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An iterative algorithm for volume maximization of N-step backward
reachable sets for constrained linear time-varying systems*

Stefan Kojchev1, Ankit Gupta2, Robert Hult3 and Jonas Fredriksson4

Abstract— In this paper, we consider the computation of
robust N-step backward reachable sets for state- and input con-
strained linear time-varying systems with additive uncertainty.
We propose a method to compute a linear, time-varying control
law that maximizes the volume of the robust N -step reachable
set for the closed-loop system. The proposed method is an
extension of recent developments and involves the recursive
solution of N semi-definite programs (SDP). We demonstrate
the performance of the proposed method on the lateral control
problem for emergency maneuvers of autonomous vehicles and
compare it to results obtained when backward reachability is
applied to the same system and a naively designed controller.

I. INTRODUCTION

For many types of controlled systems, it is important to
derive bounds on the behaviour of the closed-loop system
when subjected to bounded disturbances. For such purposes,
reachability analysis of constrained linear systems is a com-
monly employed tool, see e.g. [1] and [2]. Within the auto-
motive domain in particular, the development of autonomous
vehicles has raised the need to bound the evolution of the
vehicle to robustly ensure that it, e.g., stays in lane and avoids
collisions with other road users. In this context, a number of
contributions that leverage reachability analysis have been
made. For instance, in [3] the set of all possible future
occupancies of the autonomous vehicle and other traffic
participants is calculated and safety guarantees are given if
the occupancy of the autonomous vehicle does not intersect
that of the other participants. In [4] and [5] reachability
analysis is utilized for threat assessment that quantifies the
risk of being involved in an accident at each time step.

In previous work [6], we proposed a safety methodology
for automated vehicles that ensures a safety maneuver that
leads the vehicle to a pre-defined safe state can be executed.
The supervision of the system in this approach relies on
N -step backward reachability analysis. In this and similar
safety monitoring applications, it is desirable to use the N -
step backward reachable set with the largest volume. Failure
to do so introduces conservativeness in the safety monitor
and causes unnecessary intervention.
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Fig. 1. Example of possible one-step backward reachable set (S) computed
with free input (a) using a pre-defined controller and the system closed-loop
(b) and using the iterative algorithm (c)

The maximum backward reachable set for a system with
state and input constraints can in principle be computed by
repeatedly projecting the input constraint set on the state con-
straint set using Fourier-Motzkin elimination [7]. However,
this procedure is known to have double-exponential algebraic
complexity, making it intractable for real life application, like
automated vehicles.

A way to employ reachability analysis for safety monitors
while avoiding prohibitive computational issues, which was
used in [6], is to first compute a linear control law u = Kx
for the system and compute the N -step backward reachable
set for the closed-loop system rather than for its non-
autonomous counterpart. Introducing a controller restricts the
set of possible inputs and removes the expensive projection
operation at the expense of the reachable set volume and
thereby conservativeness. How much volume is lost with
this approach is dependent on the design of the control gain
K. It is thus desirable to find the control gain K∗, under
which the backward reachable set for the closed-loop system
is maximised. The idea is illustrated in Figure 1, where (a)
shows the backward reachable set for the non-autonomous
system, where all admissible inputs are considered, (b) shows
the set obtained under the restriction of the input space to
the output of a ”bad” linear controller K, and (c) shows the
maximum reachable set for the closed-loop system, obtained
with a control gain K∗.

The contribution of this paper is an iterative algorithm
that returns a control law such that the backward reachable
set is of desirably large volume, approximating K∗. Similar
algorithms and approaches have been developed for Robust
Control Invariant (RCI) sets, see [8], [9] and [10]. These
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contributions find low-complexity RCI sets of desirably large
volume by solving semidefinite programming problem. The
theoretical aspects of the approach in this paper are based on
the findings in [8] with the modification of computing N-step
backward reachable sets. This leads to different derivations
and LMI constraints that the optimization problem is subject
to. The iterative algorithm solves a determinant maximization
problem to compute backward reachable sets of increased
volume at each step together with a state-feedback gain.
The approach calculates a set of desirably large volume in
comparison to a geometric approach that either is unable
to compute a set in reasonable time or the set is under-
approximated due to a controller choice.

The remainder of the paper is organized as follows:
Section II formulates the problem that is solved in this
paper. In Section III the LMI conditions for computing a
backward reachable set with the specified control-law are
derived, while Section IV presents the iterative algorithm
for solving the optimization problem. An example of the
computed sets with the proposed approach and a comparison
with respect to a standard toolbox is given in Section V
followed by final remarks in Section VI.

