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Abstract— This paper studies the problem of frequency
regulation in power grids, while maximizing the social welfare.
Two price-based controllers are proposed; the first one an
internal-model-based controller and the second one based on a
continuous gradient method for optimization. Both controllers
can be implemented in a fully distributed fashion, with freedom
in choosing a controller communication network. As a result,
two real-time dynamic pricing models described by port-
Hamiltonian systems are obtained. By coupling with the port-
Hamiltonian description of the physical network we obtain a
closed-loop port-Hamiltonian system, whose properties are ex-
ploited to prove asymptotic stability of the set of optimal points.
Numerical results show the performance of both controllers in
a simple case study.

I. INTRODUCTION

Stability of power networks is becoming an increasingly
important topic in recent years. Especially with the growth of
renewable energy sources there is an increasing fluctuation
in the supply of power. As a result, it is more difficult for
traditional energy sources to match the supply with the de-
mand. To alleviate some of these problems, we may introduce
a feedback mechanism that encourages the consumers to
change their usage when it is difficult for the generators and
the network to match demand. One approach is by using
real-time dynamic pricing as a control method.

The idea of using dynamic pricing to achieve optimal
supply-demand matching is not new in the literature on
power networks. For a historical paper on dynamic pricing
and market stability we refer to [1]. See e.g. also [2] and [3]
for more recent papers on real-time dynamic pricing, which
mainly focus on the economic part of optimal supply-demand
matching. However, the coupling between the solution of
the optimization problem and the physical dynamics of the
network should not be ignored as this could result in insta-
bility of the grid [4]. The coupling between the physics of
the power network with the market dynamics has previously
been studied in for example [4], [5], and [6].

In this paper, we propose a new approach for the modeling,
analysis and control of smart grids based on using energy
functions, both for the physical network as well as for the
dynamic pricing algorithm. The underlying framework is
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based on the theory of port-Hamiltonian systems, which
lends itself to the integration of dynamic pricing algorithms
that allow to consider economical factors in the control
of smart grids. The objective is to have producers and
consumers to fairly share utilities and costs associated with
the generation and consumption of power. The challenge
of achieving this in an optimal manner is called the social
welfare problem. Simultaneously, the goal is to achieve zero
frequency deviation w.r.t. to the nominal value (e.g. 50 Hz)
in the power network.

One of the approaches to solve an optimal frequency
regulation problem is by using an internal-model-based
controller as in [7], [8]. We will continue along the same
lines as in [7] which, among other things, treated optimal
frequency regulation in case of quadratic power production
cost functions and constant unknown demand. The first main
contribution of this paper is that we extend the results
of [7] where we will include a quadratic consumer utility
function. The internal-model-based controller proposed in [7]
is modified accordingly so that it steers the trajectories to
the points of maximal social welfare while regulating the
frequency. Moreover, this is all achieved within the port-
Hamiltonian framework. In particular, we will show that the
dynamics of the physical model of the power network as well
as the real-time dynamic pricing model can be represented
as port-Hamiltonian systems.

Another well-known controller design method for solving
a(n) (social welfare) optimization problem is primal-dual
gradient method based control. The literature on the gradient
method has become quite extensive over the last decades,
starting with the monograph [9]. Also in power grids this
method is often applied to design distributed controllers,
see for example [4], [6] and [10]. Our contribution to the
existing literature consists in showing that the real-time
dynamic pricing model obtained when applying the gradient
method can be represented as a port-Hamiltonian system,
which demonstrates that the port-Hamiltonian framework
can be extended from physical system modeling to markets
dynamics as well.

The outline of this paper is as follows. In Section II we
first state the preliminaries on the power network model
and the social welfare problem. Next, we introduce an
internal-model-based controller in Section III, and discuss its
asymptotic stability. Thereafter in Section IV, we propose a
gradient method based controller in port-Hamiltonian form
and we perform a similar stability analysis. Numerical results
on both controllers will be discussed subsequently in Section
V. Finally, we state suggestions for future research.
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II. PRELIMINARIES

A. Power network model

Consider a power grid consisting of n buses. The network
is represented by a connected and undirected graph G =
(V, E), where the nodes, V = {1, ..., n}, is the set of buses
and the edges, E ⊂ V × V = {1, ...,m}, is the set of
transmission lines connecting the buses. The ends of edge k
are arbitrary labeled with a ‘+’ and a ‘-’, so that the incidence
matrix D of the network is given by

Dik =


+1 if i is the postive end of k
−1 if i is the negative end of k
0 otherwise.

