2105.14764v1 [cs.RO] 31 May 2021

arxXiv

Bimanual Shelf Picking Planner Based on Collapse Prediction

Tomohiro Motoda!, Damien Petit!, Weiwei Wan'2, and Kensuke Harada!+2

Abstract—1In logistics warehouse, since many objects are
randomly stacked on shelves, it becomes difficult for a robot to
safely extract one of the objects without other objects falling
from the shelf. In previous works, a robot needed to extract
the target object after rearranging the neighboring objects.
In contrast, humans extract an object from a shelf while
supporting other neighboring objects. In this paper, we propose
a bimanual manipulation planner based on collapse prediction
trained with data generated from a physics simulator, which can
safely extract a single object while supporting the other object.
We confirmed that the proposed method achieves more than
80% success rate for safe extraction by real-world experiments
using a dual-arm manipulator.

I. INTRODUCTION

In logistics warehouses, we often have to extract a single
object that is wedged between other objects on a shelf, which
is potentially dangerous for heavy objects to fall and injure
human workers. In this case, when a robot tries to extract one
of the objects, it has to consider the positional relationship of
overlapping objects and manipulate them accordingly. So far,
various approaches have been proposed to extract an object
from a shelf. In [1]-[3] different methods are proposed but
require a series of rearrangement operations. In other cases,
extraction and support relations are analyzed between pairs
of objects from 3D visual perception [4]. However, in all
previous approaches, a robot extracts the target object after
rearranging its neighboring objects.

Humans however, extract an object from a shelf while
supporting other neighboring objects as shown in Fig. []
(a). Based on this observation, we propose a bimanual
manipulation planner to extract a target object from a shelf
while supporting the other object as shown in Fig. [I] (b). To
extract an object from a pile without collapse, we need to
determine which of the target’s neighboring object the robot
have to support. We propose a learning-based approach on
extracting the target object from the pile while supporting
the objects. A network model based on a Fully Convolutional
Network (FCN) [5] has been designed to predict the pile state
while extracting the target object with a pixel-wise collapse
probability map. The inputs of the network are a depth image
of the shelf content, and two binary masks corresponding
to the two objects selected for extraction and support. The
output of the network model is a labeled image predicting the
collapsing region while the target object is extracted. If the
output includes large collapsing region, we judge that such
selection of supported object is not better. Given this output,
the robot can select the proper object to support by defining
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Fig. 1. Extracting the target object while supporting others: (a) a human
is extracting a book from the shelf while supporting the neighboring books,
(b) robotic bimanual manipulation for safely extracting an object from the
shelf.

the ratio of the predicted collapsing region as the safety index
to the shelf picking. In addition, to generate a large number of
training data of depth images, related binary masks and label
images, we use a physics simulation of the piled objects and
of the extraction/support action. We experimentally verify the
effectiveness of our proposed method by using a real dual-
arm manipulator. We show that the robot can safely extract
the target object from a shelf with a success rate larger than
80%. By using our proposed method, we do not need to
rearrange the objects placed on a shelf to extract the target
object and so we increase the picking efficiency.

Our main contributions are:

e A Fully Convolutional Networks to infer the pixel-
wise probability map of the collapsing region while
extracting a selected object from a shelf (Subsection [T
BJ).

o A physics simulation that generate the necessary train-
ing data for the FCN (Subsection |LII-A).

« A robotic system able to extract a target object from
a pile, in a shelf, without rearranging its surrounding
objects

This paper is organized as follows. In Section [, we

discuss the related work on shelf picking. In Section [II|
our proposed shelf picking method is described including
a detailed explanation of the network model and its imple-
mentation. In Section [[V] we describe the experimental setup.
In Section [V] we discuss the result of our approach and
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image), to return the appropriate action. The size of the depth image and its related two masks are 256 X 256.

experiment. Finally, the paper closes with conclusions and
future work.