II. PROBLEM STATEMENT

In this paper we consider a discrete time linear time-
varying (LTV) system of the following form:

x(k + 1) = A(k)x(k) +B(k)u(k) + E(k)w(k), (1)

where x, u and w are the state, control input, and disturbance
vectors respectively. We assume that the variation of the
system matrices (A,B and E) over time is known and there
is no uncertainty present in their formulation.

The system in eq. (1) is subject to state and input con-
straints and we assume that the disturbances are bounded
and belong to a known set. In essence, we have:

X = {x ∈ Rn : Fx ≤ 1}
U = {u ∈ Rm : Gu ≤ 1} (2)

W =
{
w ∈ Rd : |Dw| ≤ 1

}
,

where n,m and d are the number of states, inputs, and
disturbance the system has. The constraint inequalities are
element-wise and 1 represents a vector of ones.

The main goal of this paper is to find a time-varying state
feedback control law of the form:

u(k) = K(k)x(k), (3)

where K(k) ∈ Rm×n is the gain matrix to be found at each
time-step, such that the one-step preimage set, denoted by
S, of a specified target set H is maximized. The closed-loop
system dynamics now becomes:

x(k + 1) = (A(k) +B(k)K(k)x(k) + E(k)w(k). (4)

Assume that the preimage set and the target set are sym-
metric with respect to the origin therefore can be described

as:

S = {x ∈ Rn : −1 ≤ Px ≤ 1}
H =

{
x+ ∈ Rn : −1 ≤ Hx+ ≤ 1

}
, (5)

where P ∈ Rn×n is a square matrix that we need to find
and H ∈ Rnx×n is the predefined target set matrix. For
simplicity the time dependence notation (k) is dropped and
x(k + 1) is substituted by x+.

The state and input constraints need to be satisfied by the
preimage set S, meaning that S ⊆ X and KS ⊆ U , which
implies:

x ∈ S ⇒ x ∈ X and u = Kx ∈ U . (6)

Taking the definition of the preimage set and the target set
in eq. (5), we assume that the following relation holds for
the set S to be a preimage set of the target set H:

{−1 ≤ Px ≤ 1} ⇒
{
−1 ≤ Hx+ ≤ 1

}
,∀w ∈ W. (7)

What eq. (7) describes is that if at the current time step
the system is inside the set S, for that set to be a one-step
preimage set of the target set, the system must be in the set
H at the next time step for all disturbances that belong to
the disturbance set (W), given the control law in eq. (3).

Taking these assumptions and formulations the problem in
this paper can be summarized as:

Problem 1: At each time-step, given the target set H, find
the matrices (P,K) for the system in eq. (1) subject to the
constraints in eq. (2) such that:

1) The set S satisfies eq. (6) and eq. (7).
2) The matrix K, describing the time-varying control law,

is such that the volume of the set S is maximized.
In the following, we will focus on forming the dependen-

cies that fulfill the demands of our problem.

III. LMI CONDITIONS FOR COMPUTING A BACKWARD
REACHABLE SET

In this section, we will derive LMI conditions for comput-
ing a one-step backward reachable set as specified in Problem
1.

A. Preimage set conditions

We first start by forming LMI conditions for the preimage
set conditions by expanding eq. (7) to:

{−1 ≤ Px ≤ 1} ⇒ {−1 ≤ H(Ax+Bu+ Ew) ≤ 1},
∀w ∈ W.

(8)

Given the control law in eq. (3) that we can express the
equation above as:

{−1 ≤ Px ≤ 1} ⇒ {−1 ≤ H((A+BK)x+ Ew) ≤ 1},
∀w ∈ W.

(9)
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For the definition of a preimage set to hold, we need to
ensure that for each x ∈ S, each element of H(:, i)x+i , i =
1, ..., n must satisfy:

1− (H(:, i)x+i )2 = 1− (eTi Hx
+)2 ≥ 0, i = 1, ..., n, (10)

where ei is the i-th column of the identity matrix with size
n × n. We can get a sufficient condition for the inequality
in eq. (10) by multiplying this inequality with a positive
scalar variable (Φi) and by having this product to be greater
or equal to an expression that is known to be non-negative
for a disturbance w ∈ W . This way we obtain a sufficient
condition as:

Φi

(
1−

(
eTi Hx

+
)2) ≥ (1− Px)

T
Γi (1 + Px)

