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Abstract— This article proposes a new safety concept: backup
plan safety. The backup plan safety is defined as the ability to
complete one of the alternative missions in the case of primary
mission abortion. To incorporate this new safety concept in
control problems, we formulate a feasibility maximization
problem that adopts additional (virtual) input horizons toward
the alternative missions on top of the input horizon toward the
primary mission. Cost functions for the primary and alternative
missions construct multiple objectives, and multi-horizon inputs
evaluate them. To address the feasibility maximization problem,
we develop a multi-horizon multi-objective model predictive
path integral control (3M) algorithm. Model predictive path in-
tegral control (MPPI) is a sampling-based scheme that can help
the proposed algorithm deal with nonlinear dynamic systems
and achieve computational efficiency by parallel computation.
Simulations of the aerial vehicle and ground vehicle control
problems demonstrate the new concept of backup plan safety
and the performance of the proposed algorithm.

I. MOTIVATION AND INTRODUCTION

Traditional path planning problems for robotics and au-
tonomous ground/aerial vehicles consider collision avoidance
enough for safety. However, this consideration is not enough
for emerging automated systems that perform complex tasks
requiring safety criticality if we recall the incident of Miracle
on the Hudson (US Airways Flight 1549) [1]. After a bird
strike resulted in all engines’ failure, Captain Sullenberger
flew along the Hudson river, checking the feasibility of
safer landing points. Additionally, the airplane ditched near
boats, and this expedited rescue. This observation calls for
a need for new safety definitions to cope with mission
uncertainties. This paper aims to examine a novel control
algorithm considering a new safety definition, which we call
backup plan safety. The backup plan safety is defined as
the ability to complete one of the alternative missions in
the case of primary mission abortion. This safety definition
will be particularly useful for automated systems that require
a long horizon emergency response, such as aerial and
nautical transportation systems; and for systems operating
under mission uncertainties such as robotics, manufacturing
systems, and autonomous vehicles.

A similar safety concept had been used in aircraft path
planning. The Federal Aviation Administration set up the
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Fig. 1: (Feasibility maximization scenario) An aircraft is
passing through a dangerous zone (red). The blue area indi-
cates the reachable area after the airplane is under emergency.

60-minute rule in 1953, which allows twin-engine aircraft to
fly routes no further than 60 minutes from the nearest airport
suitable for an emergency landing with the aircraft’s speed
with one engine being inoperative. To fly outside of the 60-
minute distance, one needs to follow extended-range twin-
engine operational performance standards (ETOPS). Since
then, the 60-min rule with ETOPS has been evaluated to
enhance the safety of aircraft [2]. In particular, consider a
scenario that an airplane passes through a dangerous area
(e.g., a storm or a bird habitat), shown in Figure 1, toward
its destination. A typical path planning solution would be
finding the shortest path (Path 1). However, following this
path, the airplane has no viable means to safely land at
an airport when it confronts an emergency, possibly with
limited performance. Path 2 tries to maximize the feasibility
of the safe landing given two alternative destinations. Even
when an emergency takes place, one of the two alternative
destinations is still feasible for the airplane. The backup plan
safety proposed in the current paper is a generalization of
such rule in terms of the safety standard and application
domains.

Model predictive control (MPC) is a general iterative
optimal control methodology for a finite control horizon,
satisfying a set of constraints. MPC has shown its superiority
in the path and motion planning domain for stability and
safety [3], [4]. MPC can be implemented for real-time use
due to the advancement of computing hardware and algorith-
mic developments. Recent years have seen efforts regarding
integrating machine learning with MPC methods towards
establishing a unified framework for learning-based planning
and control for enhanced safe autonomy [5], [6]. Despite
those algorithmic developments, the safety destination in
literature is yet limited to collision avoidance. The devel-
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opment of multi-objective MPC (MMPC) [7] could provide
a basis for multi-mission control problems for backup plan
safety, where each cost function is associated with a mission.
MMPC shows its effectiveness in various applications such
as power converter control [8], [9], HVAC [10], and cruise
control [11], [12]. However, a single prediction horizon
used in MPC and MMPC is not enough to address backup
plan safety, because cost functions for alternative missions
are well evaluated only when the trajectories toward the
corresponding mission are given (e.g., mission feasibility).

