 15, 16,
17, 18, 19]. In [6], a weighted combined speaker embedding
vector is generated by applying the attention mechanism to a
set of i-vectors, which helps a speech transformer model to
normalize speaker variations. In [14], i-vectors are concate-
nated with acoustic features at each self-attention layer of a
speech transformer encoder, which led to relative WER im-
provements of 6.8% on the Switchboard portion and 11.1%
on the Callhome portion of the Switchboard 300h Hub5’00
corpus. On 100 hours of LibriSpeech data, the WER is re-
duced by 4.5% (test-other) and 12.5% (test-clean) relative to
the baseline. Zeineldeen et al. [17] propose a similar method
that adds i-vectors to the input of the multi-head self-attention
module in a conformer model [20]. They achieve a WER
reduction of 3.5% relative to the baseline on the Callhome
portion of the Switchboard 300h Hub5’00 corpus. In [15],
i-vectors are concatenated to the input of each feedforward
layer in a conformer model. This approach led to minor im-
provements in some experiments but significantly increased
the number of model parameters.

Other approaches to speaker-adaptive training for E2E
architectures include x-vectors [21, 22], s-vectors [23], m-
vectors [24], sequence summary networks [25], and custom
speaker adaptation schemes [26]. In [23], s-vectors and x-
vectors are passed through a projection layer before either
adding or concatenating the output to the acoustic features in
a transformer system. Their approach achieved relative WER
improvements between 7.3% and 10.3% on the test-clean
dataset of the LibriSpeech corpus, when x-vectors were used
to supply the additional speaker information. However, the
performance worsened between 3.6% and 10.6% on the test-
other dataset. Denisov and Vu [21] show that a combination
of conditioning transformers on x-vectors and transfer learn-
ing improves single-channel multi-speaker speech recogni-
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tion performance. In [26], a custom adaptation scheme for
end-to-end multichannel ASR is proposed that re-estimates
network parameters using target speaker speech data.

Existing works demonstrate the potential of speaker adap-
tation for E2E systems. However, the way speaker informa-
tion is incorporated depends on the acoustic model architec-
ture used, often makes the ASR pipeline more complex, and
leads to an increase in model size. Furthermore, experiments
are usually conducted on clean data only.
This work studies the effect of adding auxiliary speaker infor-
mation to transformers and pretrained wav2vec 2.0 systems.
Experiments on the effect of speaker adaptation for W2V2-
based systems have only been conducted in dysarthric ASR
[22]. Unlike previous works, we transfer the idea of adding
speaker information to the model input of E2E architectures
and study their effect under both clean and noisy conditions.
This approach has proven successful in legacy systems and
does not meaningfully increase model size and complex-
ity. Furthermore, we compare the effectiveness of x-vectors
[4] and ECAPA-TDNN [27] embeddings against an i-vector
baseline. X-vectors have been studied less than conventional
i-vectors, and to the best of our knowledge, ECAPA-TDNN
features have not yet been tested in the context of speaker
adaptation, even though, they yield state-of-the-art perfor-
mance in speaker recognition tasks [27].

2. METHOD

We conduct ASR experiments on two popular benchmarks:
Switchboard [28] and LibriSpeech [29]. The LibriSpeech cor-
pus consists of 960 hours of read English speech from audio-
books sampled at 16 kHz. Switchboard consists of approxi-
mately 300 hours of English telephone conversations sampled
at 8 kHz. The Switchboard audio is resampled to 16 kHz for
the experiments involving the W2V2-based system, to make it
compatible with the pretrained feature extractor. The speaker
recognition systems (i-vector, x-vector, and ECAPA-TDNN)
used to generate auxiliary inputs, are trained on the VoxCeleb
[30] dataset, which is comprised of 1.2 million utterances
from 7.3k different speakers.

