
Evolution of Classification Rules for Comprehensible Knowledge
Discovery

Emiliano Carreño, Guillermo Leguizamón, Neal Wagner Member, IEEE

Abstract— This article, which lies within the data mining
framework, proposes a method to build classifiers based on the
evolution of rules. The method, named REC (Rule Evolution
for Classifiers), has three main features: it applies genetic
programming to perform a search in the space of potential
solutions; a procedure allows biasing the search towards regions
of comprehensible hypothesis with high predictive quality and
it includes a strategy for the selection of an optimum subset
of rules (classifier) from the rules obtained as the result of the
evolutionary process. A comparative study between this method
and the rule induction algorithm C5.0 is carried out for two
application problems (data sets). Experimental results show the
advantages of using the method proposed.

I. INTRODUCTION

The method proposed in this article uses genetic program-
ming (GP) for the evolution of classification rules. The ap-
plication of GP to the discovery of classification rules from a
data set is not suitable when the size of trees (S-expressions)
increases significantly. In such cases, the complexity of the
model obtained makes it almost impossible to understand
the underlying data generating process. Thus, if a model
composed of many high complexity rules is obtained, it can
be as hard to understand as a complex neural network. On the
other hand, the measures of support and precision determine
the predictive quality of a given hypothesis. Nevertheless,
an appropriate model should provide an adequate balance
between both parameters. For example, a rule with a 0.5
precision does not provide any information on whether an
instance belongs or not to a given class, however, a rule with
high precision and low support is not very useful either.

The approach proposed in this article aims to establish
an appropriate balance between a rule’s precision, support
and complexity (directly related to comprehensibility) by
incorporating an adaptive procedure which ranks individuals
probabilistically based on calculated values for support, pre-
cision, and comprehensibility. This procedure allows biasing
the search towards hypothesis regions with high compre-
hensibility and an appropriate balance between support and
precision.

For each class of the target attribute, a rule set is obtained
as result of an evolutionary process. Then, these sets are
combined through a strategy to obtain the final model.
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(LIDIC), Departamento de Informática, Universidad Nacional de San Luis,
(D5700HHW) - San Luis - Argentina (phone: +54-2652-420823; fax: +54-
2652-430224; email: {ecarreno, legui}@unsl.edu.ar).

Neal Wagner is member of the Department of Mathematics & Computer
Science, Augusta State University, 2500 Walton Way Augusta, GA 30904
USA (phone: (706)667-4479; email: nwagner@aug.edu).

The idea is to exploit the solutions generated during the
evolutionary process by selecting an optimum rule set (as
regards to predictive quality). In this sense, it may be the
case that the optimum rule set may not be formed by the
best solutions found during the evolutionary process, instead
it may contain rules that complement each other adequately.
The final result is a classifier expressed as a set of rules of
the type if-then.

In the literature there are several studies where the process
of knowledge discovery is focused on obtaining compre-
hensible and interesting rules with high predictive capacity.
Some examples include [1], [2], [3], and [4]. In [2], clas-
sification rules are evolved using a Multi-objective Genetic
Programming approach. In [4], an approach is presented to
discover interesting prediction rules by applying a genetic
algorithm in which the adaptive function (fitness function)
is divided into two parts. One part measures the degree of
interest of rules, while the other measures their predictive
capacity. In [1], GP is proposed for the discovery of com-
prehensible rules, where a penalty for complexity is added
in the adaptive function. In [3] this is also achieved by
applying a genetic algorithm with a multi-objective approach.
Other examples include [5], [6] and [7]. Here we propose
a new approach to bias the search towards regions of
comprehensible rules with high predictive quality, in several
application problems. Moreover, a strategy to build classifiers
by means of selecting a subset of the rules obtained as result
of the evolutionary process, is introduced. This strategy is
intended to obtain as a final model, an optimum subset of
comprehensible rules with high predictive quality.

In this work a comparative study of the method proposed
against C5.0 [8], a state-of-the-art rule induction algorithm
for building classifiers, is carried out. This study analyzes
mainly the predictive quality and the comprehensibility of
models obtained with these two methods. Also, run time is
reported. Data sets used come from the repository of the
University of California at Irvine (UCI) [9].

