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The absence of a conventional association between the cell-cell cohabitation

and its emergent dynamics into cliques during development has hindered our

understanding of how cell populations proliferate, differentiate, and compete,

i.e. the cell ecology. With the recent advancement of the single-cell RNA-

sequencing (RNA-seq), we can potentially describe such a link by constructing

network graphs that characterize the similarity of the gene expression profiles

of the cell-specific transcriptional programs, and analyzing these graphs sys-

tematically using the summary statistics informed by the algebraic topology.

We propose the single-cell topological simplicial analysis (scTSA). Applying

this approach to the single-cell gene expression profiles from local networks

of cells in different developmental stages with different outcomes reveals a

previously unseen topology of cellular ecology. These networks contain an

abundance of cliques of single-cell profiles bound into cavities that guide the

emergence of more complicated habitation forms. We visualize these ecologi-
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cal patterns with topological simplicial architectures of these networks, com-

pared with the null models. Benchmarked on the single-cell RNA-seq data of

zebrafish embryogenesis spanning 38,731 cells, 25 cell types and 12 time steps,

our approach highlights the gastrulation as the most critical stage, consistent

with consensus in developmental biology. As a nonlinear, model-independent

and unsupervised framework, our method can also be applied to tracing multi-

scale cell lineage, identifying critical stages, or creating pseudo-time series.

Introduction

In recent years, technological developments in data visualizations, especially the subfield of

topological data analysis (TDA), has illuminated the structure of biological data with features

like clusters, holes, and skeletons across a range of scales [1]. The TDA approach has proven

to be especially useful with recent advancements in experimental techniques at the single cell

resolution, both in genomics and neuroscience, such as radiomics [2] and brain imaging [3,

4]. The utility of topology comes from the idea of persistence, which extract the underlying

structures within data while discarding noisy elements in the single cell data collection. Unlike

graph-based data like human connectomes, in most time, the high-dimensional data collected

from single cell techniques are similiarity-based. Under the assumption that these data was

sampled from underlying space X , the goal is to first approximate X with a combinatorial

representation, and then compute some sort of invariant features to recover the topology of X .

The single-cell topological data analysis (scTDA) is one of the first attempts to apply topology-

based computational analyses to study temporal, unbiased transcriptional regulation given the

single-cell RNA sequencing data [5]. In order to visualize the most invariant features of the

entire gene expression data, scTDA clusters low-dispersion genes with significant gene con-

nectivity according to their centroid in the topological representation, and visualize them in
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low-dimension space with the Mapper algorithm [6]. Computing the cell complexity as the

number of genes whose expression is detected in a cell, scTDA observes a mild dependence of

library complexity over the timescale of the single cell data of 1,529 cells collected at 5 time

points. This is expected because the number of genes expressed by cells in early stages of a

developmental process is larger than in the adult case, as pointed out in [7]. As a result, in

scTDA the library complexity is not used for any purpose at the topological data analysis and

not related to any topological properties.

Intuitively thinking, if we were to introduce a definition for “cell complexity”, that charac-

terizes the behaviors of cell-cell coexpression or interactions, the quantities of cell complexity

should be agnostic to the number of genes expressed by the cells, and should be different across

differentiated cells and across the developmental process. Can we introduce a better summary

statistic for the cell complexity that can capture the developmental trajectory with more distinc-

tions between time points? To clarify, unlike the previous definition of “library complexity”,

which simply quantifies the number of genes expressed in a cell, we wish to define a cell com-

plexity measure to better model higher-order networks and dynamic interactions in single-cell

data. Understanding the cell-cell interactions can help identify intercellular signaling pathways

and previous analytical studies have focused on computing a communication score between the

ligand–receptor pair of interacting proteins [8]. For instance, [9] and [10] infer the intercellular

signaling pathways of cell-cell communications by computing the coexpression of all genes or

other cell markers. The alternative would be to compute the similarity between gene expression

profiles as in [11]. In this work, we aim to focus directly on the cell level, and use the similarity

between each cell’s gene expression profiles as a graph to compute a topological descriptor of

the complexity. The more connected a group of cells are in this similarity graph, the higher the

complexity of this group of cell is. There are two major quests in this line of research:
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Quest from topological data analysis.

