
CLINICSUM: Utilizing Language Models for
Generating Clinical Summaries from Patient-Doctor

Conversations
Subash Neupane∗, Himanshu Tripathi†, Shaswata Mitra‡, Sean Bozorgzad§,

Sudip Mittal¶, Shahram Rahimi∥, and Amin Amirlatifi∗∗

Dept. of Computer Science and Engineering, Mississippi State University
Potentia Analytics Inc.

Dave C. Swalm School of Chemical Engineering, Mississippi State University
Email: {∗sn922, †ht577, ‡sm3843}@msstate.edu, {§sean}@potentiaco.com

{¶mittal, ∥rahimi}@cse.msstate.edu, ∗∗amin@che.msstate.edu

Abstract—This paper presents CLINICSUM, a novel frame-
work designed to automatically generate clinical summaries from
patient-doctor conversations. It utilizes a two-module architec-
ture: a retrieval-based filtering module that extracts Subjec-
tive, Objective, Assessment, and Plan (SOAP) information from
conversation transcripts, and an inference module powered by
fine-tuned Pre-trained Language Models (PLMs), which leverage
the extracted SOAP data to generate abstracted clinical sum-
maries. To fine-tune the PLM, we created a training dataset of
consisting 1,473 conversations-summaries pair by consolidating
two publicly available datasets, FigShare and MTS-Dialog, with
ground truth summaries validated by Subject Matter Experts
(SMEs). CLINICSUM’s effectiveness is evaluated through both
automatic metrics (e.g., ROUGE, BERTScore) and expert human
assessments. Results show that CLINICSUM outperforms state-of-
the-art PLMs, demonstrating superior precision, recall, and F-1
scores in automatic evaluations and receiving high preference
from SMEs in human assessment, making it a robust solution
for automated clinical summarization.

Index Terms—Clinical summaries, SOAP, Summarization,
PLM, Fine-tuning, RAG

I. INTRODUCTION

The advent of transformer-based models such as OpenAI
GPT models 1, Meta LLAMA2 variants, and Google Gemini3

has revolutionized Natural Language Processing (NLP) by sig-
nificantly improving performance across a wide array of tasks.
These advancements, driven primarily by transfer learning,
have opened up new possibilities for applying these models in
specialized domains [1], [2]. One such domain is healthcare,
where leveraging Pre-trained Language Models (PLMs) to
automatically generate clinical summaries from doctor-patient
conversations presents a promising application with substantial
benefits for both patients and healthcare providers.

Clinical summaries play a critical role in healthcare by
improving patients’ understanding of care plans and reducing
the risk of misinterpreting medical information. Research in-
dicates that patients forget 40-80% of the medical information

1https://platform.openai.com/docs/models
2https://llama.meta.com/
3https://gemini.google.com
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Fig. 1: A graphical overview of the CLINICSUM. P denotes the
Patient and D denotes the Doctor in the conversation transcript.
S, O, A, and P refer to the Subjective, Objective, Assessment,
and Plan components of the clinical summary.

provided by healthcare practitioners almost immediately [3]
and misconstrue nearly half of what they remember [4].
For healthcare providers, generating these summaries auto-
matically can alleviate the administrative burden of updating
Electronic Health Records (EHRs), a task strongly associated
with physician burnout [5], [6].

However, the application of PLMs in this context is not
without challenges. Since PLMs are generally trained on
broad, non-specialized text corpora, they are prone to produc-
ing inaccuracies—such as hallucinations [7]—that could have
serious consequences for patient care. Addressing these chal-
lenges requires more than just deploying PLMs; it necessitates
a tailored approach that can accurately capture the nuances
of medical conversations while ensuring the reliability of the
generated summaries.

In this paper, we present CLINICSUM, a comprehensive
framework designed to automatically generate clinical sum-
maries in the Subjective Objective Assessment and Plan
(SOAP) format from transcribed patient-doctor conversations.
Fig. 1 provides an illustration of CLINICSUM. To tackle
the limitations of current PLMs in healthcare, CLINICSUM
integrates a retrieval-based filtering module and an infer-
ence module, working in tandem to produce accurate and
contextually relevant summaries. The retrieval-based filtering
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module is responsible for extracting the SOAP components
from the given transcript which it achieves by leveraging
an ensemble retriever approach, that combines sparse and
dense retrieval techniques, to capture both lexical and semantic
meanings from the transcribed conversations. By utilizing this
dual approach, filtering method ensures that the most relevant
information is passed to the inference module, which is fine-
tuned to generate clinical summaries.

For fine-tuning a PLM, we collaborated with Potentia
Inc.4, a healthcare software company, to create a new train-
ing dataset. This dataset was constructed by combining
1,473 patient-doctor conversations from two publicly avail-
able sources, FigShare5 and MTS-Dialog [8] and generating
their corresponding clinical summaries. Subject Matter Experts
(SMEs), including doctors and physicians from Potentia Inc.,
manually reviewed and corrected the summaries to ensure their
high quality, providing reliable data for fine-tuning task. The
final training data is publicly available through huggingface 6.