The rest of this paper is organized as follows. Section II
describes the use of GP for the discovery of classification
rules. In section III the method proposed in this paper
is presented and analyzed. Section IV shows experimental
results obtained in the comparative study for two data sets.
Finally, conclusions are given in Section V.

II. RULE DISCOVERY USING GP

The main idea of GP is to evolve computer programs (S-
expressions) which produce a solution for a particular prob-
lem, where candidate solutions are hierarchically structured
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computer programs represented as trees. Once a function and
terminal set are provided, the solution (model) is obtained
by means of an evolutionary process. The function set
(F) may contain arithmetic and logical operators, among
other elements. The terminal set (T) contains the program’s
variables and the random ephemeral constant �, which
represents random numbers within some range and decimal
precision. It is required that F ∪ T be sufficient to express
a program that can solve the problem under consideration.
The fitness function measures the capability of individuals
for solving the problem at hand. Several fitness measures
may be adopted, some of which are: raw fitness, standardized
fitness, normalized fitness, among others. These measures are
explained in detail in [10].

After the initial population has been created, the algorithm
is executed generation after generation until certain termina-
tion criterion has been met. Then, the best solution found
is selected. For example, a termination criterion may state
that a run must terminate when a pre-specified maximum
number G of generations have been run, whereas a result
designation criterion may be to choose the best individual in
the population of the generation at termination time as the
result of the whole run.

In each generation, each individual’s fitness is evaluated,
selecting probabilistically the best ones in the population
based on some selection method (proportionate, tournament,
rank-based selection, etc.), in order to apply reproduction,
crossover, and mutation. Each operator is applied based on
a certain probability. Reproduction is achieved by simply
copying an individual from the current population into the
next generation. In the crossover operation a crossover point
is randomly chosen for each genetic tree. Then, both trees are
split at these points creating four sub-trees that are combined
to create new individuals. When the mutation operator takes
place, a random point (node) is selected in a tree. The
tree having as its root this node, is substituted by a sub-
tree generated randomly at that point. For a more detailed
description of the genetic programming paradigm refer to
[10].

A. A Basic GP System for the Evolution of Rules

Next, the basic GP system for the evolution of rules used in
this work is described. Rules considered here are of the type
IF 〈antecedent〉 THEN 〈consequent〉. The antecedent part of
a rule is formed by logical combinations of conditions on
the values of predictive attributes using the logical connectors
AND, OR, and NOT, whereas the consequent part indicates to
which class a determined instance is assigned. However, each
individual, represented as a tree, codes only the antecedent
part of the rule. It is not necessary to code the consequent part
since the genetic program is executed as many times as there
are different classes. In each run a two class classification
problem is solved and all rules evolved predict the same
class.

The function set includes the logical operators AND, OR,
and NOT, together with the equality operator which relates
each attribute to some nominal value. A binning method

is used in order to turn a numeric attribute into a nominal
(categorical) one. This involves dividing the range of possible
values into sub-ranges called bins. For example, the equal-
width binning process simply divides the range of possible
values into N sub-ranges of the same size. Here, all numeric
attributes are binned using the MDL (minimum description
length) supervised method. The equality operator is applied
over (binned) attributes during the evolution of rules. The
terminal set is conformed by predictive attributes and the
ephemeral constant �. Figure 1 shows an example of the
codification of the antecedent of a rule. The equality operator
takes an attribute as its first argument and a nominal value as
its second argument. A logical operator may take as any of its
arguments another logical operator or the equality operator.
This structure is preserved through crossover and mutation
operators.

= =

LSTDIS

AND

C1 B2

Fig. 1. Representation of an individual for rule discovery using GP,
corresponding to the rule IF (DIS = C1) AND (LST = B2) THEN
MEDV = High, where C1 and B2 represent the intervals (2, 5] and (6.5, 9],
respectively.

We evaluate the quality of a rule by using an estimation
value for precision and support. The precision value is
calculated as the ratio between the number of instances to
which the rule is applied and predicts correctly over the
number of instances to which the rule is applied. Let R1
be a rule that predicts class c1, A the set of instances which
belong to class c1, and B the set of instances to which rule R1
is applicable. Then, the precision of R1 is given by equation
1.