+ (1−Dw)
T

Λi (1 +Dw) , (11)

with Γi = diag (γi1, ..., γin) � 0, Λi = diag (λi1, ..., λin) �
0 and Φi ∈ R+. Using standard manipulations we can
express eq. (11) as:


1
x
x+

w


︸ ︷︷ ︸
θT

T
β1 0 0 0
0 PTΓiP 0 0
0 0 −β2 0
0 0 0 DTΛiD


︸ ︷︷ ︸

M


1
x
x+

w


︸ ︷︷ ︸

θ

�0,

∀
[
0 −(A+BK) I −E

]
θ =0, (12)

where β1 = Φi−1TΓi1−1TΛi1 and β2 = ΦiH
T eie

T
i H . As

we can notice there are two non-linear terms present in eq.
(12), the PTΓiP and β2 terms. We start with the linearization
of the β2 term, by first applying the Finsler’s lemma:

Lemma 1: (Finsler) [11]: Let x ∈ Rn, Q ∈ Sn and L ∈
Rm×n such that rank(L) < n. The following statements are
equivalent:

i) xTQx � 0, ∀Lx = 0, x 6= 0.

ii)
(
L⊥
)T
QL⊥ � 0.

iii) ∃µ ∈ R : Q− µLTL � 0.
iv) ∃X ∈ Rn×m : Q+XL + LTXT � 0.

The proof of Lemma 1 is given in [11].
In particular we use the fact that i) and iv) are equivalent,

where for our inequality in eq. (12) we have that x = θ and
Q = M . Further for iv) we define:

L =
[
0 −(A+BK) I −E

]
, X =


0
0
S
0

 , (13)

where S is a new optimization variable. We can notice that
with L defined in this way the condition in i) of the Lemma
1, which is ∀Lx = 0, holds as this is the system’s dynamics
as stated in eq. (4). Using statement iv) from Lemma 1
with the defined vectors and also applying the congruence
transformation [12] on the third diagonal element of M
matrix, gives a new expression for M:


β1 0 0 0
0 PTΓiP ∗ 0
0 (A+BK) S−1+S−T−S−1β2S−T E
0 0 ∗ DTΛiD

 � 0

(14)
Finally, we apply the Schur complement w.r.t. the third

diagonal element of M matrix and with that get the following
two conditions:

zi ≥ S−1ΦiH
T eie

T
i HS

−T ⇒
[
zi S−1HT ei
∗ Φ−1i

]
� 0 (15)

β1 0 0 0
0 PTΓiP ∗ 0
0 (A+BK) S−1+S−T−zi E
0 0 ∗ DTΛiD

 � 0. (16)

The PTΓiP term is linearized by again applying the
congruence transformation on the M matrix, this time on
the second diagonal element of the matrix, which results in:

β1 0 0 0
0 Γi ∗ 0
0 (AW+BN) S−1+S−T−zi E
0 0 ∗ DTΛiD

 � 0,

(17)
where W = P−1 and N = KW are new optimization
variables. With this, we have obtained LMI conditions for
the calculation of the one-step preimage set.

B. System constraints

With W and N definied as above, we now need to
formulate the input constraints to an LMI form. The input
constraints can be stated as:

GKx ≤ 1, ∀x ∈ S
GNW−1x ≤ 1, ∀x ∈ S, (18)

where S =
{
x ∈ Rn : −1 ≤W−1x ≤ 1

}
. By applying the

S-procedure [13] we reformulate eq. (18) to:

eTj (1−GNW−1x) ≥ (1−W−1x)TΘi(1 +W−1x), (19)

or in matrix form:

[
1
x

]T [
1− 1TΘi1

1
2e
T
j GNW

−1

∗ W−TΘiW
−1

] [
1
x

]
� 0, (20)

where ej is the j-th column of the identity matrix with size
m × m and Θi = diag(θi1, ..., θin) � 0. By applying the
congruence transformation on the second diagonal element,
we obtain the LMI condition for the input constraints as:[

1− 1TΘi1
1
2e
T
j GN

∗ Θi

]
� 0. (21)

The state constraints can be handled by intersecting the
preimage set with the state constraints set X . Following the
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intersection, all redundant inequalities are removed and we
obtain the minimal-representation of the set. An approach
that describes how to find the minimal-representation of a
polyhedron is presented in [14] and is used in this paper.

IV. ITERATIVE ALGORITHM

In this section, we will present an iterative algorithm that
will maximize the volume of S. As noted in [15] the volume
of S is proportional to |det(W )| and therefore we need to
solve a determinant maximization problem subject to LMI
constraints in order to obtain the set of enlarged volume. In
[16] it is found that to solve such an optimization problem
easily W must be symmetric. However, this will introduce
conservatism and is thus undesirable.