Previous research on generating clinical summaries includes
Zhang et al. [9], which fine-tuned a BART model to handle
long and noisy doctor-patient conversation transcripts, and
Giorgi et al. [10], which used fine-tuning and few-shot In-
Context Learning (ICL) [11] with GPT-4. While these methods
have achieved some success, CLINICSUM introduces a unique
combination of retrieval-based filtration and a fine-tuned in-
ference module to generate SOAP format clinical summaries.
Unlike the multistage summarization process for long conver-
sations used by Zhang et al. or the focus on ICL by Giorgi
et al., our approach refines input data before summarization,
leading to superior performance in both automatic and expert
human evaluations.

The main contributions of this paper are as follows:

• We demonstrate the feasibility of generating clinical sum-
maries in SOAP format utilizing the transcribed patient-
doctor conversations.

• We create a new dataset of clinical summaries cor-
responding to patient-doctor conversations from the
FigShare and MTS-Dialog datasets.

• We built CLINICSUM- a framework that automatically
generates clinical summaries.

• We showcase CLINICSUM’s proficiency in generating
accurate and relevant clinical summaries through both
automatic and expert human evaluations.

The rest of the paper is organized as follows: Section II
discusses the background and related works. Section III de-
scribes our task. Section IV provides insight on CLINICSUM’s
architecture and methodology. In Section V we present our
experiments, evaluation, and results. Section VI discusses the
limitations and Section VII concludes the paper.

4https://www.potentiaco.com/
5figsahre.com
6huggingface.co/datasets/SubashNeupane/dataset_SOAP_summary

II. BACKGROUND & RELATED WORK

A. Clinical Summaries
Clinical summaries are concise records of patient encoun-

ters, detailing medical history, current condition, treatment
plans, and progress. Automatically generating these summaries
from doctor-patient conversations benefits patients by improv-
ing recall and understanding [10] of care plans, and helps
doctors by streamlining documentation [12] and reducing
administrative workload [13]. One widely used format for
clinical summary is SOAP [14]. An example of a clinical
summary in SOAP format is presented in Fig. 2(B). The
Subjective section documents the patient’s personal experi-
ences, including the Chief Complaint (CC), History of Present
Illness (HPI), and relevant medical history. The Objective
section records measurable data like vital signs, physical exam
findings, and lab results. The Assessment section combines
subjective and objective information to diagnose the patient’s
condition, highlighting the problem and differential diagnoses.
Lastly, the Plan section details the approach for addressing or
investigating the problem further. These structured summaries
aids in making informed clinical decisions, tracking patient
progress, and maintaining continuity of care [1].

B. LLM, RAG and Fine-tuning
Transformer architectures [15] have fueled the advancement

of Large Language Models (LLMs) in NLP, thanks to their re-
markable parallelization capabilities [16]. Trained on massive
internet text datasets and featuring substantial parameter sizes,
LLMs exhibit impressive learning abilities. However, LLMs
often struggle with factual questions in closed domains, where
specialized knowledge is crucial. This difficulty can manifest
in factually inaccurate predictions, a phenomenon known as
hallucination [7]. This limitation may arise from a combi-
nation of factors, including a deficit in domain knowledge,
reliance on outdated information, and forgetting [17], [18].

To mitigate the knowledge deficiency within PLMs for
domain-specific tasks, an additional knowledge ingestion step
is required. The two most common approaches currently
practiced for external knowledge ingestion are Retrieval Aug-
mented Generation (RAG) and Fine-tuning. The first approach,
introduced around mid-2020 by Lewis et al., [19], is designed
to enhance the performance of PLMs on knowledge-intensive
tasks. This approach involves retrieving relevant information
from external knowledge sources based on the input query.
The retrieved content is then concatenated with the original
query, providing the PLM with enriched context, which leads
to more informed and accurate response generation.

The second approach, is to fine-tune PLM. In this approach,
a PLM is further trained on a smaller, task-specific dataset
to adapt it to a particular application. This process allows
the model to leverage the general knowledge it has acquired
during pre-training and refine its weights based on the new,
more focused data, improving its performance on the target
task. As PLM grows in size, updating all parameters during
fine-tuning becomes increasingly costly and inefficient, espe-
cially with limited computational resources. This challenge has



driven research into Parameter Efficient Fine-Tuning (PEFT)
methods that minimize tunable parameters while maintaining
performance. Key approaches include adapter-based methods
[20], prompt-based techniques [21], LoRA [22], QLoRA [23].

In contrast to RAG and fine-tuning approaches, an alterna-
tive approach is ICL. This technique utilizes examples (usually
few-shot) embedded within the prompt to guide the model’s
response generation.

C. Related Works

The field of open-domain dialogue summarization, encom-
passing the task of summarizing conversations and meetings,
remains relatively unexplored. While there have been a limited
number of studies dedicated to this area [24], [25], research
interest in summarizing dialogue within closed domains, par-
ticularly in the medical field, has been gaining momentum in
recent years. Specifically, the automatic generation of clinical
summaries from doctor-patient conversations has attracted
significant attention [6], [12], [26]–[28].

To this day, various methods have been proposed, to gen-
erate clinical summaries in SOAP format including extractive
and abstractive approaches. For example, Krishna et al. [29]
proposed a modular approach combining extractive and ab-
stractive summarization techniques to generate SOAP notes
from doctor-patient conversations. Building upon the work of
[29], Ramprasad et al., [30] on the other hand, focused on
enhancing the faithfulness and consistency of SOAP notes
generated by LLMs. Their work introduces section-specific
cross-attention parameters in encoder-decoder models to im-
prove the factual accuracy and relevance of generated notes.
While Schloss and Konam [12] concentrated on classifying
utterances from medical conversations into SOAP sections and
speaker roles using a hierarchical encoder-decoder model.