Precision(R1) =
|A ∩ B|

|B|
(1)

That is to say, precision is the probability that the rule
classifies correctly the instances to which it is applied. The
support value is the ratio between the number of instances
to which the rule is applied and predicts correctly over the
total number of instances in the class corresponding to that
rule. Support is calculated according to equation 2.

Support(R1) =
|A ∩ B|

|A|
(2)

That is to say, given an instance of the class c1, support is the
probability rule R1 has of being applicable to this instance.
The fitness function can be established as an arithmetic equa-
tion including precision and support values. For example, we
can use the measure Fβ defined by equation 3, where β is a
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parameter that controls the relative importance between both
values, precision and support.

Fβ =
(1 + β2) support × precision

β2 × precision + support
(3)

So far, the basic GP system for rule discovery has been
described. However, it must be taken into account that tree
size could increase significantly. If we intend to obtain
as a result, a set of comprehensible rules, some kind of
mechanism to control the size of solutions is required. This
can be done by adding a procedure to favor comprehensible
rule discovery, as presented in the next section. The method
proposed comprises a strategy for the selection of a subset
of rules (classifier) from rules obtained as result of the
evolutionary process.

III. THE PROPOSED METHOD

The method proposed in this article has three main fea-
tures:

i. It applies genetic programming to perform a search in
the space of potential solutions.

ii. A procedure allows biasing the search towards regions of
comprehensible hypothesis with high predictive quality.
In each generation, the procedure ranks solutions in the
current population in order to evaluate them (determine
their fitness). Each individual is assigned to the most
probable position in the ranking according to the bino-
mial probability distribution, considering its values of
support, precision, and complexity.

iii. It includes a strategy to produce an optimum subset of
rules (classifier) from the rules obtained as result of
the evolutionary process. The aim is to exploit those
solutions generated during the evolutionary process by
selecting an optimum set of rules.

Figure 2 illustrates the proposed method. The idea is to
evolve classification rules, biasing the search towards com-
prehensible hypothesis regions with high predictive quality
(features i and ii). Then, a selection strategy builds the rule
set corresponding to the final model (classifier) using the best
solutions generated during the evolutionary process (feature
iii). For this work, we chose to run the GP system as many
times as there are classes of the target attribute, obtaining
for each one a set of rules formed by the best solutions
found during evolution. Thus, for k classes, k rule sets are
generated, each of them formed by rules which predict a
specific class. A selection strategy builds the final model
from these sets.

The GP system for the evolution of rules (feature i) was
explained in section II. In the following subsections, the
procedure for biasing the search and the selection strategy
are explained (features ii and iii).

A. Biasing the Search

The proposal of this work includes the application of a
stochastic and adaptive component which ranks solutions
probabilistically considering the support, precision, and com-
prehensibility of individuals in the population (see Figure 2).

Fig. 2. The method proposed. 1) GP system for classification rule evolution.
2) Search bias procedure. 3) Selection strategy.

1) Description: The aim is to bias the search towards
hypothesis regions with high comprehensibility and an ap-
propriate balance between support and precision measures.
Solutions in the population can be ranked by using a sorting
algorithm (e.g., Hoare’s quicksort) applying certain compar-
ison criteria based on three probability values (see below)
which are adaptively adjusted as a function of support, pre-
cision, and complexity values of individuals in the population
of the current generation:

• P Sup: is the probability of using the support factor to
compare two solutions.

• P Conf : is the probability of applying the precision
(confidence) factor to perform the comparison.

• P Leng: is the probability of applying the comprehensi-
bility (complexity, length) factor when comparing two
individuals.

where P Sup + P Conf + P Leng = 1.

After adjusting these probabilities by applying the adaptive
procedure, solutions are ranked. Let rnd be a random
number in the interval [0, 1]. The comparison between
two solutions is carried out either according to support, or
precision, or comprehensibility measures by considering the
above probabilities in the following way:

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 1263



i. If rnd < P Sup then the comparison is based on the
support measure.

ii. If P Sup ≤ rnd < P Sup + P Conf, the comparison is
based on the precision measure.

iii. Otherwise, the comparison is carried out according to
the complexity measure.