Baseline transformer- and W2V2-based ASR models are
trained with minor architectural differences depending on the
dataset. The same models are trained with additional speaker
embeddings included at different parts of the overall system.
The block diagrams in Figure 1 and Figure 2 illustrate the
composition of both architectures used in this work, as well
as the integration of speaker embeddings. Parameters that are
kept constant throughout all experiments (e.g. dropout proba-
bility or channels in convolutional layers) are included in the
figures.

We use 80-dimensional Mel filterbank features with a
frame-width of 25ms and a frame-shift of 10ms as acoustic
input features for the transformer, the ECAPA-TDNN and
the x-vector system. The pretrained wav2vec 2.0 model re-
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Fig. 1. Pretrained wav2vec 2.0 system and integration of
speaker embeddings.

ceives raw waveform inputs. We employ 1000 subword units
[31] estimated via unigram language modeling as recogni-
tion tokens for the ASR models. To evaluate the effect of
speaker adaptation under varying noise conditions, the test
data is augmented with randomly chosen additive noises from
the MUSAN corpus [32] at constant signal-to-noise ratios of
18, 9, and 0. We choose the speech portion of the MUSAN
corpus, which comprises approximately 60 hours of various
speech recordings.

2.1. Pretrained wav2vec 2.0

The pretrained wav2vec 2.0 model used for acoustic feature
extraction is described in [13]. It consists of a convolutional
feature encoder with multiple identical blocks using tempo-
ral convolution, layer normalization, and a GELU activation
function, followed by 12 transformer encoder blocks. The
convolutional feature encoder generates a sequence of em-
beddings for each utterance, which are then passed to the
transformer encoder to capture information about the entire
input sequence. For self-supervised training, the output of the
convolutional feature encoder is discretized to a finite set of
speech representations using product quantization. We use a
model pretrained and finetuned on 960 hours of Libri-Light
[33] and LibriSpeech [29] data.

The model components are illustrated in Figure 1. The
W2V2 feature extractor generates approximately 50 acoustic
representations in R1024 for 1 second of raw audio input. In
our system, these acoustic features are concatenated with the
speaker vectors and passed through three encoder blocks con-
sisting of a linear layer, batch normalization [34], leakyReLU
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Fig. 2. Transformer and speaker embedding integration.

activation and dropout [35]. A final linear layer yields outputs
of vocabulary size (1000 subword units).

Since the wav2vec 2.0 model has already been pretrained
on LibriSpeech, we keep its weights frozen during training
on the LibriSpeech corpus, but include them in the training
procedure, when the Switchboard data is used.

The models are trained with SpecAugment [36] in the
time-domain and speed perturbation at 95% and 105% of the
regular utterance speed. Each model is trained for 30 epochs
on Switchboard and for 5 epochs on LibriSpeech.

The batch size is 6 for both datasets. We employ the Adam
[37] optimizer for the W2V2 part of the overall system with
exponential decay rates of β1 = 0.90, β2 = 0.99 and an initial
learning rate of 10−3. The other parts of the model are trained
using the Adadelta [38] optimizer with an initial learning rate
of α = 1.0 and decay rate of ρ = 0.95. The learning rate is
annealed based on the validation performance.

Greedy decoding on the logits and application of the con-
nectionist temporal classification (CTC) rules (removal of
blank symbols and duplicates) yields the best path for each
utterance.

2.2. Transformer

We employ an attention-based encoder-decoder architecture
[39]. The model is trained on both CTC loss and Kullback-

Leibler divergence between negative-log likelihood targets.
Decoding is performed with a joint CTC/attention beam
search coupled with a transformer language model that is
used on top of the decoder probabilities.

The composition of the transformer system is depicted in
Figure 2. For each input sequence, a convolutional neural
network (CNN) consisting of 3 layers is applied to reduce the
length of the hidden representations before passing the input
to the transformer model. The transformer architecture fol-
lows [12]. It employs 12 identical encoder blocks and 6 iden-
tical decoder blocks with 4 heads in the multi-head attention
modules. Information about the token position is encoded via
sinusoidal positional encodings in 256-dimensional input em-
beddings. Each encoder and decoder block consists of two
sub-layers; a multi-head attention mechanism and a position-
wise fully connected feedforward network. Dropout and layer
normalization [40] are applied after each sub-layer.