Stochastic model predictive control (SMPC) exploits the
probabilistic uncertainty model in an optimal control problem
formulation. SMPC balances the tradeoff between optimizing
control objectives and satisfying chance constraints. Typical
strategies to address SMPC include stochastic-tube [13],
[14], stochastic programming [15], and sampling-based ap-
proaches [16]–[20]. The current paper focuses on a sampling-
based approach to handle nonlinear dynamic systems and en-
able efficient parallel computing using Graphics Processing
Units (GPUs). In particular, our algorithm is based on model
predictive path integral control (MPPI) [18]–[20] that relies
on a generalized importance sampling scheme.

Contribution. The current article proposes a new safety
concept - backup plan safety, to enhance the operation of
complex autonomous systems under mission uncertainties.
The backup plan constrained control problem is formulated
as a feasibility maximization problem: MMPC with multi-
horizon inputs. We develop the multi-objective multi-horizon
model predictive path integral control (3M) algorithm to
address the feasibility maximization problem. In particular,
MMPC with multi-horizon inputs can handle the multi-
mission problem, in which multi-horizon inputs help evaluate
all cost functions. By enabling parallel computation using
GPUs, MPPI control expedites the computing speed of com-
plex optimization problems with multi-horizon inputs. MPPI
control further helps to avoid harmful computation delays by
finishing computation in a designated time. Simulations of
aerial vehicle and ground vehicle control problems present
the new safety concept and the performance of the proposed
algorithm.

The remainder of the paper is organized as follows. Sec-
tion II formulates the feasibility maximization problem with
multi-horizon inputs toward the primary and alternative mis-
sions. Section III-B introduces MPPI control and proposes
the 3M algorithm to address the feasibility maximization
problem. Simulation results of an aerial vehicle and a ground
vehicle are presented in Section IV.

II. FEASIBILITY MAXIMIZATION

Consider the discrete-time switched dynamic systems:

xk+1 = f(xk, uk, j), (1)

where f : Rnx × Rnu × N → Rnx is a nonlinear system
function, xk ∈ Rnx is the system state, uk ∈ Rnu is the
control input at time k ≥ 0. Mode index j ∈ J ⊂ N
determines the function f , where J is the mode index set.

Remark 2.1: The switched system model in (1) can rep-
resent changing dynamic models depending on time and
events during the operation. For instance, in the aircraft
control problem in Figure 1, the dynamic system model
moving toward alternative destinations can be a single-engine
failure model. �

We assume that the control authority knows one primary
mission and m alternative missions. It is said that the mission
i is completed at time t if

t = arg mink k

s.t. d(xk, p
i) = 0, (2)

where d : Rnx ×Rnx → R≥0 is the distance metric between
the internal system state xk and mission state pi ∈ Rnx .
The control objective for the system (1) is to complete the
primary mission, and if the primary mission is aborted in the
middle of the operation, then the system should complete one
of the alternative missions instead.

An alternative mission may not align with the primary mis-
sion. Therefore, the control problem should balance between
the primary and alternative cost functions. Considering this
fact, we formulate the control problem of the system (1) as
a feasibility maximization:

min
U

J(X,U)

s.t. xk+1 = f(xk, uk, j), (3)

where X ∈ R(N+1+
N(N−1)m

2 )nx is the collection of states,
U ∈ R(N+

N(N−1)m
2 )nu is the collection of inputs, and

J : R(N+1+
N(N−1)m

2 )nx × R(N+
N(N−1)m

2 )nu → Rm+1 is an
m+ 1 dimensional vector cost function. Each cost function
is associated with a primary or alternative mission. The
problem contains finite N ∈ N prediction horizon control
inputs at each time step t (i.e., [t, t+N−1]) that minimize the
pre-designed multiple cost functions. After executing the first
control input, the prediction horizon will be shifted forward
and optimize the cost function again as in the standard MPC.
We assume that the cost function J includes soft constraints.
In particular, one could use the Lagrange multiplier method
to realize state/input constraints and feasibility guarantee.