Each bus represents a control area and is assumed to have
controllable power generation and a price-controllable load.
The dynamics at each bus are assumed to be given by [7],
[11]

δ̇i = ωbi − ωn

Miω̇i = uig − uid −
∑
j∈Ni

ViVjBij sin(δi − δj)

−Ai(ωbi − ωn),

(1)

which are commonly known as the swing equations. We use
here the following notations.

δi Voltage angle at bus i
ωbi Frequency at bus i
ωn Nominal frequency
ωi Frequency deviation at bus i, i.e. ωbi − ωn
Vi Voltage at bus i
Mi Moment of inertia at bus i
Ai Damping constant at bus i
Ni Set of buses connected to bus i
Bij Susceptance of the line between buses i and j
udi Power demand at bus i
ugi Power generation at bus i

Assumption 1: By using the power network model (1) the
following assumptions are made, which are standard in a
broad range of literature on power network dynamics.
• Lines are lossless, i.e., the conductance is zero. This

assumption is generally valid for the case of high
voltage lines connecting different control areas.

• Nodal voltages Vi are constant.
• Reactive power flows are ignored.
• A balanced load condition is assumed, such that the

three phase network can be analyzed by a single phase.
Define the voltage angle differences between the buses by
η = DT δ. Further define the angular momenta by p := Mω
where ω = ωb − ωn the (aggregated) frequency deviations
and M = diag(M1, . . . ,Mn) are the moments of inertia.
Let Γ = diag(γ1, . . . , γk) and γk = ViVjBij where k cor-
responds to edge (i, j) ∈ E . Finally, define the Hamiltonian
Hp(η, p) by

Hp(η, p) =
1

2
pTM−1p− 1TΓ cos η, (2)

which consists of kinetic energy and a pendulum like poten-
tial energy. The swing equations (1) are then represented by
the port-Hamiltonian system[

η̇
ṗ

]
=

[
0 DT

−D −A

]
∇Hp(η, p) +

[
0 0
I −I

]
u

y =

[
0 I
0 −I

]
∇Hp(η, p) =

[
M−1p
−M−1p

]
=

[
ω
−ω

] (3)

where u = (ug, ud). Note that the system (3) satisfies the
passivity property

Ḣp = pTM−1ṗ+ (Γ sin η)T η̇ = pTM−1(−DΓ sin η

−AM−1p+ ug − ud) + (Γ sin η)TDTM−1p

= −ωTAω + ωT (ug − ud) ≤ uT y.

For an extensive study on the stability and equilibria of the
swing equations based on the Hamiltonian function (2), we
refer to [7].

B. Social welfare problem
We define the social welfare by U(ud) − C(ug), which

consists of a utility function U(ud) of the consumers ud
and the total power generation cost C(ug) associated to
the producers ug . The objective is to maximize the social
welfare under the constraint of zero frequency deviation.
We assume that C(ug) is a strictly convex function and
U(ud) is a strictly concave function so that we will obtain
an optimization problem which is convex.

By analyzing the equilibria of (1), it follows that a neces-
sary condition for zero frequency deviation is 1Tud = 1Tug
[7], i.e., the total supply must match the total demand.
It can be noted that (ug, ud) is a solution to the latter
equation if and only if there exists a v ∈ Rmc such that
Dcv − ug + ug = 0 where Dc ∈ Rn×mc is the incidence
matrix of some connected communication graph with mc

edges and n nodes. This communication graph may be
different from the physical network topology and will play a
central role in the controllers proposed in Sections III and IV.
Because of the latter equivalence, we consider the following
convex minimization problem:

min
ug,ud,v

R(ug, ud) := C(ug)− U(ud)

s.t. Dcv − ug + ud = 0.
(4)

The corresponding Lagrangian is given by

L = C(ug)− U(ud) + λT (Dcv − ug + ud)

with Lagrange multipliers λ ∈ Rn. The resulting first-order
optimality conditions (∇L = 0) are given by

∇C(ūg)− λ̄ = 0

−∇U(ūd) + λ̄ = 0

DT
c λ̄ = 0

Dcv̄ − ūg + ūd = 0.