Existing TDA applications usually focus on the low-dimensional graph visualization and the

persistent homology of the data (i.e. computing the Betti numbers or barcodes up to dimension

2), because interpreting the biophysical meaning of the geometry and higher dimensional persis-

tent modules is a conceptual challenge. Others have proposed hybrid approaches to combine the

merits of data geometry and topology by adaptively selecting the proper thresholds in the pair-

wise distance matrix of the data points [12, 13]. Another alternative to these low-dimensional

TDA methods is the simplicial analysis. Simplicial architecture was first introduced in biologi-

cal data through the application on human brain connectomes [14], where each connected pairs

of neurons are considered an edge to create a graph and the numbers of Rips-Vietoris simplices

in dimensions up to 7 are computed at that static graphs comparing with the random graphs.

Likewise in our inquiry, we are interested in the intercellular interaction within the same type

of cells, the cell complexity [15], rather than the relationships between different groups of cell,

as in scTDA. However, the filtration challenge of deriving a graph from the distance-based data

by choosing the best threshold, hinders the practical application of such simplicial analysis in

these point cloud data.

Quest from single-cell-resolution data.

With the increasingly popular usage of single-cell genomic techniques, it might be possible

to infer such cell-cell interaction (or cellular ecology) in a fine resolution. However, as far as

we are aware, there are only a few literature exploring the cellular ecology from single-cell

RNA sequencing data. For instance, [16] and [17] apply the ecology and multi-agent models

to model single-cell systems. We wish to complement this line of work by connecting it to

the topological data analysis, where the focus is to model the shape or manifold of the data

from the similarity of data points. One challenge of this hybrid direction, is to conceptually
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Figure 1: The analytical framework of the single-cell topological simplicial analysis
(scTSA).

understand the biological meaning behind the dissimilarity of the omic data. For instance, what

does it mean if two cells have similar gene expression profiles from each other? Does that

indicate a homogeneity if the two cells are from the same tissues, or is it an artifact that the

manual labeling or classifications are not perfect? Can we measure the “complexity” of the

cell populations based on the heterogeneity or diversity within populations? If we can, how to

we evaluate and interpret lower-order versus higher-order “complexity”? The other challenge

is the scalability and compariablity of the single-cell data. With the advances of multi-channel

high-throughput data collection techniques in biological fields, how to compute the pairwise

distances of the point clouds efficiently? In different trials of single-cell experiments, how to

make sure that the persistent modules are comparable to one another?

Framework: single-cell topological simplicial analysis (scTSA)

In this study, we propose a topological simplicial analysis (TSA) pipeline (Figure 1) as an

exploratory inquiry to solve these three challenges: (1) with the algebraic geometry’s definitions

of forming higher-order simplices, we can potentially interpret that cliques of higher orders

indicates operational units of higher order; (2) with the bootstrapping techniques to sample

from the data points collected at each sub-level, we can scale the analysis to large single cell
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datasets and compare groups of cells quantitatively; (3) with a time delay constraint on the

filtration process, we can sort the projected data points of cells into distinct groups of cells

collected from the same time stamps. The framework first takes the measurements of the single-

cell RNA sequencing data which generates a similarity matrix among the cells based on their

gene expression profiles. Other than performing the persistent homology to obtain lower-order

topological descriptors of the data, we compute additional higher-order topological descriptors

by counting the number of the simplices emerged from the filtration process. In addition, we

introduce a technique to extract the temporal skeleton of the developmental processes, called

temporally filtrated TDA, and show that the developmental trajectories of cells can be better

revealed in this approach comparing to existing TDA mapping techniques.