In addition to extractive-abstractive methods, current re-
search in automatic SOAP summary generation often involves
fine-tuning PLM which closely aligns with our approach as
discussed in Section IV. For example, Zhang et al., [9] fine-
tuned a pre-trained BART model to automatically generate
summaries from doctor-patient conversations. However, their
work was limited to just two specialties, internal medicine and
primary care, and the training data included only the History
of Present Illness (HPI) section. Similarly, Giorgi et al., [10]
explored two approaches first fine-tuning a PLM (Longformer-
Encoder-Decoder7) and second using few-shot ICL [31]. In
contrast, our approach combines retrieval-based filtering with
inference using fine-tuned models in a zero-shot setting.

III. TASK FORMULATION

Given a set of patient-doctor conversation transcripts T ,
where each transcript ti ∈ T consists of unstructured con-
versation. The objective is to generate semi-structured SOAP
clinical summaries for each transcript ti. This involves using
a function f , which applies a combination of information

7https://huggingface.co/docs/transformers/en/model_doc/led

retrieval techniques and a PLM to map each ti to a semi-
structured SOAP format ni. Specifically, the function can be
defined as:

ni = f(ti)∀ti ∈ T, ni ∈ N |i ∈ N (1)

where, T is the set of Transcripts and N is the set of
clinical summaries. These summaries ni are organized in
SOAP format where S is the Subjective component that
summarizes patient’s reported symptoms and experiences. O
is the Objective component, detailing the observable and
measurable clinical findings. A is the Assessment component,
providing a diagnosis or evaluation based on the information
and P is the Plan component, outlining the treatment and
management strategies discussed in ti.

IV. ARCHITECTURE & METHODOLOGY

This section presents the architecture of our framework,
CLINICSUM, and outlines our methodology. The framework
consists of two main modules: retriever-based filtering and
inference, as illustrated in Fig. 2. The following subsections
provide a detailed explanation of each module.

A. Retriever-based Filtering

The first module in our framework systematically processes
doctor-patient conversation transcripts ti to extract the SOAP
elements for clinical summary ni using a retrieval prompt
(query) QR. For example, our retrieval prompt is “Extract
subjective, objective, assessment, and plan details from a
given transcript”. For extraction this module utilizes the
following three sub-components:

1) Splitting: Splitting is the process of converting entire
transcript ti into a set of individual sentences/chunks ci. To
split ti into ci, we apply a sentence split regular expression.
Hence, the splitting (ti → ci) can be formulated as:

{ci : ci ∈ C} = split(tj)∀tj ∈ T |i, j ∈ N, i ≥ j (2)

2) Indexing: Given the set of sentences (C) in ti, where ci
represents a sentence in the transcript, indexing is the process
of projecting ci into vector space (E) through an embedding
model ξ(.), where, ei is the vector embedding of ci and we
store this obtained vector embedding into vector storage.

{ei : ei ∈ E} = ξ(ci)∀ci ∈ C|i ∈ N (3)

3) Retrieval: The retrieval process uses an ensemble
method that combines sparse retriever (for example BM25
[32]) and dense retriever (for example DPR [33] or our
previous work [34]), assigning different weights to each
(WSparse, and WDense), then ranks it using ranking
algorithm. In our use case, we implemented Reciprocal Rank
Fusion (RRF) [35] which combines rankings from multiple
sources by computing reciprocal rank scores.

A sparse retriever searches for documents (ci) similar to
QR based on exact token matches in the sparse vector space



Clinical Summary

Subj ect i ve:
-  Sympt oms:  Shor t ness of  br eat h,  
wheezi ng,  cough
-  Sever i t y:  Moder at e
-  Dur at i on:  Past  week
-  Associ at ed sympt oms:  Wheezi ng,  
cough
-  Rel evant  medi cal  hi st or y:  Chi l dhood 
ast hma,  no r ecent  i ssues
-  Fami l y hi st or y:  Mot her  had ast hma
-  Al l er gi es:  Al l er gi c t o pol l en
-  Ot her  concer ns:  Pat i ent  [ . . ]

Obj ect i ve:
-  Physi cal  exami nat i on f i ndi ngs:  
Wheezi ng on auscul t at i on [ . . ]

Assessment :
-  Li kel y di agnosi s:  Ast hma 
exacer bat i on
-  Di f f er ent i al  di agnosi s:  Ot her  
condi t i ons t hat  may pr esent  wi t h
si mi l ar  sympt oms
-  Cl i ni cal  i mpr essi on:  Pat i ent  has a 
hi st or y of  ast hma and i s
exper i enci ng sympt oms consi st ent  wi t h 
an ast hma exacer bat i on [ . . ]