The transformer-encoder output is passed to the hy-
brid CTC/attention decoder and to a linear layer followed
by log softmax activation. The output after log softmax
activation pCTC is used to compute the CTC loss. The
transformer-decoder output is passed through another linear
layer followed by log softmax activation. The resulting log-
probabilities pS2S are used to compute the Kullback-Leibler
loss.

The acoustic model is coupled with a transformer lan-
guage model (LM) during decoding. Its architecture is also
based on [12]. The LM employs 12 encoder blocks but no de-
coder blocks. Each block in the LibriSpeech model employs
768-dimensional input embeddings, the hidden layer size is
3072 and 12 heads are used in the multi-head attention mod-
ule. The encoder blocks in the Switchboard model use 264-
dimensional input embeddings, a hidden layer size of 1024
and 12 attention heads.

The LibriSpeech tokenizer and LM are trained on 960h
of audio transcripts, which corresponds to 10 million words
of text data. The Switchboard tokenizer and LM are trained
on the transcripts of the Switchboard 300h corpus, as well
as the transcripts provided by the Fisher corpus [41]. The
LM weight is 0.6 for the LibriSpeech models and 0.3 for the
Switchboard models. The beam size of the decoder is 60 for
both datasets.

The LibriSpeech transformer is trained for 60 epochs with
an effective batch size of 48 using gradient accumulation with
a factor of 3 and a CTC weight of 0.3. The Switchboard trans-
former is trained for 100 epochs with an effective batch size
of 256 using gradient accumulation with a factor of 2 and a
CTC weight of 0.3. We employ the Adam optimizer with ex-
ponential decay rates of β1 = 0.90, β2 = 0.98 and initial
learning rates of 10−3 (LibriSpeech) and 6 × 10−3 (Switch-
board). The learning rate is increased linearly for the first 25k
steps and then decreased proportionally to the inverse square
root of the step number [12].



2.3. Speaker embeddings

Our i-vector extraction pipeline follows Kaldi’s [42] sre10/v2
recipe, using a 2048-component diagonal universal back-
ground model (UBM) trained on 20-dimensional MFCC
features.

We utilize two state-of-the-art systems to extract speaker
embeddings: x-vector [4] and ECAPA-TDNN [27]. The x-
vector model [4] is a time delay neural network (TDNN) that
aggregates variable-length inputs across time via mean pool-
ing to create fixed-length representations capable of captur-
ing speaker characteristics. Speaker embeddings are extracted
from a bottleneck layer prior to the output layer.

Desplanques et al. [27] propose several enhancements
to the x-vector architecture. Their ECAPA-TDNN adds 1-
dimensional Res2Net [43] modules with skip connections as
well as squeeze-excitation (SE) blocks [44] to capture channel
interdependencies. Additionally, features are aggregated and
propagated across multiple layers. It also utilizes a channel-
dependent self-attention mechanism that uses a global context
in the frame-level layers and the statistics pooling layer. The
input features are 24-dimensional Mel filterbank features us-
ing a frame-width of 25ms and a frame-shift of 10ms.

The training data for both the x-vector model and the
ECAPA-TDNN are augmented with additive noises from the
MUSAN corpus [32] and reverberation using a collection of
room impulse responses.

To ensure a fair comparison, we extract 512-dimensional
i-vectors, x-vectors and ECAPA-TDNN embeddings for each
utterance in the training and test set. We also trained an
ECAPA-TDNN that yields 192-dimensional outputs in the
final fully-connected layer, as proposed in the original pa-
per [27], to analyze the impact of reduced dimensionality.
We compute the mean over all vectors representing utter-
ances from an individual speaker, thereby generating a single
prototype embedding for each speaker in the corpus. The
mean vectors are concatenated with the acoustic features and
passed to the ASR systems. Each embedding vector is scaled
to the value range [0; 1]. We also experimented with unscaled
vectors and scaling to zero mean and unit variance. However,
the former yielded the most consistent results.