II. RELATED WORK

In this section, we introduce some related works on
object picking in logistics warehouse. This topic has been
extensively researched. There have been some works done
on picking an object stored in a box, such as [6], [7].
Among them, we focus on studies extracting an object from
a randomly piled objects on a shelf, such as [1]-[4]. Temtsin
et al. [8] ranked each object using a measure based on
the geometrical relationships of objects and extracted an
object with high rank. Mojtahedzadeh et al. [4] and Wu et
al. [9] proposed methods to learn the motion of robots in
stacked or scattered environments. Some researches achieved
manipulation in clutter based on partially observable Markov
decision processes (POMDPs). For example. Pajarinen et
al. [10] used iterative picking/observation to disassemble
the cluttered objects based on the POMDPs. To pick an
object from a shelf, Li et al. [2] used POMDP to find the
target object by rearranging the objects on the shelf safely
and efficiently. Zhang et al. [11], [12] used a Convolutional
Neural Networks (CNNs) to estimate the order of extracting
the overlapped objects by using the graph representation of
the objects’ position. Grotz et al. [13] determined the order
of objects to be manipulated by taking into account their
support relations. However, all these methods used to extract
a target object from a shelf need to repeatedly rearrange
the overlapping objects of the target before the extraction to
avoid a collapse. As far as the authors know, there has been

no research on bimanual manipulation planning to extract
the target object while supporting its neighboring objects at
the same time, in spite of its efficiency.

III. SHELF PICKING METHOD IMPLEMENTATION

In this paper, we propose a bimanual manipulation method
to extract a target object from a pile while supporting the
other object. In order to first verify the effectiveness of our
new approach we assume that the robot achieves the task
by pulling a box-shaped object out horizontally. Assuming
a situation in which the insertion of fingers between objects
is difficult for the robot, one arm is mounted with a suction
gripper to extract the target object. The other arm has a rod-
shaped end-effector to support other objects as seen in Fig.[T}
We use a depth sensor to provide a 3D point cloud captured
from a front point of view of the shelf containing the pile of
object.

Fig. 2 illustrates the flow of our overall architecture. The
user selects the object subject to extraction, then a FCN is
used to predict which objects will be affected during the
extraction (L.e. collapsing region).

In the following subsections, the different steps are ex-
plained in detail.

A. Physics Simulator for Data Generation

In this subsection, we describe the setup of the physics
simulation system used for data generation.

1) Scene Generation: We generate a randomly stacked
state of objects in the simulator. In this study, we use PhysXEL

Thttps://developer.nvidia.com/gameworks-physx-overview
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Fig. 3. Types of objects used in the simulations. The left actual boxes.
The right shows the 3D models used in the simulator.
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i.e., a physics simulator, to configure and simulate the
environment. Our simulator is designed with the following
settings. Considering a situation where many product boxes
are on a shelf, thus we set the simulation parameter referred
to the actual movements of them. For both objects and a
shelf in our environment, we set the coefficient of static and
dynamic friction to be 0.9 and 0.8, respectively. We also
set the coefficient of restitution to be 0.1 and the density to
be 1.0 kg/m3. We perform the shelf picking simulation by
placing six objects from a set of objects. As the number
of objects on a shelf increases, the extraction generally
becomes more difficult. In our study, we fix the number
of the objects to be six, which can generate the successful
cases empirically in about 50% even if the target object for
extraction/support is randomly selected. Moreover, for the
after-mentioned verification, we prepared two sets of objects:
One type of object (H 20 mmx W 100 mmx D 100 mm),
and four objects of various sizes (the height is 27 — 40 mm,
the width is 85 — 130 mm, and the depth is 80 — 160 mm),
illustrated in Fig. [3| for the detail. We generate the dataset
with either of the sets according to the conditions.

2) Data generation and Simulation Procedure: Fig. H]
shows the process of simulation. First, the simulator creates a
pile scene. Second, one object moves horizontally in the sim-
ulation. Here, we assume that the robot pulls out one object
from the shelf horizontally toward the observer. The other
object is supported, and we assume that it remains stationary,
hence, it is not affected by interference or gravity, and its
pose does not change. Finally, in case there is some change
in any object pose other than the two targets, we record

these objects as collapsed subject to entangling/collision. In
one simulation, we can obtain the tuple, consisting of three
images as input data and one labeled image as output data,
as shown in Fig. [

B. Collision Prediction Network

This subsection describes the neural network that predicts
the objects affected by the target object extraction and so
most likely to fall or collapse. Similar to the fully convolu-
tional network (FCN) used in [5], our model classifies each
pixel belonging to the collapsing region.