(5)

Since the minimization problem is convex it follows that
(ūg, ūd, v̄, λ̄) is an optimal solution to (4) if and only if it is
a solution to (5), which is a standard result in the literature
on convex optimization [12].



III. INTERNAL-MODEL-BASED CONTROLLER

In this section we extend the results of [7] in which we
include a utility function for the demand. We assume that
the utility functions are quadratic and given by C(ug) =
1
2u

T
g Qgug + cTug, U(ud) = − 1

2u
T
dQdud + bTud where

Qd, Qg ∈ Rn×n are symmetric positive definite matrices
and c, b ∈ Rn. Consider the minimization problem (4). The
first-order optimality conditions in this case amount to

Qgūg + c− λ̄ = 0

Qdūd − b+ λ̄ = 0

DT
c λ̄ = 0

Dcv̄ − ūg + ūd = 0.

(6)

Note that Qgug+c are the (aggregated) marginal costs of the
producers and likewise −Qdud + b are the marginal utilities
of the consumers. Observe from (6) that the prosumers
(combination of producers and consumers) achieve maximal
welfare if and only if their marginal costs and utilities
respectively are equal to the price λ, which is a standard
result in economics. The optimal production and demand are
therefore given by

ūg = Q−1g (λ̄− c)
ūd = Q−1d (b− λ̄).

(7)

From the third equation of (6) it follows that the prices must
be identical in each control area, i.e., λ̄ = 1λ∗, where the
common price λ∗ is computed as

1T ūg = 1TQ−1g (1λ∗ − c) = 1TQ−1d (b− 1λ∗) = 1T ūd

⇒ λ̄ = 1λ∗, λ∗ =
1T (Q−1g c+Q−1d b)

1T (Q−1g +Q−1d )1
. (8)

Based on the controller design proposed in [7], we con-
sider the following price-based controller dynamics in port-
Hamiltonian form with inputs uλ and outputs yλ:

λ̇ = −Lc∇Hc(λ) +
[
Q−1g −Q−1d

]
uλ

yλ =

[
Q−1g
−Q−1d

]
∇Hc(λ) +

[
−Q−1g c

Q−1d b

]
.

(9)

The controller Hamiltonian is given by Hc(λ) = 1
2λ

Tλ and
Lc = DcD

T
c is the Laplacian matrix of the communication

graph. We interconnect systems (3) and (9) in a power-
preserving way by uλ = −y, u = yλ. Then we obtain the
closed-loop port-Hamiltonian systemη̇ṗ

λ̇

 =

 0 DT 0
−D −A Q−1g +Q−1d

0 −Q−1g −Q−1c −Lc

∇H(x)

−

 0
Q−1g c+Q−1d b

0

 (10)

where x = (η, p, λ) and the Hamiltonian is given by

H(x) = Hp(η, p) +Hc(λ)

=
1

2
pTM−1p− 1TΓ cos η +

1

2
λTλ.

The equilibria of (10) are all (η̄, p̄, λ̄) satisfying

p̄ = 0

0 = −DΓ sin η̄ + (Q−1g +Q−1d )λ̄−Q−1g c−Q−1d b

λ̄ = 1λ∗, λ∗ =
1T (Q−1g c+Q−1d b)

1T (Q−1g +Q−1d )1
.

(11)

We define Ω1 as the solution set of (11), i.e.

Ω1 = {(η̄, p̄, λ̄) | (η̄, p̄, λ̄) is a solution to (11)}.

For proving local asymptotic stability of the closed-loop
system (10) an additional assumption is required.

Assumption 2: There exists a (η̄, p̄, λ̄) ∈ Ω1 such that
η̄k ∈ (−π/2, π/2) for all k ∈ E .

This assumption is standard in studies on power grid
stability and is also referred to as a security constraint [13].

A. Stability
We will show that trajectories (η, p, λ) satisfying (10)

and initialized sufficiently close to an equilibrium point of
(10) converge to the set Ω1. Moreover, we show that this
set corresponds to the optimal points of the social welfare
problem.