According to the comparison criterion, the probability of a
certain hypothesis (X) winning a comparison (against another
hypothesis Y) in the sorting procedure is given by equation
4.

P(X � Y) = P( X.Sup > Y.Sup ) · P Sup

+ P( X.Conf > Y.Conf ) · P Conf

+ P( X.Leng < Y.Leng ) · P Leng (4)

In the adaptive procedure, the values of P Sup, P Conf,
and P Leng are modified according to a parameter named
MaxLeng and to population statistics. MaxLeng is a pa-
rameter defining the threshold from which the complexity
of solutions starts influencing the fitness function. Pop-
ulation statistics correspond to the mean values of sup-
port (Sup Mean), precision (Conf Mean), and complexity
(Leng Mean) of the solutions in the current population or
in a subset of it. This procedure consists in the following
steps:

i. Set P Leng according to equation 5. If P Leng > 0.95,
set P Leng to 0.95.

ii. If Sup Mean > Conf Mean add to P Conf the
amount given by equation 6, else add this amount to
P Sup. If the increased probability is greater than 1 −
P Leng, set it to 1 − P Leng.

iii. Set the probability which wasn’t modified in previous
steps (P Conf or P Sup) to the value of the remaining
probability (P Sup + P Conf + P Leng = 1).

P Leng =

{
0 if Leng Mean ≤ MaxLeng,

1 − MaxLeng2

Leng Mean2 otherwise.
(5)

Increase = |Sup Mean − Conf Mean| (6)

In step 1, if the reference parameter Leng Mean exceeds
the MaxLeng threshold, the value of P Leng is established
by using a quadratic function. Otherwise, the value of P Leng
is set to 0, stating that this probability will have no influence
on comparing two solutions when performing the sorting
process. An upper bound is set to the growth of P Leng to
avoid making all comparisons based on comprehensibility,
hence allowing those solutions with high predictive accuracy
and moderate complexity to obtain an adequate position in
the ranking. Preliminary studies show that better results are
obtained by bounding this probability. In this manner, the
search is biased towards regions with the proper complexity
(comprehensibility).

Next, the values of P Sup and P Conf are calculated
by comparing the reference parameters of the population,

Sup Mean and Conf Mean, in a way such that the probability
associated with the smaller reference parameter value is
increased by an amount proportional to the absolute value
of the difference between the two reference parameters (0 ≤
Sup Mean ≤ 1 and 0 ≤ Conf Mean ≤ 1). This
step insures that an appropriate balance between support and
precision measures is achieved. To summarize, the value of
P Leng must be set first, then the remaining probability is
distributed between P Sup and P Conf, as described above.

2) Analysis: Next we will perform an analysis in order
to achieve a better understanding of the role that the prob-
abilities play on ranking solutions. For this, we consider a
hypothetical algorithm for ranking solutions. Given P Sup,
P Conf, P Leng, and the values of support, precision, and
complexity of individuals in the population, we intend to de-
termine the probability a hypothesis X has of being assigned
to the ith position in the ranking of solutions. Let X and
Y be two hypothesis in the population selected at random.
According to the comparison criterion, the probability of a
hypothesis winning a comparison in the sorting procedure is
given by equation 4.

In a population Pop of size N, the probability that hy-
pothesis X wins a comparison according to some measure
m ∈ {support, precision, complexity} is given by the ratio
between the number of instances in the population for which
X is better relative to the m measure over N − 1, as it is
shown in equation 7.

P(X.m > Y.m) =
|{Y’ ∈ Pop : X.m > Y’.m}|

N − 1
(7)

To simplify this analysis, we consider a ranking procedure
(establishing a partial order) that, even if not efficient, is
useful in order to carry out the analysis. This procedure
partially sorts elements in an array A of size N, performing
the following steps until a ranking position has been assigned
to every element:

i. Choose an element X from A to which a ranking position
has not yet been assigned and compare it (according to
the criterion mentioned) against all other elements in A.
Let i be the number of comparisons won (i.e., with a
positive result).

ii. Assign X to the ith position in the ranking, assuming
that higher positions correspond to better solutions.