1) Ground Truth: The input data consist of a depth image
(256 x 256) and two binary masks (256 x 256). One mask is
an object for extraction, and the other mask is an object for
support. The output data is a prediction of the classifications
for each pixel of the image (256 x 256). We define four
classes: Object to be extracted F, Object to be supported S,
Collapsing region S, and Background region B, as shown
in Fig. ] The collapsing region C' expresses the region of
objects which move or fall from the shelf while extracting
the target object. These input/output data are automatically
generated from the simulator.

2) Network Architecture: Our network model consists of
an encoder for extracting the feature value of the input
and a decoder for producing the segmented image at its
original resolution. Fig. 2]illustrates the network architecture.
First, the encoder part consists of three networks. The model
generates the feature maps for a depth image with the VGG-
16 network [14] pre-trained by ImageNet [15] and for two
masks, each with five convolution layer network. These three
outputs are then concatenated into one feature map. Next,
the decoder part with five convolution layers up-sample the
feature maps to the original resolution with deconvolution.
Moreover, our network uses the skip architecture by referring
to prior examples [5], [16], which combines the feature maps
of the lower layers with those of the upper layers to recover
the general location information while preserving the local
information.

C. Manipulation Planning

This section describes the manipulation procedure to per-
form the extraction by applying the trained network. The
robot acquires point clouds from a depth sensor installed
in front of the shelf and generates three input images from
this observation. One is a depth image converted from the
point clouds to the depth map. The other two images are
mask images representing the object to be extracted and the
object to be supported. The mask image, M., is a binary
image from each cluster, ¢; (¢ =0,1,2,...,N — 1) of point
clouds, which is classified by object segmentation based on
the region growing method [17] and the binarization. Fig. [5]
shows the process. In the actual experiments, the robot end-
effectors approach each object toward the center of gravity
in these masks.

We can define action candidates A according to use
situations: (1) the other situation is that the robot chooses
the safest pair of extraction/support objects (for example,
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empty a shelf). In this case, we define action candidates A
by preparing all the combinations of two different targets
of the extraction/support action. (2) one is that we need to
extract a predetermined target object. In this case, in advance
the user selects an object subject to extraction arbitrarily, we
define action candidates A by choosing another subject to
support,

Next, we define the safety index to select the best action
from all the candidates. Here, the output shows the region,
Rg, Rs, Rc, and Rp that indicates the regions of four
different classes (F, S, C, and B). If R¢ is large, it will
increase the risk of collapse. Based on this assumption, we
can define the following risk index:

a
re () = area(R%) 0
area(R% U RS U RL U RY)

&, RS, R, and R% denote the regions in the output
of an action candidate a for two selected objects. area(-)
indicates the area of the region. Our algorithm selects the
input data that is the smallest for index r. based on Eq. (T))
and determines the best action, a, of all the action candidates
to be manipulated by the robot.

a = arg minr. (a’) )
a’€A
If the robot’s motion is out of the control range, we eliminate
it from the candidates and select the next best move.

IV. EXPERIMENTS
A. Training Settings

In our experiments, we acquired 15,000 pairs of input and
output images from the simulator. From these datasets, we
used 90% as training data and 10% as validation data. We
augmented our training dataset through left-right inversion
and utilized the network using 30,000 pairs. We set the initial
learning rate to 0.0001 up to 30 epochs and 0.00001 from
30 epochs onward. The batch size was 1, and we use the
Adam [18] as the optimizer. The number of epochs during
training was 50, and each epoch required 27,000 iterations.
In our training, we used the NVIDIA RTX 2060 super (8
GB VRAM).
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B. Experimental Setup

To verify the effectiveness of the proposed method, we
conducted experiments using an actual robot under sev-
eral conditions. Fig. [6] shows the experimental environment
used in the verification. We use the MOTOMAN-SDASF
(Yaskawa Electric Corp.ﬂ a bimanual robot with 7 degrees-
of-freedom robot arms, which has a suction gripper and a
plastic rod-shaped end effector (the bar’s length is 20 cm)
at the tip of each arm of the robot. The YCAM3D-10L
(YOODS Co., Ltd.ﬂ> a 3D depth sensor, is installed at the
front of the shelf.

