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Abstract—Network protocols in layered architectures have his-
torically been obtained on an ad-hoc basis, and much of the recent
cross-layer designs are conducted through piecemeal approaches.
Network protocols may instead be holistically analyzed and sys-
tematically designed as distributed solutions to some global op-
timization problems in the form of generalized Network Utility
Maximization (NUM), providing insight on what they optimize
and structures of the network protocol stack. This paper presents
a short survey of the recent efforts towards a systematic under-
standing of “layering” as “optimization decomposition”, where
the overall communication network is modeled by a generalized
NUM problem, each layer corresponds to a decomposed subprob-
lem, and the interfaces among layers are quantified as functions
of the optimization variables coordinating the subproblems. Fur-
thermore, there are many alternative decompositions, each leading
to a different layering architecture. Industry adoption of this uni-
fying framework has also started. Here we summarize the current
status of horizontal decomposition into distributed computation
and vertical decomposition into functional modules such as con-
gestion control, routing, scheduling, random access, power con-
trol, and coding. Key messages and methodologies arising out of
many recent work are listed. Then we present a list of challenging
open issues in this area and the initial progress made on some of
them.
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I. OVERVIEW

Layered architectures form one of the most fundamental and

influential structures of network design. It adopts a modularized

and often distributed solution approach to network coordination

and resource allocation. Each layer controls a subset of the de-

cision variables, and observes a subset of constant parameters

and the variables from other layers. Intuitively, layered archi-

tectures enable a scalable, evolvable, and implementable net-

work design while introducing potential risks to manageability

of the network. There are clearly more than one way to “di-

vide and conquer” the network design problem. From a data-

plane performance point of view, some layering schemes may

be more efficient or more fair than others. Focusing on such

resource allocation functionalities and using only performance

metrics, this paper examines the question of “how to” and “how
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not to” layer. The limitations of our focus, in terms of semantics

functionalities and “network X-ities” metrics, will be discussed

at the end of the paper.

Each layer in the protocol stack hides the complexity of the

layer below and provides a service to the layer above. While

the general principle of layering is widely recognized as one

of the key reasons for the enormous success of data networks,

there is little quantitative understanding to guide a systematic,

rather than an ad hoc, process of designing layered protocol

stack for wired and wireless networks. One possible perspec-

tive to rigorously and holistically understand layering is to in-

tegrate the various protocol layers into a single coherent theory,

by regarding them as carrying out an asynchronous distributed

computation over the network to implicitly solve a global opti-

mization problem. Different layers iterate on different subsets

of the decision variables using local information to achieve in-

dividual optimality. Taken together, these local algorithms at-

tempt to achieve a global objective. Such a framework of “lay-

ering as optimization decomposition” exposes the interconnec-

tion between protocol layers and can be used to study rigorously

the performance tradeoff in protocol layering, as different ways

to modularize and distribute a centralized computation. Even

though the design of a complex system will always be broken

down into simpler modules, this theory will allow us to system-

atically carry out this layering process and explicitly trade off

design objectives.

The key idea in “layering as optimization decomposition” is

as follows. Different decompositions of an optimization prob-

lem, in the form of a generalized Network Utility Maximization

(NUM), are mapped to different layering schemes in a commu-

nication network, with each decomposed subproblem in a given

decomposition scheme corresponds to a layer, and functions of

primal or Lagrange dual variables coordinating the subprob-

lems correspond to the interfaces among the layers. Since dif-

ferent decompositions lead to alternative layering architectures,

we can also tackle the question “how to and how not to layer”

by investigating the pros and cons of decomposition techniques.

Furthermore, by comparing the objective function values under

various forms of optimal decompositions and suboptimal de-

compositions, we can seek “separation theorems” among lay-

ers: conditions under which layering incurs no loss of opti-

mality. Robustness of these separation theorems can be fur-

ther characterized by sensitivity analysis in optimization theory:

how much will the differences in the objective value (between

different layering schemes) fluctuate as constant parameters in

the generalized NUM formulation are perturbed.