We begin our presentation in section , with a short overview of mathematical definitions

of the single cell data visualization problem and introduction of necessary concepts and defini-

tions in the language of computational topology. Section formulates the topological simplicial

analysis pipeline we are proposing as well as numerical tricks applied in the implementation

to ensure the scalablity. We apply this single cell Topological Simplicial Analysis (scTSA) to

the zebrafish single-cell RNA sequencing data with 38,731 cells, 25 cell types, over 12 time

steps [18]. We select the top 103 genes based on the scTDA pipeline from the high-dimensional

high-throughput transcriptomic data. In section , we introduce the dataset used to benchmark

the method and present the analysis results with their mathematical interpretations to the biolog-

ical insights. In the last section, we discuss the validity of using our framework to understand

the higher-order cellular complexity, and conclude our methods by pointing out several future

work directions as the next step of this line of research.
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Materials and Methods

Single-cell data in the point cloud space

Genomic measurement and analysis at single-cell resolution has enabled new understandings

of complex biological phenomena, such as revealing cellular composition of complex tissues

and organisms [19]. Single-cell RNA sequencing (scRNA-seq) techniques measure the gene

expression profiles of individual cells through mechanisms like microfludics. For instance, the

benchmark dataset of zebrafish embryogenesis [18] that we use in this study, applied Drop-seq,

a massively parallel scRNA-seq method to profile the transcriptomes of tens of thousands of

embryonic cells [20]. These single cell data are usually point clouds in a finite metric space,

a finite point set S ⊆ Rd. Let d(·, ·) denote the distance between two points in metric space

Z . The assumption is that data was sampled from underlying space X . The goal is to recover

topology of X . To accomplish the goal, one needs to first approximate X with a combinatorial

representation (e.g. with the simplicial complex), and then compute a topological invariant

summary statistics (e.g. with the persistent homology).

Definition of the simplicial and temporal filtration

Given the point cloud data, we then construct a continuous shape on top of the data to high-

light the underlying topology and geometry. The process to build such a shape is through a

mathematical filtration, which is often a simplicial complex or a nested family of simplicial

complexes, that reflects the innate structure of the point cloud data at different scales [21].

Simplicial complexes are high dimensional objects or generalizations of neighboring graphs to

represent the cliques of data points, and in another word, a notion of ecology. If we consider all

the points in the point cloud data each with a coordinate of their locations in certain embedding,

they each occupy a spherical space with the same radius ϵ around them, which are called nerve

balls. If the two nerve balls overlap or contact each other, we consider an edge to be formed
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between them in this graph. The filtration is a process to tune the parameter ϵ from 0 to ∞ and

record the families of simplicial complexes generated through the increasingly connected (or

“complex”) graph.

Usually, the challenge is to extract relevant and useful information about the shape of the

data through defining such simplicial complexes from the graph (generated through the filtra-

tion process). Rips-Vietoris complex is one of the common choices in practice to compute

topological invariants of point clouds, defined as follows: given the vertex set Z , for each pair

of vertices a and b edge a-b is included in Rips-Vietoris complex C(Z, t) if d(a, b) ≤ t, and

a higher dimensional simplex is included in C(Z, t) if all of its edges are included. Since

C(Z, t) ∈ C(Z, t′) whenever t ≤ t′, the filtered Rips-Vietoris complex is a filtered simplicial

complex, and also the maximal simplicial complex that can be built on top of its 1−skeleton,

thus a clique complex or a flag complex. Unlike conventional low-dimensional topological data

analysis, we computed simplices into high dimension (up to 7) during the entire filtration pro-

cess. To record the number of cliques, we compute the filtered simplicial complexes and record

their cumulative counts across the entire filtration process.

Since the topological data analysis usually only consider the graph constructed by the spatial

proximity (i.e. the distance matrix) between the data points in the low-dimensional embedding,

it is not clear how to incorporate timestamp information for meaningful inference and visualiza-

tion when facing the time-series data streams [22]. One approach would be to simply consider

the time stamp as the meta data for posthoc labeling of the topological representations. Another

alternative would be to consider time as an additional dimension in the filtration process. We

present the Temporal Filtration as the following: alongside the conventional sweeping of the

parameter ϵ from 0 to ∞, we set another parameter τ to indicate a hard constraint in edge form-

ing between two points. In another word, only if the time stamp difference between the two

data points is within the time delay limit τ , can two nerve balls, if spatially proximal enough
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(less than ϵ), form an edge in between. On the other hand, if the time stamp difference between

the two data points is larger than τ , even if they are spatially proximal enough (less than ϵ), they

cannot form an edge. Given the problem settings, one can either set a reasonable time delay

limit τ given the domain knowledge, or tune τ from 0 to ∞, similar to the filtration process on

the spatial filtration parameter ϵ. The later approach can potentially extract temporally invariant

topological summary statistics.