The key difference of the feasibility maximization prob-
lem (3) from the multi-objective MPC in [7] is that the
input U in (3) includes an input horizon toward the pri-
mary mission and additional (virtual) input horizons toward
alternative missions. The multi-horizon control inputs help
to evaluate the cost function toward both the primary and
alternative missions. Section II-A discusses the multi-horizon
control inputs U, state trajectories X, and their dimensions.
Section II-B discusses the cost function J.

The feasibility maximization problem in (3) is a family of
multi-objective optimization problems, where the elements
of cost functions J(X,U) are conflicting with each other
in general, and there is no solution that minimizes all the
cost functions simultaneously. As in multi-objective opti-
mization [7], [21], Pareto optimality plays a key role in
defining optimality.



Definition 2.1 (Pareto optimality [7]): A feasible solu-
tion is Pareto optimal if and only if it is not dominated by
any other feasible solution. In other words, feasible solution
V is Pareto optimal if and only if there is no feasible U
such that J(X,U) ≤ J(X,V) holds element-wise, and strict
inequality holds for at least one element.

Multi-objective genetic algorithm [22] is particularly use-
ful to identify Pareto optimal sets and corresponding Pareto
frontier, the set of Pareto optimal cost function values.
However, they may not be used in real-time applications
due to the computational complexity. In this case, we can
assign parameterized weights to the cost functions so that we
limit our focus to the particular subset of solutions. With the
weight assignment, the feasibility maximization problem (3)
can be reformulated by

min
U

α>J(X,U)

s.t. xk+1 = f(xk, uk, j), (4)

where the weight vector α = [α0, · · · , αm]> ∈ Rm+1

satisfies αi ∈ [0, 1] ⊂ R and
∑m
i=0 α

i = 1. The solution
of (4) is a Pareto optimal solution of (3) if αi > 0 for ∀i [23],
while this may not hold when there exist some indices such
that αi = 0. The choice of α governs the valuation on each
mission, resulting in different optimal control sequences.
Section II-C discusses how to choose the weight vector α.

A. Multi-horizon Inputs and Trajectories

The control input

U = [(U0)>, (U1)>, · · · , (Um)>]> (5)

consists of inputs toward the primary mission

U0 = [u>0 , u
>
1 , · · · , u>N−2, u>N−1]>

and additional (virtual) input horizons toward the alternative
missions Ui for i = 1, · · · ,m, where U0 is the input horizon
used in the standard MPC.

Two important properties should be considered when
defining the inputs toward the alternative missions Ui:
• It is unknown when the system will abort the mission;
• The control horizon toward the alternative missions

should be N .
It is required for Ui to consider the possibility of mission
abortion at every point for the first property. Accordingly,
We construct Ui as

Ui = [(Ui
0)>, (Ui

1)>, · · · , (Ui
N−3)>, (Ui

N−2)>]>, (6)

where Ui
p is the control sequence toward the ith alternative

mission when the primary mission is aborted after up has
been executed. By this definition, the first p+1 control inputs
of Ui

p are u0, · · · , up. Because the dimension of Ui
p should

be Ui
p ∈ RN×nu to satisfy the second property, there are

additional N−(p+1) number of inputs toward the alternative
mission i, in Ui

p. Then, we have

Ui
p = [u>0 , · · · , u>p , (uip,p+1)>, · · · , (uip,N−1)>]>,

where uip,q is the qth control input when we decide to
abort the primary mission after executing up and choose ith

alternative mission for the next.
Input U is visualized in Figure 2 when m = 1, which

presents the relation between U, U0, and U1
p, and shows

how up, and uip,q can construct U0 and U1
p.

(a) The elements of input U are presented in an array. To construct
U0 or U1

p, one can start at the blue dot at the left upper corner, and
move right until the primary mission is aborted, and move downside
after the primary mission is aborted and the alternative mission 1
is chosen for the next mission.

(b) An example of the way to construct U1
2 =

[u>0 , u
>
1 , u

>
2 , (u

1
2,3)
>, (u1

2,4)
>, · · · , (u1

2,N−1)
>]> (marked in

red). The first three elements are the elements of U0.

Fig. 2: Visualization of inputs U when m = 1.