In order to mitigate this we propose an iterative scheme
such that the consecutive solution fulfills the following
condition: ∣∣det

(
W r+1

)∣∣ ≥ |det (W r)| . (22)

We now introduce a new matrix variable Z required to
satisfy:

WTW � Z � 0. (23)

From the Minkowski determinant inequality it follows that:

det(WTW ) = |det(W )|2 ≥ det(Z). (24)

As eq. (23) is not an LMI, we can substitute it with:

WTW r + (W r)TW − (W r)TW r � Z � 0, (25)

with W r being the solution found from the previous iteration
of the algorithm. In [8] it is proven that eq. (25) is a sufficient
condition to eq. (23), so the goal of the algorithm is to
maximize the determinant of Z.

The iterative algorithm needs an initial optimization in
order to compute the W matrix for the first iteration of
maximizing the determinant of Z. In this initial optimization,
we maximize the determinant of W +WT in order to avoid
conservatism due to a symmetric W .

A stopping criterion for the algorithm can be when the
volume of the set S through W in the next iteration is not
significantly increased with respect to the last iteration. This
can be formulated as:∣∣det

(
W r+1

)∣∣− |det (W r)| ≤ ε or r > η, (26)

where ε > 0 is desirably small and η is the maximum
amount of iterations we specify. The iterative algorithm is
summarized in Algorithm 1.

Remark 1: At each iteration, the algorithm solves a gen-
eralized SDP. The algorithm would converge to a stationary
point, however, this might not be the global optimum of the
volume maximization problem under the constraints. The
termination criterion must be selected such that numerical
problems are avoided as well as an early termination.

In this paper, we are interested in obtaining an N-step
backward reachable set. For that cause, we repeat Algorithm
1 N times where in each next step the target set for that step
is the preimage set found in the N-1 step.

Algorithm 1 Calculate (P,K)

Input: A,B, E, H , F , G, D, ε, η
Output: One-step backward reachable set S and
control-law matrix K

for r = 1 : η
if r = 1 then

maximize logdet(W +WT )
subject to eq. (15), (17), (21).

else
maximize logdet(Z)
subject to eq. (15), (17), (21) (25).

end if
if
∣∣det

(
W r+1

)∣∣− |det (W r)| ≤ ε then
break

end if
end for
P = W−1

S = {−1 ≤ Px ≤ 1} ∩ X
Obtain minimal-representation of S as per [14]
K = NW−1

V. EXAMPLE

This section gives an example of using Algorithm 1 to
compute the N-step backward reachable set for a standard
bicycle model for vehicle lateral dynamics, depicted in
Figure 2. It also gives a comparison to the computed N-step
backward reachable set using the Multi-Parametric Toolbox
(MPT3) [17] with an LQR controller designed for the system.
The continuous-time vehicle model that is used is similar to
[18] and is described by the following equations:

ẋ =


0 1 Vx 0

0 −171.2893
Vx

0
85.2523−V 2

x

Vx

0 0 0 1
0 42.1875

Vx
0 −199.6488

Vx


︸ ︷︷ ︸

Ac


ey
ẏ
eψ
ψ̇


︸ ︷︷ ︸
x

+


0 0

65.8919 0
0 0

43.6411 0.2287


︸ ︷︷ ︸

Bc

[
δ
µb

]
︸︷︷︸
u

+


0

0.0018
0

−0.0022


︸ ︷︷ ︸

Ec

V 2
w︸︷︷︸
w

, (27)

where Vx is the longitudinal velocity [m/s], ey [m] is the
lateral error, ẏ [m/s] is the lateral velocity, eψ [rad] is the
orientation error, ψ̇ [rad/s] is the yaw rate, δ [rad] is the
steering angle, µb = 10−3 · Mb where Mb [Nm] is the
braking yaw moment and Vw [m/s] is the wind velocity.
In this example, we assume that the vehicle performs a
known maneuver, as described in [6], and thus we know
the evolution of the speed over time. For this example, we
take that the vehicle performs a constant braking maneuver
starting from 60 [km/h] with a constant deceleration of
3.3 [m/s2]. The matrix Ac is dependent on the longitudinal
velocity, Vx and thus varies over time with the change of the
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Fig. 2. Vehicle lateral dynamics

velocity. The state and input constraints used in this example
are:

|ey| ≤ 0.4 m, |ẏ| ≤ 3 m/s |eψ| ≤
10 · π
180

rad,

|δ| ≤ 5 · π
180

rad, |Mb| ≤ 103 Nm |Vw| ≤ 10 m/s. (28)

The presented algorithm requires a discrete-time system
and for that purpose using the zero-order hold discretization
method with a sample time of 0.1 [s], we discretize the
system in eq. (27) and obtain the A,B and E matrices. For
this example, we have selected N = 30 for the amount of
backward reachable sets to be computed. The target set for
this example is equivalent to the state constraints set.