Topological data analysis with persistent homology

Following the definition above, an abstract simplicial complex is given by a set Z of vertices or

0−simplices, for each k ≤ 1 a set of k−simplices σ = [z0, z1, . . . , zk] where zi ∈ Z , and for

each k−simplex a set of k+1 faces obtained by deleting one of the vertices. A filtered simplicial

complex is given by the filtration on a simplicial complex Y , a collection of subcomplexes

{Y(t)|t ∈ R} of Y such that Y(t) ⊂ Y(t′) whenever t ≤ t′. The filtration value of a simplex

σ ∈ Y is the smallest t such that σ ∈ Y(t).

Topological data analysis methods usually involve computing the persistent homology [23].

The Betti numbers help describe the homology of a simplicial complex Y . The Betti number

value BNk, where k ∈ N, is equal to the rank of the k−th homology group of Y . The Betti

intervals over the filtration process help describe how the homology of Y(t) changes with t. A

k−dimensional Betti interval, with endpoints [tstart, tend), corresponds to a k−dimensional hole

that appears at filtration value tstart, remains open for tstart ≤ t < tend, and closes at value tend.

Figure 2 is a schematic diagram outlining how to perform a filtration process (by sweeping the

ϵ), document the “birth” and “death” of each complexes (the colored lines of various length in

the chart), and generate this as a “barcode” representation [24] for the downstream analyses.
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Figure 2: Persistent homology via mathematical filtration. In this schematic diagram, a point
cloud of 19 data points are presented in a low-dimensional embedding space. In the filtration
process, a parameter ϵ is swept from 0 to the maximum pairwise distance within the point cloud,
indicating a distance threshold under which the two points can form an edge to become one
connected component in the graph. In another word, a nerve ball of radius ϵ grows around each
point cloud, and an edge will form if two nerve balls touch. Hn indicates the n-th homology
group, i.e. the formation of the simplex complexes of order n, with 0-simplex to be the nodes (or
clusters), 1-simplex to be the edges between two nodes, 2-simplex to be the loops (or triangles in
this case), 3-simplex to be the tetrahedrons and so on. Each colored line indicates the “lifespan”
of a simplex, with its starting point to be its “birth” (or first appearance) and ending point to be
its “death” (or disappearance due to the two nerve balls fully overlapping). In this example, the
persistent homology of the data cloud is presented in the form of a “barcode” representation.
The birth and death of the simplicial complexes up to the order 2 are recorded when the filtration
process gradually sweeps the distance threshold.

Topological data visualization with low-dimensional mapping

To build and visualize the topological representation of the point cloud data, we use the Mapper

algorithm [25] through the implementations provided by Kepler-Mapper 1 with modifications

1https://github.com/scikit-tda/kepler-mapper
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for temporal filtration at https://github.com/doerlbh/tkMapper. In brief, a dissimiliarity matrix is

computed from the preprocessed RNA-seq data by taking the pairwise correlation distance. This

metric space was then reduced to a low-dimensional embeddings with the multi-dimensional

scaling [26]. Given this embedding, the point cloud data are chopped into coverings of hyper-

cubes with a 50% percentage of overlapping between the cubes2. Then for each hypercube,

the data points within the cube are then clustered with single-linkage rule. This step further

aggregates all the points into a network in which each vertex corresponds to a cluster and each

edge corresponds to a nonvanishing intersection between the clusters. As defined in section , If

temporal filtration is applied, then edge forming is also controlled by the additional time delay

constraint that the clusters are formed with both spatial and temporal proximity, and the edges

would only exist between two clusters if all points in the two clusters are within the time delay

limit τ . Once we reach a network representation, the network can eventually be visualized with

force-directed algorithms for insights.