C. Results

To evaluate the performance by using the actual robot, we
consider experiments on two use situations.

1) Choosing the safest pair of extraction/support object:
We verify the performance of our prediction network through
experiments that the obot always chooses the safest action.
In our real-world experiments, we used the target objects as
shown in Fig. |Zka), (b), which is the same size as models used
in our simulations (Fig. E[) Moreover, in order to evaluate the
generalization capability, we separately prepared new objects
(Fig. c)). We used the following conditions in experiments:

o 5 objects of same size, as shown in Fig. [7(a).

o 5 objects of various sizes, as shown in Fig. [7[b).

Zhttps://www.motoman.com/en-us/products/robots/industrial/assembly-
handling/sda-series/sda5f
3https://www.yoods.co.jp/products/ycam.html

TABLE 1
EXPERIMENTAL RESULT

Objects used in experiments

Same-size Various-size vary)flvsv-size Same-size
(5 objects) (5 objects) (5 objects) (10 objects)

Total
Proposed model

e i ects 18/20 16/20 15/20 16/20

65/80 [81.3%]

e bjects | 17/20 17/20 17120 1320 | 64/80 [80.0%]
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Fig. 9. Description of target manipulation with the proposed method:
(a)-(d) a series of scenes in one task.

e 5 new objects of various sizes (not used on the simula-
tor), as shown in Fig. [7(c).
o 10 objects of same size, as shown in Fig. [I(a).

Furthermore, we prepared two network models trained with
different datasets generated from the simulations with objects
of the same size or various sizes. With each trained model,
we conducted 20 trials in every four patterns by changing
the size or number of objects. If the robot removes only one
object from the shelf, we regard it as a success; otherwise,
we consider it failed.

As shown in Table |, we conducted robotic experiments
under the above mentioned conditions. The robot achieved
the high success rate across all conditions, and the overall
extraction success rate were 81.3% (65/80) for the model
trained with objects of the same size and 80% (64/80) for
the model trained with the dataset of various sizes.

2) Extracting a predetermined target object: We assume
that a specific target object is needed in a practical situation.
The user chooses one object to extract from a shelf in
advance, and in that case, our policy determines which is

TABLE I
TRAINED MODEL EVALUATION.

Network performance

Proposed Model Ground-truth Avg. ToU  Avg. Recall Avg. Precision

Trained with Same-size target 0.339 0.511 0.437
same-size objects Various-size target 0.438 0.641 0.530
Trained with Same-size target 0.359 0.438 0.576
various-size objects | Various-size target 0.452 0.511 0.697

the object to support correctly.

We show the output of our network as Fig. [§[a)-(d) in the
case. The robot selects the best action from the output that
region Rc (highlighted in red) is small as Fig. [§] (a). Fig. [9]
shows the experimental scene. When the correct action is
selected, the robot first presses down the one object with
the stick on the right-hand and then pulls out the target
with the left-hand suction gripper. Based on the learning
results, we confirmed that the robot selected combinations
of objects that are less likely to collapse and execute the
safest manipulation.

Moreover, we conduct 20 trials in that case. At each trial,
the object to be extracted is not changed. It should be noted
that we trained the network with the dataset generated in
the simulations using various-size objects (Fig. 3) in this
verification. In 20 trials of experiments under this conditions,
the robot can extract single target object without collapse in
success rate of 85% (17/20). We confirm that our network
works well.

V. EVALUATION

In this section, the performance is evaluated concerning
two points. (1) We set a benchmark of the prediction per-
formance based on segmentation metrics and compare our
proposed network under different conditions, (2) we acquire
the success rate, representing the percentage of the completed
when extracting a single target object without collapse by
using a real robot.