Pl an:
-  Spi r omet r y t est  t omor r ow
-  Bl ood t est s t omor r ow
-  Consi der  l ong- act i ng br onchodi l at or  
f or  dai l y management
-  Di scuss pr oper  i nhal er  t echni que 
and ast hma management
st r at egi es [ . . . ]
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D:  Good mor ni ng!  How can I  hel p you 
t oday?
P:  Hi ,  I ?ve been exper i enci ng 
shor t ness of  br eat h f or  t he past  week
and i t ?s been bot her i ng me.  I  t hought  
I  shoul d come i n and get  i t
checked out .
D:  I  see.  Shor t ness of  br eat h can be 
concer ni ng.  Can you t el l  me
mor e about  your  sympt oms? How sever e 
i s t he shor t ness of  br eat h?
P:  I t ?s been moder at e.  I  not i ce i t  
especi al l y when I  exer ci se or
engage i n physi cal  act i v i t i es.
D:  Okay.  Have you not i ced any ot her  
sympt oms al ong wi t h t he
shor t ness of  br eat h? For  exampl e,  do 
you hear  any wheezi ng or
have a cough?
P:  Yes,  I  do hear  wheezi ng when I  
br eat he and somet i mes I  have
a cough as wel l .
D:  Thank you f or  shar i ng t hat  
i nf or mat i on.  Have you exper i enced
si mi l ar  sympt oms i n t he past ?
P:  Yes,  I  had chi l dhood ast hma,  but  
i t  hasn?t  bot her ed me much i n
r ecent  year s.
D:  I  see.  I t ?s i mpor t ant  t o consi der  
your  medi cal  hi st or y.  Does
anyone i n your  f ami l y have a hi st or y 
of  ast hma or  any ot her
r espi r at or y condi t i ons?
P:  Yes,  my mot her  al so had ast hma.
D:  That ?s hel pf ul  t o know.  Now,  l et ?s 
t al k about  any al l er gi es you
may have.  Ar e you al l er gi c t o 
anyt hi ng,  such as pol l en?
[ . . . ]

Patient-Doctor Conversation( A) ( B) ( C)

Fig. 2: A is graphical illustration of the CLINICSUM architecture. It comprises two modules: retrieved-based filtering and
inference. B represents patient-doctor conversation, and C represents generated clinical summary. [...] (used for brevity) indicates
that there is more textual information.

(C), usually employing traditional keyword-based methods or
indexing techniques. We employ BM25 as our sparse retriever
(RSparse) that can be represented as:

{ci_Sparse : ci_Sparse ∈ C|1 ≤ i ≤ k} = RSparse(C,QR)
(4)

where, k is the number of chunks with highest term frequency.

A dense retriever searches for documents relevant to QR

based on the exact or approximate neighbor similarity of
embedded vectors (ei) in a continuous embedding vector space
(E), using dense representations. For retrieval, we also embed
the retrieval prompt QR such that:

eQR
= ξ(QR) (5)

Dense retriever (RDense) can be represented as:

{ei : ei ∈ E, 1 ≤ k} = RDense(E, eQR
) (6)

The similarity function (Sim(.)) can be cosine, dot-product, or
euclidean. The top k relevant embedding (ei) are then decoded
(ci ← ei) to corresponding sentences (ci). where the similarity
function in RDense is as follows:

Sim(ei, QR) =
eQR
· eci

∥eQR
∥ · ∥eci∥

(7)

In order to obtain the corresponding sentence/chunk (ci)
from embedding ei, we apply an inverse embedding or de-
coding function (ξ(·)).

{ci_Dense : ci_Dense ∈ C|1 ≤ i ≤ k} = {ξ(ei)∀ei ∈ E} (8)

Next, we combine both ci_Sparse and ci_Dense to obtain the
final set of embedded documents, before re-ranking them:

ci_Retrieved = ci_Dense ∪ ci_Sparse (9)

The cardinality of ci_Retrieved (say p) will be less or equal
to the total number of chunks retrieved using sparse and dense
retriever (k + k = 2k | k ∈ N) i.e., p ≤ |ci_Sparse| +
|ci_Dense| ≤ N. Once combined, we apply a ranking method to
reorder the documents. This is done by using RRF algorithm.
The algorithm works by calculating rank score (ri) for the
corresponding retrieved chunk (ci_Retrieved). If a document
appears in both ci_Sparse and ci_Dense with different rankings,
we sum the reciprocals of each rank from both retrievers.
Typically S(ci_Sparse), S(ci_Dense) ∈ [0, 1], this summed
reciprocal score can exceed 1. This combined score is used for
final ranking with retriever weights (WSparse, WDense |W ∈
[0, 1]; WSparse+WDense = 1), with higher scores indicating
greater relevance.

ri = WSparse × S(ci_Sparse) +WDense × S(ci_Dense) (10)

Then, we sort the obtained rank score with respect to QR

in descending order using the following equation, where, λ is
a constant to avoid division by 0. Finally, top k chunks are
retrieved.

sort(QR, ci_Retrieved) =
N∑

i=1

1

λ+ ri(QR, ci_Retrieved)
(11)

{ci_Sorted : ci_Sorted ∈ C|1 ≤ i ≤ k} = sort(QR, ci_Retrieved)
(12)



The final decoded output will include only those chunks
that contain the subjective, objective, assessment, or plan
components from the given transcript. By passing the tran-
scripts through the retriever-based filtering, we effectively
reduce the tokens that do not correspond to the generation
of SOAP notes, thereby abstracting unnecessary information
before sending it for inference. This reduction in tokens not
only helps CLINICSUM avoid the token overflow problem but
also mitigates the inference model from hallucination.