The mentality of “network as an optimizer” and “protocol

as a distributed solution” to some global optimization problem
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(in the form of the basic NUM) has been successfully tested in

trials for Transmission Control Protocol (TCP) [20]. The key

innovation from this line of work [22], [27], [28], [36], [37],

[39], [46] is to view TCP/IP network as an optimization solver

and each variant of congestion control protocol as a distributed

algorithm solving a specified basic NUM, where the objective

is the sum of source utilities as functions of rates, the con-

straints are linear flow constraints, and optimization variables

are source rates. Other recent results also show how to reverse

engineer Border Gateway Protocols (BGP) as solving the Sta-

ble Path Problem [16], and contention-based Medium Access

Control (MAC) protocols as game-theoretic selfish utility max-

imization [31], [50]. Starting from a given protocol originally

designed based on engineering heuristics, reverse engineering

discovers the underlying mathematical problems being solved

by the protocols and demonstrates the application of derived

insights through forward engineering improvements of the pro-

tocols.

These reverse engineering successes provide one of the justi-

fications to employ generalized versions of NUM for systematic

cross-layer design. Furthermore, utility of allocated resources

to end users and elasticity of application traffic can both be

modeled through general utility functions. As optimization’s

objective, utility functions provide a metric to define optimality

of resource allocation efficiency, while different shapes of util-

ity functions lead to optimal resource allocations that satisfy

some definition of fairness (e.g., α-fair utilities parameterized

by α > 0: U(x) = (1 − α)−1x1−α [39] leads to α-fair re-

source allocation). In general, utility functions can be coupled

across the users. They may depend on not just rates, but also

other metrics such as reliability, latency, jitter, and energy.

While the application needs give rise to the objective func-

tion, i.e., network utility to be maximized, restrictions in the

communication infrastructure are translated into many con-

straints of a generalized NUM problem. The resulting prob-

lem may be a very difficult nonconvex optimization with inte-

ger constraints. These generalized NUM problems put the end

user utilities at the “driver’s seat” for network design. For ex-

ample, benefits of innovations in physical layers through better

modulation and coding schemes are now characterized by the

enhancement to applications rather than just the drop in bit er-

ror rates, which the users do not directly observe. An optimal

solution to a generalized NUM formulations automatically es-

tablishes the benchmark for all layering schemes. Indeed, lay-

ering is a human engineering effort, the problem itself does not

have any pre-determined layering architecture.

How to attain an optimal solution to a generalized NUM in

a modularized and distributed way then becomes an overarch-

ing question. Vertical decompositions across modules and hor-

izontal decompositions across disparate network elements can

be conducted systematically through the theory of decomposi-

tion for nonlinear optimization. Implicit or explicit message

passing quantifies the amount of information sharing and deci-

sion coupling required for a particular decomposition. There

are many different ways to decompose a given problem, each

of which corresponds to a different layering architecture. Even

a different representation of the same NUM problem can lead

to different decomposability structures even though the optimal

solution remains the same. These decompositions, i.e., layering

schemes, have different characteristics in efficiency, robustness,

asymmetry of information and control, and tradeoff between

computation and communication. Some are “better” than oth-

ers depending on the criteria set by the network users and man-

agers. A systematic exploration in the space of alternative de-

compositions is possible, where each particular decomposition

represents a holistically designed protocol stack.

Given the layers, crossing layers is tempting. For example,

layers can be crossed for wired or wireless networks in at least

the following ways:

• Information may be passed from one layer to another. For

example, a TCP proxy at the base station of a wireless cel-

lular network may be informed by the physical layer that

a packet loss is due to channel fading and not congestion.

• Information from one layer may be used in another layer to

either adapt its existing algorithm or create new diversity.

For example, if the medium access layer informs the rout-

ing layer about its performance, multipath routing may be

used to provide spatial diversity.

• Tasks may be jointly accomplished across the layers. For

example, joint routing in the network layer and data com-

pression in application layer may leverage the spatial re-

dundancy in the sensor network measurements to reduce

the network traffic load.

• Tasks may be re-divided among the layers. For example,

error correction is performed in different forms in each

of the application, transport, network, link, and physical

layers. The task of ensuring the accuracy of the received

bits may be re-allocated across the layers and some error

checking functions may be removed from certain layers.

As evidenced by the large and ever growing number of papers

on cross layer design over the last few years, we expect that

there will be no shortage of cross layer ideas based on piece-

meal approaches. The growth of the “knowledge tree” on cross

layer design has been exponential. However, any piecemeal

design jointly over multiple layers does not bring more struc-

tured thinking process than the ad hoc design of just one layer.

What seems to be lacking is a level ground for fair compari-

son among the variety of cross layer designs, a unified view on

how to and how not to layer, basic principles rigorously quan-

tified, and fundamental limits on the impacts of layer-crossing

on network performance and robustness metrics.

“Layering as optimization decomposition” provides a candi-

date for such a unified framework. It attempts at shrinking the

“knowledge tree” on cross layer design rather than growing it.