Empirical simplicial computation with lazy witness complex

As single cell data has different noise granularity across cell types and data collection proce-

dures [27], the number of cells collected in each time points and different cell types (as in

the analyzed developmental study [18]) can vary in different magnitude, making direct simpli-

cial computation incomparable. For these larger datasets, if we include every data point as a

vertex, the filtrated simplicial complexes can quickly contain too many simplices for efficient

computation. To solve this numerical inconsistency issue, we instead extract the lazy witness

complexes by sampling m data points [23] with a sequential maxmin procedure [28], setting a

nearest neighbor inclusion of 2 (as in the term “lazy”)3. The computation of the witness com-

2The choice of 50% is empirically determined by our dataset. We vary the overlap parameter among 25%, 50%
and 75%, and 50% gives the best clustering effect.

3The selection of m depends on the scale of the dataset. The bigger the sample size m is, the better the estimate.
However, since different partitions of the data points have varying sizes. For instance, if there are only 50 data
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plex in high dimensions is implemented with the JPlex software [29] and Matlab. The codes to

reproduce the empirical results can be accessed at https://github.com/doerlbh/scTSA.

Control models for the topological simplicial analysis

Usually for binary connectivity data (like brain connectome), Erdős-Rényi random graph [30]

can be used as control models. However, in similarity-based data, the average connectivity

probability is entirely dependent on the filtration factor. To avoid this caveat, we take a differ-

ent approach by permuting the pairwise distances of the data points, which is equivalent to a

weighted version of the Erdős-Rényi random graph. In this way, the low-dimensional embed-

dings computed by the multidimensional scaling can form different connectivity profiles while

maintaining the same distance distribution. Then we apply the same topological data analysis

pipelines to the embeddings computed from the pairwise distance matrices from both the actual

data and the control models.

To this point, we propose a formal definition of cellular complexity, as the normalized n-

simplicial complexity, SCn, a family of summary statistics with an increasing order n:

SCn =
#simplexdata

n

#simplexnull
n

(1)

where SCn is computed by taking the ratio between the number of the simplicial complexes

for a certain order n computed from the actual data, and the number of those computed from

the control models. Empirically, we compute the SCn with the order n from 1 to 7, as the

summary statistics characterizing the ecology among the data points with cliques and cavities

of increasing modularities.

points collected in time step 1, while there are more than 100 points in other times steps, then the maximum of m
that can be picked is 50.
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Figure 3: Simplicial dynamics across developmental stages. In (A) and (B), we sample 100
data points in each time point of the single cell data, apply the multidimensional scaling (MDS)
to reduce its dimension to 2, and compute the simplicial complexes up to dimension 7. The
color and the surface height in the z-axis indicates of the size of the computed topological
summary statistics. (A) The number of n-simplices is computed from the sampled data points
in each time points. (B) The normalized n-simplicial complexity, i.e. the normalized number of
n-simplices, is computed as the ratio of the number of the n-th order simplicial complexes from
the data over the number of those from the null models. The normalized simplicial complexity
of higher order appears to be well above 1 in certain developmental stages with a distinctive
separation between the 5th and 6th time points.

Results

We benchmark the scTSA method on the zebrafish single-cell RNA sequencing data with 38,731

cells, 25 cell types, over 12 time steps [18]. The data has dimension of 103 corresponding to

the expression levels of 103 significant genes selected by the scTDA pipeline [5]. For each time

points, we sample 100 data points, and embed them with multidimensional scaling (MDS) of

dimension 2 to preserve their distance information4. Upon the MDS embedding, we compute

the filtrated simplicial complexes up to the dimension of 7.