B. Inference

The inference module receives the patient context, derived
from the final retrieved concatenated chunks ci, along with
an instruction , and a prompt (QPLMFT

) as shown in Fig.
2. The instruction guides the language model in performing
its task. In our case, we utilize Alpaca prompt, as shown in
Fig. 3 as our instruction. On the other hand, prompt directs a
fine-tuned PLM to produce clinical summaries in a zero-shot
setting. The fine-tuned generator processes the prompt, patient
context, and instructions to generate a comprehensive clinical
SOAP summary. In the following subsections we describe our
fine-tuning approach and then detail summary generation.

1) Fine-tuning: In this work, we leverage PEFT [20] ap-
proach to fine-tune a PLM for clinical summary generation.
PEFT enables efficient fine-tuning with minimal resources and
costs. Specifically, we adopt Low Rank Adaptation (LoRA)
[36] method and load pre-trained models onto a GPU as
quantized 4-bit weights. Our motivation for this approach
is two-folds: first, to explore the feasibility of training a
PLM, such as LLAMA-3, on a single consumer GPU with
24GB of memory (e.g., Nvidia 4090), and second, to assess
the effectiveness of fine-tuned PLMs with 4-bit precision in
accurately generating clinical summaries. Additionally, PEFT
helps prevent catastrophic forgetting [18] after the model has
been trained [37]. We use the Alpaca prompt [38] for both
fine-tuning and inference tasks, as illustrated in Fig. 3. The
training is conducted using Supervised Fine-Tuning (SFT).
More information on training dataset is provided in Section
V-A.

Instruction: """Below is an instruction that describes a task,
paired with an input that provides further context. Write a
response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

Fig. 3: An example of an Alpaca prompt.

2) Summary Generation: We utilize the output of the
first module—the context, i.e., the decoded relevant chunks
containing subjective, objective, assessment, and plan infor-
mation from a given transcript—along with an instruction

and a prompt as input to the inference module to generate
a clinical summary. These input are concatenated and passed
together to a fine-tuned PLM for summary generation, where
PLMFT is a fine-tuned PLM that understand how to generate
a clinical summaries, QPLMFT

is a prompt (query), inst
denotes instruction and [.,.,.] stands for concatenation.

Summary = PLMFT ([context, prompt, inst]) =

PLMFT ([ci_Sorted, QPLMFT
, inst])

(13)

Inference is conducted in a zero-shot setting using a fine-
tuned PLM. The fine-tuning process equips the model to
generalize effectively, allowing it to generate accurate clinical
summaries even for new, unseen patient conversations without
requiring additional few-shot examples. An example of the fi-
nal clinical summary for a specific patient-doctor conversation
is provided in Fig. 2 (B) and (C) respectively.

V. EXPERIMENT & EVALUATION

A. Dataset Description and Preparation

In this research, we utilize two different datasets for the
fine-tuning task. The first dataset is the Figshare dataset, which
contains 272 patient-doctor conversations. These conversations
span five medical specialties: Cardiovascular, Gastrointestinal,
Musculoskeletal, Dermatological, and Respiratory. Table I
provides an example from this dataset. The second dataset
we use is the MTS-dialog dataset [8], which contains 1,701
patient-doctor conversations. These conversations are centered
around General Medicine, Orthopedic, Dermatology, Neurol-
ogy, and Allergy/Immunology. From this dataset, we selected
a subset of 1,201 clean conversations for our study. We then
combined them, resulting in a total of 1,473 conversations.
Additional statistics, including the total number of sentences,
words, characters, unique vocabulary, and tokens for the
conversations in the combined dataset are presented in Table
II.

TABLE I: Example of a doctor-patient conversation from the
FigShare dataset.

Patient-Doctor Conversation
D: What brought you in today?
P: Sure, I’m I’m just having a lot of chest pain and and so I thought I
should get it checked out.
D: OK, before we start, could you remind me of your gender and age?
P: Sure 39, I’m a male.
D: OK, and so when did this chest pain start?
P: It started last night, but it’s becoming sharper.
D: ...
P:...
Medical Speciality: Cardiovascular

1) Ground-truth Generation: To fine-tune our models, we
require ground truth data, which neither of these datasets pro-
vided. The MTS-dialog dataset contains very brief summaries,
averaging less than three sentences, which are insufficient for
our task. The Figshare dataset includes only conversations,
with no summaries available. One key contribution of this
paper is the creation of ground truth summaries for these



TABLE II: Statistics of the FigShare and MTS-Dialog datasets.

Patient-Doctor Conversation (Figshare)
Metric Sentences Words Char Vocab Tokens
Count 37910 369552 1478738 98535 472384

Mean 139.37 1358.64 5436.53 362.26 1736.70

Max 255 2401 9636 589 3102

Min 74 808 3229 254 1020

Patient-Doctor Conversation (MTS-Dialog)
Count 15839 118558 500393 72225 152232

Mean 13.18 98.71 416.64 60.13 126.75

Max 167 1474 6823 457 2038

Min 1 1 8 1 3

conversations. To accomplish this, we collaborated closely
with Potentia Analytics, a healthcare-focused data analytics
and information technology company. We initially generated
clinical summaries for all 1,473 conversations using the GPT-
4-O-Mini model (managed through API calls) in a zero-shot
setting. Subject Matter Experts (SMEs), specifically medical
doctors from Potentia Analytics, then manually evaluated
and verified the factual correctness and contextual relevance
of these summaries. Based on their feedback, we rectified
any inconsistencies, discrepancies, or inaccuracies pertaining
the summaries. We then created a final training dataset of
1,473 conversation-summary pairs, which we then utilized for
our fine-tuning task. This dataset is publicly accessible on
HuggingFace. Table III provides additional statistics for the
ground-truth summaries, broken down into subjective, objec-
tive, assessment, and plan components, detailing the number
of sentences, words, characters, vocabulary, and tokens.