3. EXPERIMENTS

We trained five models for each corpus using both the
W2V2 and the transformer architecture: (1) model with-
out speaker adaptation, (2) i-vectors as auxiliary inputs, (3)
192-dimensional ECAPA-TDNN embeddings as auxiliary
inputs, (4) 512-dimensional ECAPA-TDNN embeddings as
auxiliary inputs, (5) x-vectors as auxiliary inputs. Each sys-
tem was evaluated using clean and augmented (SNRs 18, 9,
and 0) test data.

The left part of Table 1 shows the word error rates (WERs)
and improvements relative to the baseline without speaker

adaptation for the W2V2-based models. WER improve-
ments were achieved with both x-vectors and ECAPA-TDNN
embeddings under all conditions, except at SNR = 0. X-
vectors and ECAPA-TDNN embeddings outperformed i-
vectors across almost all conditions and datasets. X-vectors
achieved the largest WER improvements on the Switchboard
data, whereas ECAPA-TDNN embeddings were more effec-
tive on the LibriSpeech data. Performance gains diminished
or turned negative for SNRs 9 and 0 across all types of em-
beddings. The largest overall improvement of 6.3% was
achieved on the Callhome portion of Switchboard, when no
noise augmentation was applied to the data and x-vectors
were used as speaker information.

The right part of Table 1 shows the ASR results for the
transformer models. WER improvements had the tendency
to increase with smaller SNRs, i.e., larger performance gains
were achieved, when more noise was added to the test data.
The largest overall improvement of 16.3% was achieved on
the clean test portion of the LibriSpeech corpus (SNR = 18)
with 512-dimensional ECAPA-TDNN embeddings as auxil-
iary features. X-vectors and ECAPA-TDNN embeddings out-
performed i-vectors across all noise conditions, except one
(LibriSpeech test-clean, SNR = 0).
A direct comparison between the left and the right part of
Table 1 shows that the W2V2-based models yielded consis-
tently lower WERs than the transformer systems, but the rela-
tive WER gains due to speaker adaptation were larger for the
transformer models.
For comparison, we trained hybrid HMM-DNN systems us-
ing the lattice-free maximum mutual information (LF-MMI)
objective [45] on LibriSpeech and Switchboard with the s5
and s5c recipes of the Kaldi toolkit. On LibriSpeech, we
achieved relative improvements over the baseline WER of
8.8% on test-clean and 13.9% on test-other, when i-vectors
were used as auxiliary inputs to the acoustic model and no
noise was added to the test data. On Switchboard, improve-
ments of 13.5% (SW) and 15.6% (CH) were reached. The
transformer models yielded only small and rather inconsis-
tent improvements in terms of WER on clean test data (cf.
first five rows in right part of Table 1). However, under strong
noise conditions (SNR = 0), our experiments showed per-
formance gains comparable to those of HMM-DNN systems.
Our W2V2-based approach showed more consistent improve-
ments on clean data and moderate noise (SNR = 18) than
the transformer approach, but did not yield gains as high as
the HMM-TDNN systems.

4. DISCUSSION

The overall performance gains of speaker adaptation on the
W2V2-based systems were smaller than those on the trans-
former systems. We assume that this is in parts related to
the better overall performance of finetuned wav2vec 2.0 sys-
tems and to the stage at which the speaker information was



Table 1. Word error rates (WER) and relative improvements for the pretrained W2V2 (left) and the transformer (right) model
under varying noise conditions. The column ∆% indicates the improvement of speaker adaptation over the baseline in percent.
Bold values indicate the largest relative WER improvements for the respective test set. The leftmost column shows the signal-
to-noise ratio (SNR) used in the experiment. The test sets clean and other represent the “test-clean” and “test-other” sets of the
LibriSpeech corpus. SW, CH, and Hub’00 indicate the Switchboard, Callhome, and full Hub5’00 portions of the Switchboard
300h Hub5’00 dataset.