A. Prediction Performance

We confirm the network can correctly predict the col-
lapsing regions with ground-truth data, as shown Table
To evaluate the performance of the collapse prediction, we
focus only on the collapsing region C' in this study. Our
metrics include precision, recall, and IToU calculated in
pixels, between the predicted and ground-truth. We calcu-
late the average values on metrics with a hundred ground-
truth data, and compare two networks trained with different
training datasets. Moreover, to verify a generalization of the
performance, we prepare the ground-truth in two different
patterns: target objects of same size or various sizes . We
empirically set the threshold of classification for each pixel
to 0.4.

As shown in Table [l even when we use networks with
different training datasets, there is no significant difference
on each metric to the same ground-truth. This result indicates
that the size of the object has little effect on learning.
In contract, when we use the network trained with the



objects of various sizes , IoU and precision increase in
both ground-truth data. By using our method, the collapsing
region tends to become a shape similar to the object model.
It is assumed that the network trained with objects of same
size is relatively sensitive to shape differences. Therefore,
training with objects of various sizes works well for correctly
predicting the region.

B. Real-world Manipulation

As shown in Table[I} the robot extracted successfully up to
81.3% (65/80) for the same object dataset and 80% (64/80)
for the dataset of objects of different sizes. The success
rate of each object is not significantly affected in different
datasets. Similarly, there is no difference in the success rate
when the objects are the same (Fig. a)) and when the
size of the objects is randomized (Fig. [7(b)). The success
rates of 75% (15/20) and 85% (17/20) were confirmed in
the experiments with objects of new various sizes (Fig.[7(c)),
indicating that there was no overfitting of our learning results.

In extracting a predetermined target object, our method
achieved a high success rate of 85%, indicating that our
method can work well in logistics warehouse. Moreover, the
success rate is almost equal to other experimental results. We
showed that it was possible to make good predictions even
when the target object to be extracted was limited.

In some failed cases, the robot executed intuitively in-
correct actions, such as supporting an object unrelated to
extracting a target. This indicates a problem with simulator
settings. For example, there are trials where the robot can
remove one target safely without supporting the other ob-
ject. We also consider that the robot misunderstood some
uncertain manipulations as successful trial. It is necessary
to reconstruct the dataset or evaluate each action on each
successful trial. As shown in Table the success rate
decreased in ten objects of the same size. For example, if an
object is not simply put on another object, the robot needs
to support more than two objects. In our method, however,
the robot can only support one object, causing a low success
rate. In our future work, we will address this issue.

C. Discussion

We proposed the learning-based approach to predict col-
lapse after extracting one object while supporting the other
one. The conventional learning-based approaches [11], [12]
predict the support relationship as Section [lI] mentioned.
However, considering the complex pile, it will become more
difficult to determine the support object by geometry shape
and/or physical interaction. In contrast, our proposed method
can directly predict whether the selected action is proper
or not without checking the complex structure. However, in
order to realize the new idea, we focused only on box-shaped
objects for the sake of simplicity. Our future work will be
extended to more complex-shaped objects and apply them to
daily life.

VI. CONCLUSIONS

This paper described a shelf picking method for safely
extracting a single object from a shelf while supporting the

other object. By using our proposed network model that
predicts the objects that would collapse, a bi-manual robot
was able to extract the object without objects falling.

In the future, we plan to make improvements on support
actions and our simulator. In particular, we will analyze the
trial result on each simulation by adding actions to support
and extract in an appropriate way for object types.

REFERENCES

[1] C. Nam, J. Lee, S. H. Cheong, B. Y. Cho, and C. Kim, “Fast and
resilient manipulation planning for target retrieval in clutter,” in Proc.
of IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 3777-
3783, 2020.

[2] J. K. Li, D. Hsu, and W. S. Lee, ”Act to see and see to act: POMDP
planning for objects search in clutter,” in Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robots and System (IROS), pp. 5701-5707, 2016.

[3] J. Lee, Y. Cho, C. Nam, J. Park and C. Kim, “Efficient Obstacle Rear-
rangement for Object Manipulation Tasks in Cluttered Environments,”
In Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), pp.
183-189, 2019.