B. Evaluation

Due to the strict privacy concerns and Health Insur-
ance Portability and Accountability Act (HIPAA) regulations
around patient data, coupled with its inaccessibility, we opted
to simulate patient-doctor conversations. For this, we part-
nered with the Department of Theatre & Film at Mississippi
State University to create 20 simulated conversations. These
conversations were staged as role-playing scenarios, where
theater arts students simulated realistic interactions between
patients and doctors. The conversations were recorded in
WAV format and subsequently processed using Automatic
Speech Recognition (ASR) techniques, specifically utilizing
the Whisper-large8 model. The average length of these role-
played conversations is approximately 9 minutes. Additional
statistics on these conversations are provided in Table IV. We
then utilized these simulated conversations as our evaluation
dataset to assess the robustness of CLINICSUM for the clinical
summaries generation task. The evaluation was conducted
through both automatic and manual methods.

In the following subsections, we discuss the results of our
assessment.

8https://huggingface.co/openai/whisper-large

1) Automatic Evaluation: In this paper, we consider two
types of metrics: lexical-based and text-embedding-based, to
evaluate the clinical summaries generated by CLINICSUM. For
the lexical-based metric, we choose Recall-Oriented Under-
study for Gisting Evaluation (ROUGE) [39], which primarily
focuses on lexical overlaps between generated summaries and
the ground truth but does not capture the semantic meaning of
the summaries. Considering the limitation of ROUGE, we also
employ text-embedding-based metrics, such as BertScore [40].
It uses pre-trained contextual embeddings from a BERT-based
model to evaluate the semantic similarity between the ground
truth and generated summaries by computing cosine similarity.
Specifically, we utilize the deberta-xlarge-mnli9 model in our
experiments.

Table V presents the clinical summarization results. We
compared the performance of the state-of-the-art GPT-based
proprietary PLMs with our approach (combination of retriever-
based filtering and fine-tuning) equipped with open source
models in generating clinical summaries from patient-doctor
conversation in zero-shot settings. Notably, CLINICSUM, par-
ticularly when paired with LLAMA-3, outperformed GPT-
based models in both ROUGE and BERTScore metrics.

In terms of ROUGE-1, which measures unigram overlap,
LLAMA 3-8B achieved the highest precision of 0.72 and F1-
score of 0.70. A high precision score indicates that a large
proportion of the words generated by models (unigrams) are
also found in the ground-truth summary, whereas a high F-1
score reflects a model’s overall effectiveness in producing a
summary that is accurate and covers the ground truth well. In
contrast, the GPT-4-Turbo model scored the lowest with an
F-1 score of 0.58 and precision of 0.50. This trend persisted
in ROUGE-2, where LLAMA 3-8B led with an F1-score of
0.48 and precision of 0.50, significantly outperforming GPT-4-
Turbo, which only achieved an F-1 score of 0.29 and precision
of 0.24. Similarly, for ROUGE-L, which assesses the longest
common sub-sequence between generated and reference texts,
LLAMA 3-8B excelled with an F1-score of 0.55 and precision
of 0.48, while GPT-4-Turbo lagged behind with an F1-score
of 0.36 and precision of 0.31. BERTScore, which evaluates
the semantic similarity between generated and ground-turth
summaries, further corroborated these findings. LLAMA 3-8B
stood out with the highest F-1 of 0.84 and precision on 0.87,
reflecting its strong alignment in meaning with the ground
truth summary. Conversely, GPT-4-Turbo recorded the lowest
F-1 of 0.73, indicating its relative difficulty in generating
semantically accurate summaries. The second best performing
model with our approach is Gemma-2-9B with impressive F-1
score of 0.82, and precision of 0.82.

2) Expert Human Evaluation: Expert human evaluation
plays a critical role in assessing the quality of generated
summaries, especially as automatic metrics like ROUGE and
BERTScore, though useful, may not always align with expert
judgment [10], [41]. Recognizing these limitations, we incor-
porated human evaluation in this study. Given the expensive

9https://huggingface.co/microsoft/deberta-xlarge-mnli



TABLE III: Statistics of ground-truth clinical summaries from 1,473 patient-doctor conversations.

Clinical Summaries Statistics

Metric
Subjective Objective Assessment Plan Vocab/Token

Sentences Words Sentences Words Sentences Words Sentences Words Vocab Tokens

Count 48775 44927 1957 12330 1912 11494 2017 19396 77384 226246

Max 22 323 9 110 7 110 6 80 198 500

Mean 3.25 63.43 1.328 8.37 1.298 10.02 1.371 13.17 18.85 36.47

TABLE IV: Evaluation dataset statistics from staged patient-
doctor conversations.