Theorem 1: For every x̄ ∈ Ω1 satisfying Assumption 2
there exists an open neighborhood O around x̄ such that
all trajectories x satisfying (10) with initial conditions in O
converge to the set Ω1. Moreover, the power generations and
demands converge to the optimal value given by (7) and (8).

Proof: Since the system (10) is not centered around the
origin we introduce a shifted Hamiltonian H̄ w.r.t. x̄ ∈ Ω1

[7],[14], which will act as a Lyapunov function:

H̄(x) := H(x)− (x− x̄)T∇H(x̄)−H(x̄)

=
1

2
pTM−1p− 1TΓ cos η +

1

2
λTλ

−
[
ηT − η̄T 0 λT − λ̄T

] Γ sin η̄
0
λ̄


− 1TΓ cos η̄ +

1

2
λ̄T λ̄

=
1

2
pTM−1p+

1

2
(λ− λ̄)T (λ− λ̄)

− 1TΓ cos η − (η − η̄)TΓ sin η̄ + 1TΓ cos η̄.

(12)

Bearing in mind Assumption 2 and [15], the shifted Hamil-
tonian satisfies H̄(x̄) = 0 and H̄(x) ≥ 0 for all x in an
sufficiently small open neighborhood around x̄. Moreover,
the shifted Hamiltonian satisfies∇H̄(x) = ∇H(x)−∇H(x̄)
so that (10) can be rewritten as

ẋ =

 0 DT 0
−D −A Q−1g +Q−1d

0 −Q−1g −Q−1c −Lc

∇H̄(x)

+

 0
−DΓ sin η̄ + (Q−1g +Q−1d )λ̄−Q−1g c−Q−1d b

−Lcλ̄


=

 0 DT 0
−D −A Q−1g +Q−1d

0 −Q−1g −Q−1c −Lc

∇H̄(x).



Because of the port-Hamiltonian structure of the system it
easily follows that the shifted Hamiltonian satisfies

˙̄H = −ωTAω − (λ− λ̄)TLc(λ− λ̄) ≤ 0, (13)

where equality holds if and only if ω = 0 and λ = λ̄+ 1α

for some scalar function α. On the set ˙̄H = 0 we have

η̇ = 0

ṗ = −DΓ sin η +DΓ sin η̄ + (Q−1g +Q−1d )1α = 0

λ̇ = 0

On the largest invariant set where ˙̄H = 0 we must have that
α ≡ 0, which follows from premultiplication of the second
equation by 1T . Hence, by LaSalle’s invariance principle
p → 0, λ → λ̄, η → η̂ as t → ∞, for some constant η̂
satisfying

DΓ sin η̂ = DΓ sin η̄ = (Q−1g +Q−1d )λ̄−Q−1g c−Q−1d b.

Hence x→ Ω1 as t→∞. Moreover, since the interconnec-
tion between the controller and the swing equations (3) is
given by [

ug
ud

]
= u = yλ =

[
Q−1g (λ− c)
Q−1d (b− λ)

]
it follows that the power generations and demands converge
to the optimal value given by (7) and (8) as t→∞.

IV. PRIMAL-DUAL GRADIENT CONTROLLER

By applying the primal-dual gradient method [4], [6], [9]
to the minimization problem (4), we obtain the real-time
dynamic pricing model

τgu̇g = −∇C(ug) + λ+ wg

τdu̇d = ∇U(ud)− λ+ wd

τv v̇ = −DT
c λ

τλλ̇ = Dcv − ug + ud

(14)

where we introduce additional inputs w = (wg, wd)
which are to be specified later on. Here τE =
blockdiag(τg, τd, τv, τλ) > 0 correspond to the timescales
of the controller. Note that we have constructed a distributed
controller where λi acts as a price in control area i ∈ V and
v represents the information exchange of the differences of
the prices λ along the edges the communication graph.

Let us define the energy variables xE = (xg, xd, xv, xλ) =
(τgug, τdud, τvv, τλλ) = τEzE and notice that in the sequel,
we interchangeably write the system dynamics in terms of
energy variables (denoted by x) and co-energy variables
(denoted by z) for ease of notation.