The TSA pipeline identifies the simplicial complexity to vary over the time, suggesting a

4The choice of two dimensions is an empirical consideration. The computation of mathematical filtration can
be expensive, while MDS is known to preserve the geometric information well even with two dimensions.
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Figure 4: Simplicial dynamics across developmental stages. To investigate the tradeoff be-
tween the higher-order and the lower-order simplicial complexity in the developmental stages,
the normalized 3-simplicial complexity is mapped against the normalized 1-simplicial com-
plexity. The color indicates different time points. The arrow indicates the transition between
the centroids in each groups of time points. A transition of lower-order and higher-order nor-
malized cell complexity is marked with the white trajectories across sequential time points.

potential better summary statistic with better distinction (Figure 3). The normalized simplicial

complexity (computed as the ratio of the number of simplicial complexes discovered within

the data over the number of those discovered within the null model) suggests an abundance

of high-dimensional simplices over the null models. The existence of a significant number of

high-dimensional simplices is observed for the first time in the single cell level. In all time

points, the number of simplices of dimensions larger than 1 in the null model was far smaller

than those found in the actual data. In addition, we observe this relative differences between

what we discover in null models and the actual data increase drastically when the dimensions

are higher. Furthermore, the number of low-dimensional simplices (up to dimension 3) of the

data appears to be equal or smaller than the null models (with normalized complexity less than

1), suggesting a possible transfer from lower order clique structure to a higher-order structure.
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Figure 5: scTSA identifies the critical stage of cellular complexity change. To showcase the
flexibility of the scTSA approach with different low-dimensional embeddings and sample sizes,
we sample 80 data points in each time point of the single cell data and apply principal compo-
nent analysis (PCA) to extract the first two component before apply the scTSA. (A) The number
of n-simplices in the log scale to highlight the drastic change of cellular complexity between
the 5th and 6th time points. (B) The heatmap of the normalized n-simplicial complexity across
the time points supports the observation. To draw insights on the developmental trajectories,
we perform a visualization of the network extracted from the topological data analysis (TDA)
with the Mapper algorithm. This type of visualization aims to identify subpopulations of cells
that form modular clusters and sparse connections between the clusters.

In order to investigate the tradeoff between the higher-order and the lower-order simplicial

complexity in the developmental stages, we map the normalized 3-simplicial complexity against

the normalized 1-simplicial complexity. Figure 4 suggests an overall above-null higher-order

complexity starting from the 5th time point, and an overall below-null lower-order complexity

in a monotonically increasing direction since the 2nd time point. Comparing to the null model,

the presence of a much larger numbers of cliques across a range of dimensions in the single cell

data suggests that the connectivity between these cells might be highly organized into numerous

fundamental building blocks with increasing complexity.

The scTSA approach has the flexibility to different low-dimensional embeddings and sample
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Figure 6: Temporal filtration identifies the critical stage of cellular complexity change.
The color indicates the time points and each node corresponds to a small cluster of cells col-
lected at the same time points. The conventional TDA mapping (the left panel) identifies a
bifuraction structure, but there are spatial locations that has a mixture of clusters that belong
to non-consecutive time points. This makes the identifications of a developmental pathway
challenging. When applying the temporal filtration (the right panel), the mapping identifies a
cleaning separation of two tracks, or two subpopulations of cells that evolves in the gastrulation
stage, matching the observation in our summary statistics from the algebraic topology.

sizes. To demonstrate, we sample 80 data points in each time point and apply the principal

component analysis (PCA) to extract the first two component. Figure 5 demonstrate the log

scale of the number of n−simplices. It shows that the gastrulation stage is a very critical stage in

vertebrate development, matching the established understanding in the developmental biology

that it is a process where the embryo begins the differentiation process to develop into different

cell lineages [31]. Before gastrulation, the embryo is a continuous epithelial sheet of cells.

After the gastrulation stage, organogensis starts where individual organs develop within the

newly formed germ layers.