Staged Conversation Statistics
Metric Sentences Words Char Vocab Tokens
Count 1997 20359 99518 6965 25690

Mean 99.85 1017.95 4975.9 348.25 1284.5

Max 146 1573 7886 448 1995

Min 61 551 2629 222 708

nature of human evaluation, we assembled a panel of four
SMEs, including medical resident doctors and physicians,
to compare the summaries generated by CLINICSUM with
those from GPT-based models with prompting techniques.
Specifically, we focused on the best-performing models from
both systems for zero-shot summarization. Using the same
set of 20 conversations and summaries as in the quantitative
analysis ensured a fair comparison.

Following the evaluation strategy outlined by Giorgi et
al. [10], the SMEs were provided with ground-truth data,
summaries from LLAMA-3-8B (best performing model) in
our framework, and summaries from GPT-4-O-Mini (best
performing among gpt models). Summaries were anonymized
and labeled as ‘A’ and ‘B’ with the SMEs instructed to choose
their preferred version or select both if there is a tie. While
our evaluation strategy is similar to [10], there are some
key differences. They relied on three criteria: critical, non-
critical, and irrelevant information from previous research by
Savkov et al. [42] to guide SME preferences. Additionally,
they included the ground truth in their evaluation, while we
focused solely on comparing the summaries generated by
CLINICSUM and those from GPT-based models. In contrast,
we introduced a fourth criterion: factual correctness (must
capture all key factual information). Based on this, we redefine
a good summary as one that is “factually accurate, includes
all critical information, some non-critical information, and
contains minimal irrelevant details”. The results of this eval-
uation are shown in Table VI, and we visualize the agreement
between SMEs using heatmaps, as illustrated in Fig. 4.

Overall, the summaries generated by CLINICSUM are
strongly preferred over summaries generated by the GPT-based
models further validating the high performance reported by
the automatic evaluation metrics. In addition, we assessed
Inter-Rater Reliability (IRR) among the four SMEs using two
statistical measures: Fleiss’ Kappa (κ) [43] and Krippendorff’s
Alpha (α). The results, shown in Table VII, indicate moderate
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Fig. 4: Heatmap illustrating the preferences between sum-
maries generated by CLINICSUM and GPT, along with ties
indicating equal preference between the two.

agreement (0.41 to 0.60) for both κ and α. This suggests that
while the SMEs were not perfectly aligned in their preferences,
they demonstrated a fair level of consensus. In our opinion,
this variability arises from differences in the SMEs’ experience
levels and subjective interpretations, which align with similarly
low agreement scores reported in previous research [1], [9],
[10].

LLAMA-3-8B

Mistral-Nemo

Mistral-7B

Gemma-2-9B

GPT-4o-Mini

GPT-4-Turbo

GPT-3.5-Turbo

Average Tokens per Model
Compared with BertScore F-1

Average number of Tokens
F1 Scores

Fig. 5: Radar chart illustrating how different models compare
in terms of two key metrics: the average number of tokens
and F-1 scores of BertScore.

Findings with respect to # number of Tokens: In this
study, we further investigated whether there is a quantitative



TABLE V: Comparison of GPT models using zero-shot prompting and CLINICSUM for generating clinical summaries, evaluated
with lexical-based (ROUGE) and embedding-based (BERTScore) metrics.

Rouge-1 Rouge-2 Rouge-L BertScore
Model P R F-1 P R F-1 P R F-1 P R F-1
GPT-4-Turbo 0.50 0.72 0.58 0.24 0.35 0.29 0.31 0.45 0.36 0.73 0.74 0.73
GPT-4-0-Mini 0.64 0.66 0.64 0.38 0.39 0.38 0.45 0.46 0.45 0.76 0.78 0.77
GPT-3.5-Turbo 0.64 0.59 0.61 0.35 0.32 0.33 0.42 0.39 0.40 0.74 0.79 0.76

CLINICSUM LLAMA-3-8B 0.72 0.69 0.70 0.50 0.48 0.48 0.57 0.54 0.55 0.87 0.82 0.84
CLINICSUM Mistral-Nemo-12B 0.67 0.72 0.68 0.44 0.48 0.45 0.50 0.54 0.51 0.76 0.82 0.78
CLINICSUM Mistral-7B 0.70 0.69 0.68 0.46 0.46 0.45 0.51 0.50 0.49 0.75 0.83 0.79
CLINICSUM Gemma-2-9B 0.69 0.67 0.67 0.44 0.43 0.43 0.50 0.48 0.49 0.82 0.83 0.82

TABLE VI: An overview of human evalaution. Four SME’s
evaluated summaries generated by CLINICSUM (CS) and
GPT-O-Mini (GPT). For each case, the SMEs selected their
preferred summary. The win rate represents the percentage of
cases where a summary was preferred, with ties excluded from
the calculation.

SME Preferred Ties Win rate %
CS GPT CS/ GPT CS GPT

1 7 6 7 0.54 0.46
2 14 5 1 0.74 0.26
3 9 5 6 0.64 0.36
4 9 8 3 0.53 0.47

Total 39 24 17 0.61 0.39

TABLE VII: IRR metrics, including Fleiss’ Kappa (κ) and
Krippendorff’s Alpha (α), demonstrate moderate agreement
among the four SMEs.