The states X = [(X0)>, (X1)>, · · · , (Xm)>]> are con-
structed by simulating the input U on the system (1), where
X0 and Xi = [(Xi

0)>, · · · , (Xi
N−2)>]> are the simulated

states of inputs U0 and Ui, respectively for i = 1, · · · ,m.
Likewise, Xi

p = [x>0 , · · · , x>p , (xip,p+1)>, · · · , (xip,N )>]> is
the simulated state of the input Ui

p, for i = 1, · · · ,m and
p = 0, · · · , N − 2.

Remark 2.2 (Dimension of states and inputs): It is
worth re-emphasizing that the first p + 1 elements of
Ui
p are those of U0. Correspondingly, the first p + 2

elements of Xi
p are x0, x1, · · · , xp, xp+1, which are the

elements of X0. Therefore, the input U consists of the N
number of inputs toward the primary mission in U0, and
N − 1, N − 2, · · · , 1 additional number of inputs toward
the alternative mission i in Ui

0,U
i
1, · · · ,Ui

N−2. Therefore,
U consists of N + N(N−1)

2 m independent elements, and
X consists of N + 1 + N(N−1)

2 m independent elements.



The dimensions of independent input and state variables are
large compared to the standard MPC. We will deal with the
induced computational complexity by using MPPI control
described in Section III-A. �

B. Multi-objective Cost Functions

The cost function

J(X,U) , [J0(X0,U0),J1(X1,U1), · · · ,Jm(Xm,Um)]>

is an m+1 dimensional vector function, where the elements
are the average cost over state-input trajectories toward the
corresponding mission:

J0(X0,U0) = J0(X0,U0)

Ji(Xi,Ui) =
1

N − 1

N−2∑
p=0

J i(Xi
p,U

i
p)

for i = 1, · · · ,m. The function J i is a standard cost function
for the mission i:

J i(Xi,Ui) =

N∑
k=1

Li(Xi(k),Ui(k)) + F i(Xi(N + 1))

(7)

that consists of the cost-to-go Li and the terminal cost F i,
where Xi(k) ∈ Rnx and Ui(k) ∈ Rnu are the kth state and
input of Xi and Ui, respectively.

C. Weight Vector

When choosing the weight vector α in the feasibility
maximization (4), we should consider two important issues.
First of all, for any fixed α (except for α = [1, 0, · · · , 0]>),
there may not exist Pareto optimal that achieves the primary
mission because the feasibility maximization problem (4)
tries to minimize the weighted sum of the cost functions of
the primary and alternative missions. Second, the choice of α
will affect the closed-loop stability and performance. In what
follows, we design the desired weight vector αd to address
the first issue such that it converges to α = [1, 0, · · · , 0]>

as the system is about to achieve the primary mission.
Furthermore, we will adopt the optimization-based weight
update law for closed-loop stability.

The desired weight vector αd(xt) is designed as follows:

αd(xt) = [1− γ + w0(xt)γ,w
1(xt)γ, · · · , wm(xt)γ]>,

(8)

where

wi =
exp(− 1

λα
d(xt, p

i))∑m
l=0 exp(−

1
λα
d(xt, pl))

is the Gibbs distribution with temperature parameter λα, and
0 < 1− γ ≤ 1 is the pre-determined weight on the primary
mission. Function d is the distance metric between the state
and mission state. It can be verified that αd in (8) satisfies the
constraints on α (i.e., α>d 1 = 1 and αd ∈ [0, 1] ⊂ R), and
converges to [1, 0, · · · , 0]> as d(xt, p0) decreases to zero.

Let us define αt and αt−1 as α in (4) chosen at the current
time t and the one at the previous time t − 1, respectively.

Now, αt must be chosen close to its desired value αd(xt),
while its choice guarantees closed-loop stability as in [7]:

αt = arg minα h(α− αd(xt))
s.t. α>(J(X̂t−1, Ût−1)− F(X̂t−1, Ût−1))

≤ α>t−1(J(X̂t−1, Ût−1)− F(X̂t−1, Ût−1)),

α>1 = 1,

αi ≥ 0, i = 0, · · · ,m, (9)

where h is a convex cost function that penalizes the differ-
ence between αt and αd(xt).