The first step of the algorithm above presents certain
features which may lead to believe that it is a binomial
experiment. However, the outcomes of trials (comparisons)
are dependent events, since the probability P of success in
equation 4 may vary from one trial to another. In preliminary
experiments, on running step 1 of the algorithm several times
(for an element X) and counting the amount of comparisons
won, it was observed that the data distribution corresponding
to the number of comparisons won has approximately the
shape of a binomial distribution. Then experiments were
performed (for several populations and different values of
P Sup, P Conf, and P Leng generated randomly) in order to
check whether such data distribution could be approximated
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by a binomial probability distribution. According to results of
experiments carried out applying the Chi-square goodness-
of-fit test (with a significance level α of 0.05), we concluded
that the probability of an element X being successful in i
comparisons can be approximated by the binomial probabil-
ity distribution1. The formula for the binomial probability
distribution is shown in equation 8.

P(i) =
n!

i!(n − i)!
· piq(n−i) (8)

where p is given by equation 4 and q = 1 − p.
In this partial sorting algorithm, the position of an element

X in the ranking is determined by the number of comparisons
won. Then, the probability an hypothesis X has of being
assigned to the ith position in the ranking of solutions can
be approximated by the binomial probability distribution (eq.
8). Finally, given an element X, the ranking position to which
it will more probably be assigned is given by the expected
value of the binomial distribution μ = p ·n where n = N−1.

3) Ranking Based on the Binomial Probability Distribu-
tion: From the previous analysis it is possible to derive
a procedure for ranking solutions. This procedure assigns
to each element X a position calculated according to the
expected value μ = p · (N−1), where p is given by equation
4 and N is the population size.

Let Y be an individual in the population selected at
random. The position of each individual X in the ranking
is obtained by performing the following steps:

i. Calculate P(X.Sup > Y.Sup), P(X.Conf > Y.Conf) and
P(X.Leng < Y.Leng) according to equation 7.

ii. Calculate P(X � Y) according to equation 4.
iii. Assign X to the most probable position according to:

Pos(X) = P(X � Y) · (N − 1).

Results reported in this article are obtained using the
ranking based on the binomial distribution, as a means to
bias the search towards regions of comprehensible rules with
high predictive quality.

B. Selection Strategy and Classifier Construction

As mentioned earlier, the selection strategy builds a classi-
fier from rules obtained from an evolutionary process. In this
work, a GP system is run as many times as there are classes,
obtaining a rule set for each class. Each set will be composed
of the best rules generated during the evolutionary process.
Then the selection strategy builds the final model (classifier)
from these sets. It begins by forming a set choosing the
best rule in each set corresponding to a particular class.
Then, the remaining rules are progressively evaluated in order
to determine whether they will be included in the set. On
evaluating the inclusion of a rule, the strategy considers
if the predictive quality of the rule set is improved. The
maximum size of the rule set comprising the final model
must be specified, so as to bound its complexity. This is
why we must consider whether or not the inclusion of a new

1Goodness-of-fit test details are too lengthy to be given here, but can be
provided on request.

rule will cause the size of the set to exceed the maximum. If
the maximum will not be exceeded, it is evaluated whether
the rule improves the predictive quality of the rule set. If
it decreases the error percentage, it is added to the set;
otherwise it is not. If the maximum will be exceeded, the
idea is to evaluate all possible sets that may be formed on
replacing a rule in the set with the new rule, and then select
the set with lower percentage of error. Let A1 . . . An be rule
sets for classes C1 . . . Cn respectively, and C an initially
empty set. The algorithm builds the final model from these
sets as follows:

i. Add to C the best hypothesis in each set A1 . . . An.
ii. While not every rule in

⋃n

i=1 Ai has been considered do:

a. Select a rule in
⋃n

i=1 Ai not yet considered for eval-
uation.

b. Evaluate its inclusion in C.

iii. Return C as the result.

The final model will be formed by a subset of rules in⋃n

i=1 Ai properly combined and not necessarily by those
with the highest predictive quality (in

⋃n

i=1 Ai). The above
strategy has been used with good results for experiments
reported in section IV.