Pretrained wav2vec 2.0
SNR Corpus Data Baseline ECAPA R192 ECAPA R512 X-vector i-vector

WER WER ∆% WER ∆% WER ∆% WER ∆%

-

Libri clean 1.89 1.88 0.5% 1.89 0.0% 1.89 0.0% 1.92 -1.6%
other 3.99 3.97 0.5% 4.03 -1.0% 3.95 1.0% 3.95 1.0%

Swbd
SW 8.78 8.60 2.1% 8.33 5.1% 8.31 5.4% 8.46 3.6%
CH 15.19 14.98 1.4% 14.94 1.6% 14.23 6.3% 15.23 -0.3%

Hub’00 11.90 11.71 1.6% 11.63 2.3% 11.22 5.7% 11.81 0.8%

18

Libri clean 9.27 8.91 3.9% 8.72 5.9% 8.92 3.8% 8.93 3.7%
other 18.89 18.45 2.3% 18.88 0.1% 18.61 1.5% 19.20 -1.6%

Swbd
SW 9.52 9.45 0.7% 9.12 4.2% 8.99 5.6% 9.37 1.6%
CH 18.07 17.89 1.0% 18.36 -1.6% 17.41 3.7% 18.24 -0.9%

Hub’00 13.62 13.56 0.4% 13.29 2.4% 13.22 2.9% 13.79 -1.2%

9

Libri clean 21.43 21.21 1.0% 20.49 4.4% 20.55 4.1% 21.13 1.4%
other 37.79 37.93 -0.4% 38.24 -1.2% 37.17 1.6% 38.73 -2.5%

Swbd
SW 11.95 12.08 -1.1% 11.34 5.1% 11.73 1.8% 11.96 -0.1%
CH 26.62 26.58 0.2% 27.74 -4.2% 27.62 -3.8% 28.30 -6.3%

Hub’00 19.88 19.84 0.2% 19.84 0.2% 20.02 -0.7% 19.66 1.1%

0

Libri clean 41.26 41.19 0.2% 41.92 -1.5% 40.85 1.0% 43.25 -4.8%
other 62.24 61.94 0.5% 62.50 -0.4% 61.21 1.7% 64.74 -4.0%

Swbd
SW 21.71 23.04 -6.1% 22.55 -3.9% 22.23 -2.4% 21.49 1.0%
CH 46.86 48.80 -4.1% 50.24 -7.2% 49.81 -6.3% 50.40 -7.5%

Hub’00 35.38 35.90 -1.5% 35.86 -1.4% 36.34 -2.7% 35.34 0.1%

Transformer
SNR Corpus Data Baseline ECAPA R192 ECAPA R512 X-vector i-vector

WER WER ∆% WER ∆% WER ∆% WER ∆%

-

Libri clean 2.39 2.34 2.1% 2.36 1.3% 2.31 3.3% 2.43 -1.7%
other 5.42 5.69 -5.0% 5.85 -7.9% 5.57 -2.8% 6.03 -11.3%

Swbd
SW 10.37 10.22 1.4% 9.99 3.7% 10.09 2.7% 10.32 0.5%
CH 18.52 18.22 1.6% 18.88 -1.9% 18.59 -0.4% 20.07 -8.4%

Hub’00 14.44 14.17 1.9% 14.63 -1.3% 14.62 -1.2% 15.29 -5.9%

18

Libri clean 9.95 9.26 6.9% 8.33 16.3% 9.17 7.8% 8.47 14.9%
other 22.11 19.99 9.6% 19.55 11.6% 20.38 7.8% 20.79 6.0%