An interesting fact is that the market dynamics (14) admits

a port-Hamiltonian representation which is given by

ẋE =


0 0 0 I
0 0 0 −I
0 0 0 −DT

c

−I I Dc 0

∇Hc(xE)−∇R(zE)

+


I 0
0 I
0 0
0 0

w
yE =

[
I 0 0 0
0 I 0 0

]
∇Hc(xE) =

[
ug
ud

]
,

(15)

with the quadratic controller Hamiltonian

Hc(xE) =
1

2
xTEτ

−1
E xE . (16)

Note that the latter system is indeed a port-Hamiltonian sys-
tem since R is convex and therefore satisfies the dissipativity
property

(z1 − z2)T (∇R(z1)−∇R(z2)) ≥ 0, ∀z1, z2 ∈ R3n+mc .

We obtain a power-preserving interconnection between (3)
and (15) by choosing w = −y, u = yE . Define the extended
vectors of(co-)energy variables by x = (η, p, xE), z =
(η, ω, zE) then the closed-loop port-Hamiltonian system
takes the form

ẋ =


0 DT 0 0 0 0
−D −A I −I 0 0

0 −I 0 0 0 I
0 I 0 0 0 −I
0 0 0 0 0 −DT

c

0 0 −I I Dc 0

∇H(x)−∇R(z)

(17)

with H the sum of the energy function (2) corresponding to
the physical model, and the controller Hamiltonian (16). We
define the equilibrium set of (17), expressed in the co-energy
variables, by

Ω2 = {z̄ | z̄ is an equilibrium of (17)}. (18)

It is noted that Ω2 is equal to the set of all z̄ that satisfy the
KKT optimality conditions (5) and simultaneously satisfy the
zero frequency constraints

−DΓ sin η̄ + ūg − ūd = 0, ω̄ = 0

of the physical network (3). Hence, Ω2 corresponds to the
desired equilibria.

A. Stability

Theorem 2: For every z̄ ∈ Ω2 there exists an open neigh-
borhood O around z̄ such that all trajectories z satisfying
(17) with initial conditions in O converge to the set Ω2.

Proof: Let z̄ ∈ Ω2 and let this equilibrium be
expressed in the energy variables by defining the vector



Fig. 1. A power grid consisting of 4 control areas [7].

x̄ = (η̄, 0, τgūg, τdūd, τv v̄, τλλ̄). Let the shifted Hamiltonian
H̄ around x̄ be given by

H̄(x) = H(x)− (x− x̄)T∇H(x̄)−H(x̄)

=
1

2
pTM−1p+

1

2
(xE − x̄E)T τ−1E (xE − x̄E)

− 1TΓ cos η − (η − η̄)TΓ sin η̄ + 1TΓ cos η̄.

As mentioned in the proof of Theorem 1, it can be shown
that H̄(x̄) = 0 and H̄(x) ≥ 0 for all x in a sufficiently small
open neighborhood around x̄. After rewriting, the closed loop
port-Hamiltonian system (17) is equivalently described by

ẋ =


0 DT 0 0 0 0
−D −A I −I 0 0

0 −I 0 0 0 I
0 I 0 0 0 −I
0 0 0 0 0 −DT

c

0 0 −I I Dc 0

∇H̄(x)

−∇R(z) +∇R(z̄).

The shifted Hamiltonian H̄ satisfies
˙̄H = −ωTAω − (z − z̄)T (∇R(z)−∇R(z̄)) ≤ 0

where equality holds if and only if ω = 0, ug = ūg, ud = ūd
since R(z) is strictly convex in ug and ud. On the largest
invariant set S where ˙̄H = 0 we have λ = λ̄ and therefore
v is constant. We conclude that S ⊂ Ω2 and by LaSalle’s
invariance principle it follows that z → S ⊂ Ω2 as t→∞.

Comparison of both controllers

When comparing both controllers it is noticed that the
internal-model-based controller requires that the utility and
cost functions are quadratic. Since the matrices Qg, Qd
appear in the closed-loop interconnection structure (10), it
would be challenging to generalize the internal-model-based
controller to the case where general strictly convex utility
functions are considered. On the other hand, by applying the
primal-dual gradient method to the optimization problem (4)
it is possible to construct a distributed controller that can
deal with general convex utility functions.