IV. EXPERIMENTAL RESULTS

This section presents a comparative study of the method
proposed, named REC (Rule Evolution for Classifiers), and
the algorithm C5.0. Also, a study of the influence of the
MaxLeng parameter over predictive quality and complexity
of rules obtained is carried out.

The application problems (data sets) considered in the
experiments are Breast Cancer (BC), German Credit (GC),
and Boston Housing (BH). Instances in BC data set consist
of visually assessed nuclear features of fine needle aspi-
rates (FNAs) taken from patients’ breasts. The classification
problem is to determine whether a sample is benign or
malignant. Each instance is composed of a sample code
number, 9 predictive attributes (taking values in the interval
1 to 10) and the target attribute. There are 699 instances.
This breast cancer database comes from the University of
Wisconsin Hospitals, Madison (collected by Dr. William H.
Wolberg) [11]. The German Credit data set classifies people
described by a group of attributes as good or bad credit risks.
There are 20 predictive attributes (7 numerical and 13 cat-
egorical) and 1000 instances. Some predictive attributes are
credit amount, purpose, etc. Boston Housing classification
problem consists in predicting the housing value (numerical
value binned into three intervals) from information reflecting
housing conditions (amount of rooms, crime rate, etc.).
The data set has 13 continuous attributes (including the
“class” attribute “MEDV”), 1 binary-valued attribute and 506
instances. Instances reflect housing conditions in the suburbs
of the City of Boston. Some attributes are CRIM (crime rate),
DIS (weighted distances to five Boston employment centres),
etc. For a detailed description of these data sets refer to [9].

Comprehensibility is of utter importance within the data
mining context. Therefore, the main point of this work is

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 1265



to obtain rules that are comprehensible to the user. In this
article we use structural complexity (length) to approximate
rule complexity. This is done by counting the number of logic
connectives (in {OR, AND, NOT }), attributes (variables),
and terminals (nominal or numerical values) in the antecedent
part of the rule.

A classifier is represented as a set of if-then rules. The next
subsection explains the behavior of classifiers on classifying
instances and the measures used to evaluate them. Then, in
subsection IV-B, the main results are presented.

A. Evaluation and Use of Classifiers

1) Evaluation Measures of Rule Sets: Classifiers are
evaluated by two performance evaluation measures. When
all classification errors have the same cost, the measure
of evaluation used is the error rate, calculated as the ratio
between the number of misclassified instances over the total
number of instances used in evaluation (% Error = #Errors
/ #Instances). Here, the misclassification cost is of 1. When
the cost associated with a classification error depends on the
class the model predicts and the true class of the misclassified
instance, the measure used is the average misclassification
cost. For this, first the total cost is calculated by adding up the
misclassification costs associated to each instance (using the
confusion matrix corresponding to the application problem).
Then, the average cost is calculated as the ratio between the
total cost over the number of instances used in evaluation
(Average Cost= Total Cost / #Instances). In both cases, if
the predicted class is correct, its cost is taken to be 0.

2) Handling Instances with Unknown Attribute Values:
To an instance with unknown value of the X attribute, it is
assigned the average value (if numeric) or the most frequent
value (if nominal) of X in the training set. In this way,
instances in training and test sets are completed.

3) Instance Classification: On rule set evaluation, an
instance is classified according to the following cases:

• There is at least one rule applicable to the instance.
Among applicable rules, it is chosen the one with higher
precision value and the instance is assigned to the class
this rule predicts.

• None of the rules apply to the instance. In this case the
instance is assigned to the class corresponding to the
rule with the least value of support.

This choice is reasonable from the viewpoint of probabil-
ities. According to equation 1, precision is the probability
that the rule classifies correctly the instances to which it is
applied. Then, if at least one rule is applicable to the instance,
the rule chosen according to this measure is the one with
the highest probability of correctly classifying this instance
(from all applicable rules).

On the other hand, according to equation 2, given an
instance of the class c1, support is the probability rule R1
has of being applicable to this instance. Then 1 − support
is the probability rule R1 has of not being applicable to
this instance. Thus, 1 − support is the probability of R1
misclassifying this instance (assuming that, once a rule that

correctly describes a class c1 is obtained, instances to which
this rule is not applicable do not belong to this class). Then,
if none of the rules apply, the instance is assigned to the
class corresponding to the rule with the highest probability
of misclassifying this instance.