Swbd
SW 13.72 13.38 2.5% 12.71 7.4% 13.01 5.2% 13.65 0.5%
CH 26.75 25.97 2.9% 25.24 5.6% 25.34 5.3% 26.72 0.1%

Hub’00 20.37 19.41 4.7% 19.43 4.6% 19.47 4.4% 20.28 0.4%

9

Libri clean 25.29 25.27 0.1% 22.79 9.9% 23.36 7.6% 23.21 8.2%
other 45.27 43.26 4.4% 41.08 9.3% 41.97 7.3% 42.75 5.6%

Swbd
SW 20.03 20.03 0.0% 19.53 2.5% 18.79 6.2% 20.84 -4.0%
CH 39.59 35.08 11.4% 35.18 11.1% 34.96 11.7% 35.82 9.5%

Hub’00 30.88 26.99 12.6% 27.91 9.6% 27.24 11.8% 28.54 7.6%

0

Libri clean 51.87 48.94 5.6% 46.95 9.5% 47.53 8.4% 46.85 9.7%
other 71.90 68.80 4.3% 66.88 7.0% 68.54 4.7% 69.45 3.4%

Swbd
SW 35.84 33.12 7.6% 33.51 6.5% 31.32 12.6% 36.32 -1.3%
CH 56.15 48.78 13.1% 50.02 10.9% 48.03 14.5% 50.91 9.3%

Hub’00 45.83 40.74 11.1% 41.82 8.7% 40.43 11.8% 44.03 3.9%

included in the model. Speaker information was added at the
first encoder block of the W2V2-based system, but already
included in the convolutional frontend of the transformer
models (cf. Figure 2). In other words, speaker embedding
inclusion in the W2V2-based system happened in a late stage
of the model, at which most of the acoustic information was
already processed by the feature extractor, whereas in the
transformer system speaker embeddings were added in an
early stage, enabling it to jointly model acoustics and speaker
information throughout all layers. In fact, when we included
speaker embeddings at the linear layers after the transformer
component, the benefits shown in the right part of Table 1
disappeared. Furthermore, wav2vec 2.0 systems are known
to capture speaker information well [46], consequently mak-
ing the integration of additional speaker embeddings in the
downstream encoder layers less important.
The experiments on ECAPA-TDNN embeddings with differ-
ent sizes showed that dimensionality can affect the overall
performance, but it seems to be linked to other factors such
as model architecture and noise condition as well. In most
cases, using transformers with ECAPA-TDNN embeddings
in R512, instead of R192, yielded larger WER improvements.
However, for the W2V2-based system, lower dimensional
ECAPA-TDNN embeddings were more beneficial than higher
dimensional ones under noisy environments. The choice of
embedding extractor also depends on the speech corpus. Our
experiments showed that the largest overall gains on Switch-
board were achieved with x-vectors, whereas the largest gains

on LibriSpeech were achieved using ECAPA-TDNN embed-
dings.

5. CONCLUSION

We analyzed the impact of speaker adaptation on ASR perfor-
mance using two recent E2E architectures. We demonstrated
that the use of x-vectors and ECAPA-TDNN embeddings as
auxiliary input features can increase the robustness in noisy
environments. Both representation types outperformed i-
vectors in almost all cases. The system based on wav2vec
2.0 yielded consistent improvements with speaker adaptive
training, when no or small amounts of noise were added
(SNR ≥ 18), but did not achieve improvements under strong
noise conditions (SNR ≤ 9). Transformers achieved larger
WER improvements, the more heavily the test data was aug-
mented. Both E2E architectures can benefit from additional
speaker information, but the expected performance gains are
lower compared to hybrid HMM-DNN systems and depend
on the dataset, the strength of the noises applied, as well as
the type of speaker representations used. Future work will
extend this analysis to other E2E models such as conformers
to complete the picture on the impact of speaker embeddings
as auxiliary input features.
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