Remark 1: The controller variables λ of both controllers
are interpreted as the electricity prices, where we may have
different prices in each of the control areas initially. Note that

the controllers differ in the way they compensate for the price
differences. On the one hand, the v dynamics of the gradient
method based controller integrates the differences between
the prices λ. On the other hand, in the internal-model-
based controller these differences are dissipated through the
Laplacian matrix Lc, by inferring from (13) that as long as
λ is not in the range of 1, energy will be dissipated from the
system. This has a stabilizing effect on the overall dynamics
of the closed-loop system in case the internal-model-based
controller is applied, see also Section V.

What both controllers have in common is that in the design
of the distributed controllers there is freedom in choosing
any communication graph, as long as the graph is connected.
Another remark is that, if we would assume that

C(ug) =

n∑
i=1

Ci(ugi), U(ud) =

n∑
i=1

Ui(udi),

both distributed controllers in each control area require only
information about their individual utility and cost functions,
which is beneficial for privacy reasons.

V. NUMERICAL RESULTS

We illustrate the performance of both proposed controllers,
when applied to an academic test case, where we consider
4 control areas1, see Figure 1. To compare both controllers
we use identical quadratic utility and cost functions in the
social welfare problem. The parameters used for both cases
are given by Qg = diag(1, 2, 3, 4),M = Γ = Qd = 1

2A =
I, c = 0, b = col(1, 1.25, 1.5, 1.75), Dc = D, τE = I .

We initialize at (optimal) steady operation, while at time
t = 1 we introduce a change in the utility function of
the demand corresponding to area 4 by changing b into
b = col(1, 1.25, 1.5, 2), i.e., the consumption of electricity
becomes more attractive in this area. The simulations of
the closed-loop systems are plotted in Figure 2 and 3. At
steady state we observe that the power production is higher
in the control areas with lower costs functions and similar
conclusions can be drawn for the power consumption. Hence
at steady state, the social welfare is maximized.

When the consumers utility function is changed, we ob-
serve that the consumption increases in control area 4, as
we would expect. As a consequence, the common electricity
price rises so that the power demands in the other control
areas decrease. Simultaneously, the power production is
increased to match the total supply and demand. It follows
that the closed-loop dynamics converges again to the point
where the social welfare is maximized. It is noted that both
controllers show comparable performance with the gradient
method based controller showing a slightly more oscillatory
behavior, which can be explained by Remark 1.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we proposed a novel way of modeling,
analysis and control of smart grids based on the port-
Hamiltonian framework. We have proposed two different

1This example is based on the 4 control area case study discussed in [7].
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Fig. 2. Performance of the internal-model-based controller. At time t = 1
the consumers utility function corresponding to control area 4 is changed,
so that consumption of electricity becomes more attractive in this area.
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Fig. 3. Performance of the gradient method based controller. The same
parameters and change in the utility function are considered as in the results
shown in Figure 2. Note that the gradient method based controller shows
a slightly more oscillatory behavior, since it contains additional layers of
integrators compared to the internal-model-based controller.

types of distributed real-time price-based controllers that
achieve frequency regulation, while maximizing the social
welfare. One controller is internal-model-based and the other
is gradient method based. In the controller design there is
freedom in choosing any connected communication graph.
An important result is that the market dynamics, obtained
from applying the two proposed price-based controllers, can
be represented in a port-Hamiltonian form. By coupling
this with the port-Hamiltonian representation of the physical
power network, a closed-loop port-Hamiltonian system is
obtained whose properties are exploited to prove asymptotic
stability to the set of optimal points. By applying the real-
time dynamic pricing models to the same (academic) test
case, numerical results have shown the performance of
both controllers in case of quadratic utility functions, and

show convergence to the point where the social welfare is
maximized, even after a change in the consumers utility
function.

Future research

In this paper we only considered the total supply-demand
matching constraints in the social welfare problem. A nat-
ural extension for future research is to include additional
inequality constraints, which for example correspond to
congestion. Although the model for the power network used
here is relatively simple, it provides a good starting point
for considering more complex physical models of the power
grid in the port-Hamiltonian framework. In these models one
may for example include reactive power and voltage control.
In addition to the proposed controller design methods, one
would also like to develop controllers that can deal with
uncertainties in the (demand) utility functions.
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