B. Main Results

In this work, a comparative study of the method pro-
posed, named REC (Rule Evolution for Classifiers), and
the algorithm C5.0, is carried out. The data sets used in
these experiments are Breast Cancer (BC) and German Credit
(GC). In all experiments, the selection method based on
linear ranking proposed by Baker [12] is applied. Individuals
with the highest values of Fβ (see equation 3) in any
generation are designated as the result of a GP system run.
These individuals form the rule set corresponding to a class.

REC system parameter values for Breast Cancer (BC)
and German Credit (GC) problems were set as follows:
population size, 152; number of generations, 90; crossover
probability, 0.95; mutation probability, 0.2; MaxLeng, 5;
maximum number of rules obtained for each class, 40; and
maximum complexity allowed for rules in the final model,
33. The β parameter was set to 0.7 for BC and to 0.2 for
GC. The maximum number of rules forming the classifier
was of 9 for BC and 4 for GC. These values were adjusted
through several runs.

Parameters for C5.0, were set according to its authors’
recommendations in [8], as follows: For both problems,
Global pruning, Pruning CF, and Minimum cases were left to
default values, Winnow attributes option was not used, and
Boost option was set to 1 and 10. Subsets of values option
was used only for BC problem, in order to obtain better
results. For a detailed description of these parameters, refer
to [8]. In the appendix, we give an example of a classifier
obtained with REC system for the German Credit data set.

Table I shows the best results obtained with both methods.
According to statistical tests carried out with a sample size
N = 40 and a significance level α = 0.05, the results
presented in Table I are statistically significant. Column
“COM” reports the complexity of the classifier, and column
“TIME” reports run time (seconds). Complexity is calculated
by multiplying the amount of rules in the classifier by the
average length of rules. In GC problem the cost associated
with a classification error depends on the class the model
predicts and the true class of the misclassified instance, on
the other hand in BC all classification errors have the same
cost. Thus, column “E-AC” corresponds to the error rate
for BC and to the average cost for GC problem. For C5.0
which uses a boosting technique, results are shown separated
by a vertical slash (“|”) and correspond to 1 and 10 trials,
respectively. The authors state that, trials over numerous data
sets (large and small) show that on average 10-classifier
boosting reduces the error rate for test cases by about 25
% [8].

It can be seen from the “E-AC” column that, for both
problems, the classifiers generated with the proposed method
(REC) have a better predictive quality than those obtained
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TABLE I

RESULTS OBTAINED WITH REC AND C5.0 FOR BREAST CANCER

(BC) AND GERMAN CREDIT (GC) APPLICATION PROBLEMS

DataSet/
Method

REC C5.0

E-AC COM TIME E-AC COM TIME

BC 2.95 121.9 14.02 4.9 | 4.2 14.7 | 411.4 0.0 | 0.1

GC 0.48 17.2 17.7 0.66 | 0.57 26.2 | 530.8 0.1 | 0.4

with C5.0. Even though the predictive quality of C5.0
classifiers improves with 10 trials, it still remains under that
of REC system classifiers.

Regarding model comprehensibility, both approaches ob-
tain classifiers with a complexity such that it allows for
an adequate understanding. However, on running C5.0 with
10 trials, the complexity of the obtained models increases
notably (making them very difficult to understand), without
excelling REC system’s classifiers predictive quality.

On the other hand, C5.0 takes much less time to build
the classifier than the proposed approach. This was to be
expected, given that REC applies an evolutionary algorithm
to carry out the search in the space of potential solutions.
Nevertheless, REC makes up for this disadvantage by having
a better predictive quality.

It is worth to emphasize that with REC system it was only
necessary to modify two parameter values in order to obtain
good solutions for both problems (BC & GC).

C. Analysis of the MaxLeng Parameter

In this subsection we study the influence of the MaxLeng
parameter over predictive quality and complexity of rules
obtained, and its influence on CPU time required to obtain
them.