[4] R. Mojtahedzadeh, A. Bouguerra, E. Schaffernicht, and A. J. Lilien-
thal, ”Support relation analysis and decision making for safe robotic
manipulation tasks,” Robotics and Autonomous Systems, vol. 71, pp.
99-117, 2015.

[5]1 E. Shelhamer, J. Long, and T. Darrell, ”Fully Convolutional Networks
for Semantic Segmentation,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 39, no. 4, pp. 640-651, 2017.

[6] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan , X. Liu, J. A. Ojea,
and K. Goldberg, "Dex-Net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” Robotics:
Science and Systems (RSS), 2017.

[71 Y. Deng, X. Guo, Y. Wei, K. Lu, B. Fang, D. Guo, H. Liu, and F. Sun,
“"Deep Reinforcement Learning for Robotic Pushing and Picking in
Cluttered Environment,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), pp. 619-626, 2019.

[8] S. Temstsin, and A. Degami, “Decision-making algorithms for safe
robotic disassembling of randomly piled objects,” Advanced Robotics,
vol. 31(23-24), pp. 1281-1295, 2017.

[91 H. Wu, Z. Zhang, H. Cheng, K. Yang, J. Liu, and Z. Guo, "Learning
Affordance Space in Physical World for Vision-based Robotic Object
Manipulation,” in Proc. of IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 4652-4658, 2020.

[10] J. Pajarinen and V. Kyrki, ”Robotic manipulation in object composition
space,” In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pp. 1-6, 2014.

[11] H. Zhang, X. Lan, X. Zhou, Z. Tian, Y. Zhang, and N. Zheng, "Vi-
sual Manipulation Relationship Network for Autonomous Robotics,”
in Proc. of 2018 IEEE-RAS 18th Int. Conf. on Humanoid Robots
(Humanoids), pp. 118-125, 2018.

[12] H. Zhang, X. Lan, S. Bai, L. Wan, C. Yang, and N. Zheng, "A
Multi-task Convolutional Neural Network for Autonomous Robotic
Grasping in Object Stacking Scenes,” in Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), pp. 6435-6442, 2019.

[13] M. Grotz, D. Sippel, and T. Asfour, ”Active Vision for Extraction of
Physically Plausible Support Relations,” in Proc. of IEEE-RAS Int.
Conf. on Humanoid Robots (Humanoids), pp. 439-445, 2019.

[14] K. Simonyan, and A. Zisserman, Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in Proc. of Int. Conf. on Learning
Representations (ICLR), 2015.

[15] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, "Ima-
geNet: A Large-Scale Hierarchical Image Database,” IEEE Computer
Vision and Pattern Recognition (CVPR), 2009.

[16] O. Ronneberger, P. Fischer, and T. Brox, “"U-Net: Convolutional
Networks for Biomedical Image Segmentation,” Int. Conf. on Medical
Image Computing and Computer-Assisted Intervention (MICCAI), pp.
234-241, 2015.

[17] T. Rabbani, F.A. van den Heuvel, and G. Vosselman, ”Segmentation
of point clouds using smoothness constraint,” in Proc. of the ISPRS
commission V symposium Image Engineering and Vision Metrology,
pp. 248-253, 2006.

[18] D. Kingma, and J. Ba, "Adam: A method for stochastic optimization,”
arXiv preprint, |arXiv:1412.6980, 2014


http://arxiv.org/abs/1412.6980

	I Introduction
	II Related Work
	III Shelf Picking Method Implementation
	III-A Physics Simulator for Data Generation
	III-A.1 Scene Generation
	III-A.2 Data generation and Simulation Procedure

	III-B Collision Prediction Network
	III-B.1 Ground Truth
	III-B.2 Network Architecture

	III-C Manipulation Planning

	IV Experiments
	IV-A Training Settings
	IV-B Experimental Setup
	IV-C Results
	IV-C.1 Choosing the safest pair of extraction/support object
	IV-C.2 Extracting a predetermined target object


	V Evaluation
	V-A Prediction Performance
	V-B Real-world Manipulation
	V-C Discussion

	VI Conclusions
	References