As in (5) and (6), the input Ût−1 is defined by
Ût−1 = [(Û0

t−1)>, (Û1
t−1)>, · · · , (Ûm

t−1)>]>, where
Ûi
t−1 = [(Ûi

0,t−1)>, · · · , (Ûi
N−2,t−1)>]> for i = 1, · · · ,m.

The input Ût−1 is constructed from the optimal control
input at the previous step Ui

t−1. In particular, we have Û0
t−1

and Ûi
p,t−1 by removing the first input u0 (which has been

already executed) and appending a zero vector 0nu ∈ Rnu
at the end to U0

t−1 and Ui
p,t−1, i.e.,

Û0
t−1 = [u>1 , · · · , u>N−1,0>nu ]>

Ûi
p,t−1 = [u>1 , · · · , u>p , (uip,p+1)>, · · · , (uip,N−1)>,0>nu ]>

(10)

for i = 1, · · · ,m and p = 1, · · · , N − 2. The state X̂t−1
is the corresponding simulated trajectory of the input Ûi

t−1.
The vector function

F(X̂t−1, Ût−1)

= [L0(X̂0
t−1(N), Û0

t−1(N)) + F 0(X̂0
t−1(N + 1)),

N−2∑
p=0

L1(X̂1
p,t−1(N), Û1

p,t−1(N)) + F 1(X̂1
p,t−1(N + 1))

N − 1
,

· · · ,
N−2∑
p=0

Lm(X̂m
p,t−1(N), Ûm

p,t−1(N)) + Fm(X̂m
p,t−1(N + 1))

N − 1
]>

is the last cost-to-go function and terminal cost. Now that the
last control input in Ût−1 is a dummy 0nu , we should not
take into account the cost incurred by the dummy. The first
constraint in (9) implies that αt should be chosen such that
the value function α>(J(X̂t−1, Ût−1)−F(X̂t−1, Ût−1)) is
decreasing for the closed-loop stability. If the cost function
h is quadratic, then the problem (9) becomes a quadratic
programming problem because all the constraints are linear
with respect to the decision variable α.

III. MULTI-OBJECTIVE MULTI-HORIZON MODEL
PREDICTIVE PATH INTEGRAL CONTROL (3M)

The current section proposes a 3M algorithm to address the
feasibility maximization problem (4). Given that the system
model (1) is nonlinear, and the dimension of input U is large,
the proposed algorithm is based on MPPI control that is a
sampling-based and parallel computable MPC. Section III-A
introduces MPPI control, and Section III-B presents the 3M
algorithm.



A. Model Predictive Path Integral Control (MPPI)

The MPPI control algorithm solves stochastic optimal
control problems based on the (stochastic) sampling of the
system trajectories through parallel computation [18]–[20].
Due to the sampling nature, the algorithm does not require
derivatives of either the dynamics or the cost function of
the system, which enables to handle nonlinear dynamics
and non-smooth/non-differentiable cost functions without
approximations. With the help of GPUs for expediting the
parallel computation, the MPPI can be implemented in real-
time even for relatively large dimensions of the state space
(e.g., there are 48 state variables for the 3-quadrotor control
example in [19]). The computational efficiency from paral-
leled stochastic sampling and the ability to directly handle
non-smooth cost functions make MPPI appealing for real-
time control problems.

Consider the dynamic system (1) with a fixed j (and thus
omitted) and a noise corrupted input:

xk+1 = f(xk, uk + εk),

where εk ∈ Rnu is an independent and identically distributed
(i.i.d.) Gaussian noise, i.e., εk ∼ N (0,Σ) with the known co-
variance matrix Σ. Given a finite time horizon N , the goal of
the optimization problem is to find an input trajectory U0 =
[u>0 , u

>
1 , · · · , u>N−1]> that minimizes the expected cost over

all trajectories:

U∗ = arg minU0 E[S(τ)],

where τ = {x0, u0, x1, u1, · · · , uN−1, xN}. The cost func-
tion of a trajectory is given as follows:

S(τ) = φ(xN ) +

N−1∑
t=0

(
c(xt) + λu>t Σ−1εt

)
, (11)

where φ(xN ) is the terminal cost, c(xt) is the state-
dependent running cost, and λ is a parameter discussed later.
The cost function (11) depends on unknown random variable
εk for k = 0, · · · , N−1. MPPI control relies on a sampling-
based method to evaluate the cost (11). In particular, we
sample εk from the distribution N (0,Σ), and construct K
trajectories of noises εq = [(εq0)>, (εq1)>, · · · , (εqN−1)>] for
q = 1, · · · ,K. The cost function S can be evaluated for
each trajectory εq . Furthermore, MPPI control adopts the
iterative update law [19] to obtain the current optimal input
U0 around the previous optimal input U0

t−1 as follows:

U0 = [u>1,t−1, u
>
2,t−1, · · · , u>N−1,t−1,0>]> +

K∑
q=1

wqεq,

where

wq =
exp(− 1

λS(τ q))∑K
q=1 exp(−

1
λS(τ q))

with λ known as the temperature parameter of the Gibbs
distribution (or Softmax function), and τ q as state-input sets
for qth noise trajectory. Input ui,t−1 is the ith input of the
previous optimal input U0

t−1.

Algorithm 1 3M algorithm
Choose tuning parameters:
K: Number of sample trajectories;
N : The size of control horizon;
m: The number of alternative missions;
Σ: Co-variance of the noise εk;
λα, λ: Temperature parameter of the Gibbs distribution;
γ: Weight on alternative missions;
U0: Initial input sequence;

1: Measure current state xt and get αd(xt);
2: Obtain Û0

t−1 and Ûi
p,t−1 in (10) for i = 1, · · · ,m and

p = 1, · · · , N − 2 from Ut−1;
3: Update αt by (9);
4: Sample K trajectories of noise εq as in (12);
5: Simulate Ût−1 + εq on the system (1) to get X̂q

t−1 for
q = 1, · · · ,K;

6: Evaluate α>t J
q for q = 1, · · · ,K, where Jq =

J(X̂q
t−1, Ût−1 + εq);

7: Calculate estimated optimal control Ut in (13) using the
costs of the K trajectories, (α>t J

1, · · · , α>t JK).

B. Multi-objective Multi-horizon Model Predictive Path In-
tegral Control (3M)

Applying MPPI control in Section III-A to the feasibility
maximization problem in Section II, we proposed the multi-
objective multi-horizon model predictive path integral control
(3M) algorithm. The proposed 3M algorithm is summarized
in Algorithm 1, and explained below.

Given the current state xt, the desired weight vector
αd can be calculated by (8) (line 1). Given the desired
weight vector αd, the α in (4) can be selected close to the
desired value αd as in (9) (line 3), where the input Ût−1 is
constructed from the previous input Ut−1 (line 2).

We sample K trajectories of noises as follows (line 4):

εq ∈ R(N+
N(N−1)

2 m)nu , εq(i) ∼ N (0,Σ) (12)

for q = 1, · · · ,K and i = 1, · · · , N + N(N−1)
2 m, where

εq(i) ∈ Rnu is the ith noise vector of εq .
For each sampled noise trajectory, we construct noise

disturbed input Ût−1 + εq , and evaluate the corresponding
cost as (line 6):

αtJ
q = αtJ(X̂q

t−1, Ût−1 + εq) for q = 1, · · · ,K,

where X̂q
t−1 is the simulated state trajectory with the noise

disturbed input Ût−1 + εq on the system (1) (line 5).
The optimal control input is estimated by the weight-
average of the costs calculated from the K trajectories,
(α>t J

1, · · · , α>t JK), as (line 7):

Ut = Ût−1 +

K∑
q=1

wqεq, (13)

where

wq =
exp(− 1

λα
>
t J

q)∑K
q=1 exp(−

1
λα
>
t J

q)
∈ R>0, for q = 1, · · · ,K.



If γ = 0, then the 3M algorithm reduces to the MPPI
control. This is because the input toward the primary mission
U0 optimizes the primary cost function J0 only, and the
inputs toward the alternative missions Ui do not affect the
optimization problem. Furthermore, α = [1, 0, · · · , 0]> is the
unique optimal solution of the problem (9) and is recursively
feasible if the initial condition is α0 = [1, 0, · · · , 0]>.