The data set used in these experiments is the BostonHous-
ing. Attribute selection, together with the binning process
and selection of the training and test set, are performed
with the data mining tool WEKA (Waikato Environment
for Knowledge Analysis) [13]. Attributes are binned into
intervals of equal length allowing the binning method to
find the optimum amount of bins, except for the objective
attribute, which is binned arbitrarily into three intervals of
equal length, representing high, medium, and low housing
prices. The Boston Housing data set is divided as follows:
66% of the data are chosen randomly for training, the
remaining data conform the testing set.

We measure predictive quality by using the Fβ measure
defined by equation 3. In this case, β was set to 1, giving
the same importance to support and precision measures. On
Figure 3 we can observe that the predictive quality does

not vary significantly for different values of the MaxLeng
parameter. On the other hand, there is a significant difference
between classes, showing that some classes are more difficult
to predict than others.
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Fig. 3. Influence of MaxLeng on predictive quality.

Figure 4 shows results for complexity and CPU time. With
respect to Medium and High classes, it can be seen (left side
of Figure 4) a clear increment on the complexity of the model
obtained on incrementing the values of MaxLeng. However,
for Low class, the variation in the complexity of solutions
obtained is not meaningful. This is due to the low complexity
solutions found in earlier generations exceeding in predictive
quality the more complex solutions found in later generations
of the evolutionary process. However, in all cases, average
population complexity increments. Thus, this parameter bi-
ases the search towards regions where there are hypothesis
with a certain complexity. On the right (Figure 4) it can be
observed that CPU time tends to increase on incrementing
MaxLeng values. This last result is a consequence of the
increment in the average structural complexity of the whole
population.

V. CONCLUSIONS AND FUTURE WORK

In this article, a method to build classifiers based on
rule evolution within the data mining framework has been
proposed. The method has three components: an evolutionary
algorithm to perform a search in the space of hypothesis,
a procedure that biases the search toward space regions of
comprehensible hypothesis with high predictive quality, and
a strategy for building an optimum rule set from solutions
obtained during the evolutionary process.

In this work we apply GP to carry out a search for
solutions, given that it is suitable to evolve rules of vari-
able length. The bias procedure intends to balance support,
precision, and complexity measures in the evolution of
classification rules. The aim is to direct the search towards
regions with the desired characteristics, i.e., comprehensible
hypothesis with a high predictive accuracy. The final model
is built by combining properly the rules evolved.

According to the results presented in section IV, it can be
concluded that the proposed approach is capable of focusing
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Fig. 4. Influence of MaxLeng on solution complexity and CPU time.

the search on regions where hypothesis have a structural
complexity such that allows for an appropriate understanding.
Improvements achieved with respect to C5.0 are significant.
Results of the comparative study show the advantages of
using the method proposed (REC), given that classifiers
obtained have better predictive quality than those obtained
using C5.0. For all problems, when C5.0 is run with 1 trial
the classifiers obtained with both methods are of similar
structural complexity. On the other hand, on running C5.0
with 10 trials (as recommended by its authors) the predictive
quality of the models improves, but their complexity is
noticeably increased and still their predictive quality remains
below the predictive quality of models generated with REC
system.

Although run time taken for the evolution of rules is
reasonable, it could be reduced by parallel approaches. For
example, there could be several processors, each evolving
rules of a different class.

An additional advantage of REC system is that it is
possible to set the complexity and structure of the classifier
to be built. This can be done by parameters determining
maximum rule complexity and maximum number of rules in
the model. Finally, results demonstrate the high performance
of the method proposed to build comprehensible classifiers
with high predictive quality.

APPENDIX

CLASSIFIERS GENERATED WITH REC SYSTEM

This appendix shows a classifier generated for the German
Credit problem approached in section IV. In this problem
Attribute 1 represents the status of existing checking ac-
count; Attribute 14, other installment plans; Attribute 4,
the purpose; and Attribute 2, duration in months. The rule
set is:

Rule 1. IF ( Attribute 1 = A14 ) AND
( Attribute 14 = A143 ) THEN Good

Rule 2. IF Attribute 4 = A40 THEN Bad

Rule 3. IF 43.2 < Attribute 2 ≤ 48.8 THEN Bad

Rule 4. IF Attribute 1 = A11 THEN Bad
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