This observation is further supported by the visualization of topological data analysis map-

ping. Figure 6 compares the network visualizations with and without the temporal filtration. We
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Figure 7: Cell lineage tracing with the simplicial statistics. In this analysis, the hierarchical
clustering is performed on the summary statistics of transcriptomic data of different cell types.
(A) The heatmap and clustering result using the Betti numbers as the clustering features. (B)
The heatmap and clustering result using the normalized simplicial complexity as the features
for the hierarchical clustering.

observe that, when color-labelled with the time points, the conventional topological data analy-

sis outlines a progression of cellular development, but there are many subsequent time points in

the middle of earlier timesteps. For instance, we see there are many dark blue nodes from the

11th or 12th time points in the middle of web where the majority of the nodes are earlier stages

from the 5th to 7th. When using the temporal filtration (with τ set to be just 1 time step), we

observe that the network has much more skeleton and branches, where each branching nodes

consist only of points of the same time stamp. The gastrulation stage, which happens between

the 5th and 6th time points, appears to belong to two separate tracks, supporting the hypothesis

that after the notochord and prechordal plate territories become transcriptionally distinct, the

gastrulation process refines the boundary between the two cellular populations [18].

These filtrated simplicial architectures may also offer insights in cell lineage tracing. As in

the previous analyses, we sample 50 cells from each cell types and apply scTSA over the PCA

17



embedding. We perform the hierarchical clustering of the summary statistics computed from the

transcriptome data of different cell types. We compare the result using the proposed normalized

simplicial complexity versus the one using the Betti numbers (which is more conventionally

used in many downstream topological data analyses). As shown in Figure 7, the normalized

simplicial complexity offers a more reasonable clustering performance as a more distinctive

summary statistics than the Betti numbers by themselves.

Discussion

What is cellular complexity and what does the higher-order complexity mean? As an inquiry

to this question, we explore the possibility of introducing the mathematical notion of higher-

order simplicial complexes into analyzing distance-based single cell data. Benchmarked on a

single cell gene expression data with multiple developmental stages, we propose the single-

cell Topological Simplicial Analysis, and demonstrate that the simplicial complexity can be a

well-defined summary statistic for celluar complexity.

This investigation provides a scalable, parameter-free, expressive and unambiguous mathe-

matical framework to represent the cellular complexity with its underlying structure. Locally,

these structures are characterized in terms of the simplicial complexes. Globally, these struc-

tures are characterized in terms of the cavities formed by these simplices. This framework

reveals an intricate topology of cellular similarity which includes a vast number of cliques of

cells and of the cavities that bind these cliques together. These topological summary statistics

that captures the relationships among the high-dimensional cliques uncover the transcriptional

differences in the connectivity of cells of different types during graph reconstruction.

From the scTSA visualization, we discover, for the first time in any single cell data, an abun-

dant number and variety of higher-order cliques and cavities. Comparing to the control models,

the framework measures a much higher number of high-dimensional cliques and cavities in the
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graph construction filtration process. The critical stage identified by the framework matches

the current understanding in the developmental biology. Comparing with the statistics of Betti

numbers, the normalized simplicial complexity demonstrates better distinctions between time

points and cell types.

There are potentially different questions we can explore: Can we determine developmental

stages without physiological features? Can we generate pseudo-time series based on single cell

sequencing data? And most importantly, does the vast presence of high-dimensional cliques

suggest that the interaction between these cells is organized into fundamental building blocks

of increasing complexity? Through this inquiry with topological simplicial analysis, we can

form such hypothesis that the cells organize themselves into high-dimensional cliques for cer-

tain functional or developmental reasons. Further research includes developing mechanistic

theories behind the emergence of such high-dimensional cellular cliques and experimentally

testing these hypotheses to reveal the missing link between functions and cellular complexity.

Conclusions

In summary, our work describes a novel scalable and unsupervised machine learning method

that tackles several technical challenges in bioinformatics: (1) a lack of time-series analytical

methods in quantifying the underlying temporal skeleton within the manifold of the similarities

among data points; (2) a lack of scalable computational methods to characterize single-cell

sequence signals in the scale of 10k+ data points, while the single-cell sequencing data are

dominating the bioinformatics in recent few years; (3) a lack of insight and interpretation that

connects the mathematical language of algebraic topology to the physical references to the

biological phenomena. The time-series problem is especially a topic that is applicable beyond

the application proposed in our work, and thus a major interest in the unsupervised machine

learning communities dealing with high-dimensional time series signals.
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