For the computations of the N-step backward reachable
sets with MPT3, as explained before we first design an
LQR controller for the system in eq. (27) with the weights
Q = R = I and then by using the discrete-time closed-
loop system (obtained using the zero-order hold technique)
and the same state, input and disturbance constraints as in
eq. (28) we compute the backward reachable sets using the
standard MPT3 commands.

Figure 3 (a) shows the projection in different dimensions
of the given target set depicted with the bright green set, the
one-step backward reachable set depicted with the blue set,
and the N-step backward reachable set which is depicted with
the red set both of which were computed using Algorithm
1. Part (b) of the figure depicts the sets at the same N
iteration as (a) computed using the MPT3 algorithm for the
computed LQR control law for the system. The sets contract
for every N-step due to the disturbance acting on the system
and because the control is bounded.

From Figure 3 the difference between the computed sets
is evident for this problem and scenario. One can of course
try to ”blindly” tune the controller such that the sets would
be larger than the ones obtained in this example with MPT3,
however, there is no clear intuition of how to do that. With

the proposed approach in this paper, we are able to compute
less conservative sets and a time-varying control law that
would lead us to the desired target set. The volume of
the obtained N-step backward reachable set in this example
(computed using the ”Polyhedron.volume” command) for the
iterative Algorithm 1 is 0.0153, whereas the volume of the
N-step backward reachable set using MPT3 is 0.0009 which
further illustrates the difference between these sets. Figure
4 depicts the increase of |det(W )| during the algorithm
iterations for one of the N-backward reachable sets (in
this particular case N = 27), which, as noted, corresponds
to the increase of volume for the backward reachable set.
We can notice the gradual increase until the tolerance for
convergence is met.

Algorithm 1 was implemented in the YALMIP environ-
ment using a MOSEK solver on a 2.90GHZ Intel Xeon
computer with 32GB of RAM. The total computational time
for Algorithm 1 is 3935.31 seconds, while the total time of
the computations using the MPT3 software is 12.82 seconds.
We note that for our application as described in [6], the
computation of the backward reachable sets is performed
offline. For completeness, we note that attempting to com-
pute the backwards reachable sets for the non-autonomous
system with MPT3 on the same computer only reached 21-
steps in 24 hours, which as noted in section I is due to
the complexity of the Fourier-Motzkin elimination. Note that
this computation would be even more demanding for a more
complex system.

Number of iterations

|d
et
(W

)|

|det(W )| incrase for N = 27

Fig. 4. Increase of |det(W )| during the algorithm iterations for one of the
N-backward reachable sets (N = 27)

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an iterative algorithm with LMI
constraints for LTV systems for computing desirably large
N-step backward reachable sets along with a time-varying
control law. The approach is beneficial when backward
reachable sets cannot be computed for the non-autonomous
system. We demonstrated that the approach leads to less
conservative sets for a realistic application when compared
to those obtained with a naively tuned controller.
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ẏ
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/s
]

e ψ
[r
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]

e ψ
[r
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]

ẏ [m/s]ey [m] ey [m]

e ψ
[r
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]

e ψ
[r
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]

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

ẏ
[m

/s
]

ẏ [m/s]ey [m] ey [m]

Fig. 3. Target set and backward reachable sets computed (a) using Algorithm 1 and (b) using MPT3.

Future extensions of the approach is to have a more
complex control law that could further increase the volume
of the backward reachable sets. Furthermore, it is interesting
to investigate if it is possible to express the LMI conditions
when the sets are not necessarily centered around the origin
and increasing the dimension of the backward reachable set,
this could further contribute to volume increase. Considering
uncertain parameter varying systems is also part of future
extensions to this work.
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[13] Pólik, I. and Terlaky, T., 2007. A survey of the S-lemma. SIAM review,
49(3), pp.371-418.

[14] Klintberg, E., Nilsson, M., Mårdh, L.J. and Gupta, A., 2018, De-
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