Inter-Rater Reliability (IRR)

Overall Agreement
Fleiss Kappa (κ) Krippendorff’s Alpha (α)

0.43746 0.44450

correlation between the best and worst performing models
in terms of F-1 score and their average token count. Fig.
5 presents a radar chart comparing the average tokens per
model with their corresponding BERTScore F-1 scores. Token
counts for both GPT-based models and open-source PLMs
were computed using the BAAI/bge-large-en-v1.5 model from
Hugging Face. A key finding from this analysis is the correla-
tion between token count variability and accuracy: LLAMA-
3-8B (avg token count: 260) and Gemma-2-9B (average token
count: 262), which closely matches the ground truth (avg
token 268), achieves the highest BERTScore, while GPT-4-
Turbo (avg token count: 375), with significantly high token
usage likely hallucinating, performs the worst. Mistral-Nemo-
12B (average token count:292) and GPT-4-0-Mini (average
token count: 281) also show increased token generation in
some cases but have a tendency to generate fewer tokens,
while Mistral-7B (average token count: 259) and GPT-3.5-
Turbo (average token count: 237) generally produce fewer
tokens, potentially missing critical details. Despite these vari-
ations, LLAMA-3-8B and Gemma-2-9B maintain a balanced
approach of using and generating tokens that are strictly

coherent with the context provided to them by retriever-based
filtering, producing summaries that are aligned with the ground
truth.

This suggests that models generating summaries with token
counts closer to the ground truth tend to produce more accurate
outputs. In contrast, greater variability in token count, as seen
in GPT-4-Turbo and GPT-3.5-Turbo, may lead to less accurate
summaries. This conclusion is further supported by expert
human assessment, where SMEs showed a clear preference
for the summaries generated by LLAMA-3-8B over those
produced by GPT-4-Turbo.

VI. LIMITATIONS AND DISCUSSION

Despite CLINICSUM’s encouraging results in generating
good clinical summaries, several limitations should be noted.
First, the model’s performance is highly reliant on the quality
and diversity of the training data used in fine-tuning task. The
fine-tuning dataset, comprising 1,473 conversations from the
FigShare and MTS-Dialog datasets with clinical summaries
generated by a PLM and validated by SMEs, is limited in
scope, as it only encompasses a narrow range of medical
specialties.

Another limitation is the use of simulated patient-doctor
conversations in the evaluation phase. While these simulated
conversations are useful for HIPAA compliance, they may
fail to capture the complexities and variability of real-world
clinical interactions. Consequently, the generated summaries
may not perform as well in real-world clinical settings, where
patient communication is less structured and more nuanced.

Furthermore, while the framework uses retrieval-based fil-
tering to improve factual accuracy, the risk of hallucinations
persists, especially when summarizing conversations with am-
biguous or incomplete information. Ensuring factual accuracy
is critical in medical settings, and additional validation mech-
anisms may be necessary to mitigate these risks. Moreover,
while we added a criterion of factual correctness to the human
evaluation process, the moderate IRR scores indicate that
subjective interpretation among SMEs can still result in incon-
sistencies in summary evaluations. Another important aspect
is Biases, PLMs trained on vast amounts of text data may
inadvertently capture and reproduce biases present in the data.
For example, it may over-prioritize common condition such



as “upper respiratory infections” when interpreting symptoms,
potentially overlooking rarer but more serious conditions.

Lastly, the CLINICSUM’s dependence on fine-tuning PLM
necessitates substantial computational resources, potentially
constraining its scalability in low-resource clinical settings.
The current implementation is tailored to operate on a con-
sumer GPU with 24GB of memory, which may not be readily
available to all healthcare institutions. Due to limited compu-
tational resources, we focused our efforts on models with ≤
12 Billion parameters. Fine-tuning a bigger PLM for example
model with 30B, 70B or higher parameter may yield even
better results.

VII. CONCLUSION & FUTURE WORK

In this paper, we demonstrated the feasibility of automat-
ically generating clinical summaries directly from patient-
doctor conversations using a framework with two module
architecture referred to as CLINICSUM. The first module,
retriever-based filtering, acts as an extractive component,
identifying relevant portions of the transcript that contain
subjective, objective, assessment, and plan information. The
advantage of this approach is that it not only filters out
unnecessary information from the transcripts but also reduces
the risk of hallucination by passing only the relevant chunks
to the second module. The second module, inference, utilizes
the filtered information as context and uses a fine-tuned PLM
to generate clinical summaries through abstraction.

We created a high-quality fine-tuning training dataset con-
sisting of 1,473 conversation-summary pairs and used it
to fine-tune four open-source PLMs with ≤ 12B parame-
ters. Surprisingly, when combined with our framework for
inference, these fine-tuned open-source PLMs substantially
outperformed state-of-the-art GPT models in both automatic
and expert human evaluations. Expert human assessments by
SMEs confirmed that the summaries generated by CLINICSUM
were more preferable than those produced by GPT models
using prompting. We believe our results are encouraging,
and CLINICSUM offers a promising solution for automating
clinical summarization.

Future work will focus on expanding the both training
and validation dataset, improving framework’s scalability, and
exploring real-world applications in diverse clinical settings.
We also intend to further investigate methods to further reduce
hallucination and potential biases of PLMs.
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