It is important to note that “layering as optimization decom-

position” is not the same as the generic phrase of “cross-layer

optimization”. What is unique about this framework is that it

views the network as the optimizer itself, puts the end user ap-

plication needs as the optimization objective, provides the glob-

ally optimal performance benchmark, and leads to a systematic

design of decomposed solution to attain the benchmark. Carry-

ing the intellectual thread from “forward engineering” (solve a

given problem) to “reverse engineering” (find the problem be-

ing solved by a given protocol) one step further to “design for

optimizability”, it may be that the difficulty of solving a partic-

ular set of subproblems also illustrates that the given decompo-
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sition was conducted in a wrong way and suggests that better

alternatives exist.

The power of “layering as optimization decomposition” has

been illustrated through many case studies carried out by vari-

ous research groups in the last couple of years, generating con-

siderable general insights in addition to the specific cross-layer

designs. The summary lists of key messages and methodolo-

gies in the next section illustrate the conceptual simplicity in

this rigorous and unifying framework, which is more important

than any specific cross layer design derived from the frame-

work, such as some examples summarized in the Appendix.

Industry adoption of “layering as optimization decomposi-

tion” has already started. For example, insights from reverse-

engineering TCP has lead to an improved version of TCP im-

plemented over the last several years: FAST (Fast AQM Scal-

able TCP) [13], [20]. Putting end-user application utilities as

the objective function has lead to a new way to leverage in-

novations in the physical and link layers beyond the standard

metrics such as bit error rate, e.g., in “FAST Copper” Project

(here FAST stands for Frequency, Amplitude, Space, Time) for

an order-of-magnitude boost to rates in fiber/DSL broadband

access systems [14].

II. CURRENT STATUS

A. Network Utility Maximization

The basic NUM problem is the following formulation [22],

known as monotropic programming and studied since 1960s.

TCP variants have recently been reverse engineered to show

that they are implicitly solving this problem, where source rate

vector x is the only optimization variables, and routing matrix

R and link capacity vector c are both constants:

maximize
∑

s Us(xs)
subject to Rx � c.

(1)

Utility functions Us are often assumed to be smooth, increas-

ing, concave, and depends on local rate only, although recent

investigations have removed some of these assumptions for ap-

plications there they are invalid. Utility functions can be picked

based on any of the following five grounds: reverse-engineering

(a given protocol description implicitly dictates the underlying

utility function), user perception behavior models, application

traffic elasticity, efficiency of resource allocation, and fairness

among competing users.

Many of the papers on “layering as optimization decompo-

sition” are special cases of the following generic problem [5],

one of the possible formulations of a generalized NUM for the

entire protocol stack:

maximize
∑

s Us(xs, Pe,s) +
∑

j Vj(wj)
subject to Rx ≤ c(w,Pe),

x ∈ C1(Pe), x ∈ C2(F),
R ∈ R, F ∈ F , w ∈ W.

(2)

Here, xs denotes the rate for source s and wj denotes the phys-

ical layer resource at network element j. The utility func-

tions Us and Vj may be any nonlinear, monotonic functions.

R is the routing matrix, and c are the logical link capacities

as functions of both physical layer resources w and the de-

sired decoding error probabilities Pe. The issue of signal in-

terference and power control can be captured in this functional

dependency. The rates must also be constrained by the inter-

play between channel decoding reliability and other error con-

trol mechanisms like ARQ. This constraint set is denoted as

C1(Pe). The issue of rate-reliability tradeoff and coding is cap-

tured in this constraint. The rates are further constrained by

the medium access success probability, represented by the con-

straint set C2(F) where F is the contention matrix. The issue

of packet collision and medium access control is captured in

this constraint. The sets of possible physical layer resource al-

location schemes, of possible scheduling or contention based

medium access schemes, and of single-path or multi-path rout-

ing schemes are represented by W,F ,R, respectively. The op-

timization variables are x,w,Pe,R,F. Holding some of the

variables as constants and specifying some of these functional

dependencies and constraint sets will then lead to a special class

of this generalized NUM formulation.

A deterministic fluid model is used in the above formula-

tions. Stochastic network utility maximization is an active re-

search area, as discussed in Section III, where stochastic mod-

els are imposed at session, packet, channel, and topology levels,

raising new questions such as stochastic stability, average opti-

mality, and outage performance.