IV. ILLUSTRATIVE EXAMPLES

Simulations have been conducted for the motion plan-
ning problem of the unmanned aerial vehicle (UAV) and
unmanned ground vehicle (UGV) with and without obstacles.
The control objective of the simulations is to move the vehi-
cle from the initial position [0, 0] to the primary destination
[10, 10] in the 2-D plane. The UAV simulations represent
an urban drone delivery system, where the drone flies 200-
500 ft above ground and delivers a package to the primary
destination. The alternative destinations can be seen as an
emergency landing spot such as a safe rooftop. The UGV
simulations adopt a more realistic dynamic system, where
alternative destinations represent a place that can accommo-
date car repair and fueling/charging services. We use GPUs
for parallel computation and discuss control frequency.

A. Simulations on UAV

We consider a double integrator model to simulate the
UAV control problem:

xk+1 =


1 0 0.1 0
0 1 0 0.1
0 0 1 0
0 0 0 1

xk +


0 0
0 0

0.1 0
0 0.1

uk,
where xk ∈ R4 represents the horizontal coordinate, vertical
coordinate, horizontal velocity, and vertical velocity. The in-
put uk ∈ R2 consists of horizontal and vertical accelerations.
The initial condition is x0 = [0, 0, 0, 0]> and the primary
destination is p0 = [10, 10, 0, 0]>. Euclidean distance has
been used for the distance metric d in (2) and (8). The cost
function in (7) is constructed as Li(x, u) = (x−pi)>Q(x−
pi) + u>Ru, F i(x) = (x − pi)>Q(x − pi) with Q = I
and R = I, where I is the identity matrix with a proper
dimension. We use the desired weight vector αd in (8) with
λα = 1. The cost function h in the optimization problem (9)
is chosen as a quadratic function h(α − αd(xk)) = (α −
αd(xk))>(α − αd(xk)). The MPPI control parameters are
Σ = I and λ = 0.5. The weight γ in (8), control horizon
N , and the number of sample trajectories K are chosen
differently for each simulation, and those parameters are
presented in each figure. We compare the backup plan safety
constrained control with the MPPI control (γ = 0).

1) Obstacle-free environment: Two simulations have been
conducted with two different alternative destinations (m =
2); for the first simulation, mission states are given by p1 =
[2, 6, 0, 0]> and p2 = [8, 6, 0, 0]>; for the second simulation,
mission states are p1 = [2, 8, 0, 0]> and p2 = [6, 12, 0, 0]>.

The results are presented in Figures 3 and 4, where the
primary destination is marked in a blue dot, and alternative

Fig. 3: UAV simulation in an obstacle-free environment with
N = 10 and K = 1000. The orange line is the executed state
trajectory of the UAV for backup plan constrained control,
and the blue line is the trajectory for the regular MPPI toward
the primary destination.

Fig. 4: UAV simulation in an obstacle-free environment with
N = 10 and K = 1000.

destinations are marked in red dots. The UAV with MPPI
control (γ = 0) flies to the primary destination directly as
expected. The UAV with the 3M algorithm makes a detour to
the primary destination in both cases, flying near alternative
destinations. The detour trajectory is safer in the backup plan
sense, providing a shorter path toward one of the alternative
destinations when an emergency landing is in need.

It is essential to choose a set of suitable alternative
missions to be partially aligned with the primary mission. If
not, the proposed 3M algorithm automatically less considers
conflicting alternative missions over time by adopting a
distance-based update law for the desired weight vector.
For example, if the alternative destinations are located in
the opposite direction to the primary destination (p1 =
[−4,−4, 0, 0]> and p2 = [−4, 8, 0, 0]>), the trajectory with
γ = 0.66 has a subtle difference from that with γ = 0 as
shown in Figure 5.

2) Environment with obstacle: Two alternative destina-
tions are located at p1 = [2, 6, 0, 0]> and p2 = [6, 12, 0, 0]>.
A soft constraint renders the collision avoidance constraint.

Figure 6 shows the simulation results, where the blue
boxes are obstacles. The UAV flies near the safe rooftops,
avoiding obstacles instead of choosing the shortest path.
When γ = 0, the UAV arrives at the destination with a hook
shape trajectory to land with zero velocity.



Fig. 5: UAV simulation in an obstacle-free environment with
N = 10 and K = 1000. The alternative destinations are
located in the opposite direction to the primary destination.

Fig. 6: UAV simulation in an environment with obstacles
with N = 20 and K = 1000.

B. Simulations on UGV

The UGV simulations use the simple car dynamic model
described by (Chapter 13.1.2 in [24]):

pxk+1 = pxk + (vt cos θk)δ

pyk+1 = pyk + (vt sin θk)δ

θk+1 = θk + (
vt
L

tanφk)δ,

where xk = [pxk, p
y
k, θk]> ∈ R3 represents horizontal coor-

dinate, vertical coordinate, and heading angle, respectively.
Input uk = [vk, φk]> consists of velocity and steering angle.
Parameter L = 0.2 is a wheelbase, and δ = 0.1 is the time
step. Other functions and parameters remain unchanged, if
not specified. There are two alternative destinations located
at p1 = [2, 6, 0, 0]> and p2 = [6, 12, 0, 0]>.

The simulation result in Figure 7 shows that the executed
trajectory remains similar even when the dynamic system
model has been changed. That is, the system tries to enhance
the backup plan safety. The path is not smooth compared to
those of the double integrator model. This is because the
simple car model is a nonlinear model with non-holonomic
constraints that restrict the motion, e.g., it cannot make a
turn when vt = 0, and cannot move to the lateral direction.

C. Analysis and Discussion

This section presents simulation results regarding compu-
tation, cost, and standard deviation.

Fig. 7: UGV simulation in an environment with obstacles
with N = 10 and K = 10000.

Fig. 8: Control frequency with respect to the prediction
horizon N .

Figure 8 shows control frequency with respect to the
prediction horizon N . We have used a desktop computer
with AMD Ryzen 5 3600 CPU, 16GB RAM, and NVIDIA
GeForce RTX 2070 GPU for running the simulation with the
proposed 3M algorithm. As the number of inputs increases in
the order of N2, the computational complexity for the MPPI
part is expected to increase in N2 as well. Using GPUs, it
is real-time implementable up to N = 40.

Figure 9 shows that the average cost remains high when
it is near-sighted (i.e., N is small). The cost decreases as N
increases until N = 40. After then, the cost starts to increase
because Ji is the sum of N horizon costs.

The standard deviation of the cost distribution decreases as
K increases as shown in Figure 10. This result is consistent
with the known result in statistics that the variance of
importance sampling (IS)1 estimator depends on the number
of samples, i.e., σIS est. = σq/K, where σq is the standard
deviation of the random sampling (equation (6.5) in [25]).
Also, the increasing variance in N can be explained by
an accumulation of variance due to the addition of random
variables.

V. CONCLUSION

The motivation of this work is to enable the development
of the new safety concept for autonomous systems, while

1The MPPI uses normal distribution samples to estimate the distribution
of the cost of optimized control. This method of using a different distribution
for estimating target distribution is called importance sampling in statistics.



Fig. 9: Average of the cost samples α>J.

Fig. 10: Standard deviation of the cost samples α>J.

the current one has been limited to collision avoidance. For
instance, many industries utilize the constrained motion plan-
ning on their systems and could benefit from collision-free
for safety, such as indoor navigation robots, follow-filming
drones, and self-driving cars. But more often than not, only
considering the collision avoidance at the planning level is
not enough for safety-critical systems since the primary mis-
sion may not be feasible under some unforeseen conditions.
This work addresses these concerns by introducing a novel
safety concept: backup plan safety that also considers the
feasibility of the alternative missions. Otherwise, searching
for alternative missions after finding the primary mission is
not feasible could lead to dangerous consequences.

This paper studies a novel safety concept, backup plan
safety. To fulfill the safety in the control problem, we formu-
late the control problem as a feasibility maximization prob-
lem, which is addressed by multi-horizon multi-objective
model predictive path integral control, which adopts addi-
tional control horizons toward the alternative missions on
top of the control horizon toward the primary mission.
Simulations of aerial vehicle and ground vehicle control
problems illustrate the new concept of backup plan safety
and the performance of the proposed algorithms.
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