Whether it is the basic, general, or stochastic NUM, there are

three steps in the process: first formulate a specific NUM prob-

lem, then devise a modularized and distributed solution follow-

ing a particular decomposition, and finally explore the space

of alternative decompositions that provide a choice of layered

protocol stack and coupling across the layers.

In general, there are two types of objective functions: sum of

utility functions by end users, which can be functions of rate,

reliability, delay, jitter, or power level, and a network-wide cost

function by network operators, which can be functions of con-

gestion level, energy efficiency, network lifetime, or collective

estimation error. Some of these utility functions may not have

an additive structure. Maximizing a weighted sum of all util-

ity functions, which is the focus of this paper, is only one of

the possible formulations. An alternative is multi-objective op-

timization to characterize the Pareto-optimal tradeoff between

the user objective and operator objective. Another formulation

is game-theoretic between users and operators, or among users

or operators themselves.

B. Reverse Engineering of Individual Layers

In the terminology of the standard seven layer reference

model, it is well-known that physical layer algorithms try to

solve the data transmission problem formulated by Shannon:

maximizing data rate subject to vanishing error probability con-

straints. Recent progress have put protocols in layers 2-4 of

the standard reference model on a mathematical foundation as

well:

• The congestion control functionality of TCP has been re-

verse engineered to be implicitly solving the basic NUM

problem (1). While heterogeneous congestion control

protocols do not solve an underlying NUM problem, its
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equilibrium and dynamic properties can still be analyzed

through a vector field representation and Poincare-Hopf

index theorem [51], which show that bounded heterogene-

ity implies global uniqueness and local stability of network

equilibrium.

• IGP of IP routing is known to be variants of shortest path

routing solvers, and the policy-based routing protocol in

BGP has recently been modeled as the solution to the Sta-

ble Path Problem [16].

• Scheduling based MAC protocols are known to be solving

variants of maximum weight matching, and random access

(contention based MAC) protocols have recently been re-

verse engineered as a non-cooperative selfish utility maxi-

mization game [31], [50].

C. Forward Engineering: Cases of Systematic Cross-layer De-
sign

Following is a non-exhaustive list of some of the recent publi-

cations using “layering as optimization decomposition” 1, with

four examples to be explained in some detail in the Appendix.

In all these cases, a NUM problem that is more complicated

than the basic NUM represents a more general networking

problem encompassing more than congestion control, and some

functions of the Lagrange dual variables act as the “layering

variables”.

• Jointly optimal congestion control and adaptive coding or

power control [5], [30]

• Jointly optimal congestion and contention control [4],

[21], [32], [52], [58], [59]

• Jointly optimal congestion control and scheduling [12]

• Jointly optimal routing and scheduling [26]

• Jointly optimal routing and power control [42], [55]

• Jointly optimal congestion control, routing, and schedul-

ing [3], [34]

• Jointly optimal routing, scheduling, and power control [9],

[54]

• Jointly optimal routing, resource allocation, and source

coding [57]

• TCP/IP interactions [53], [18] and jointly optimal conges-

tion control and routing [23]

• Network lifetime maximization [40]

D. Alternative Decompositions

The basic idea of decomposition is to divide the original large

problem into smaller subproblems, which are then coordinated

by a master problem by means of some kind of signalling. Most

of the existing decomposition techniques can be classified into

primal decomposition and dual decomposition methods 2. The

former is based on decomposing the original primal problem,

whereas the latter based on decomposing the Lagrange dual of

the problem. Primal decomposition methods have the interpre-

tation that the master problem directly gives each subproblem

an amount of resources that it can use; the role of the master

1We apologize in advance for any references we may have missed and would
appreciate any information about other citations.

2This is not to be confused with primal-dual interior-point algorithm, or pri-
mal driven network control, or primal penalty function approach.

problem is then to properly allocate the existing resources. In

dual decomposition methods, the master problem sets the price

for the resources to each subproblem which has to decide the

amount of resources to be used depending on the price; the role

of the master problem is then to obtain the best pricing strat-

egy. Primal decomposition and dual decomposition can in fact

be inter-changed by introducing auxiliary variables [43].

Almost all the papers in the vast, recent literature on NUM

use a standard dual-based distributed algorithm. Contrary to

the apparent impression that such a decomposition is the only

possibility, there are in fact many alternatives to solve a given

network utility problem in different but all distributed manners

[43], including multi-level and partial decompositions. Each

of the alternatives provides a possibly different tradeoff among

three important considerations: convergence speed, amount and

asymmetry of message passing’s communication overhead, and

architecture of distributed computation. There is no universally

“best” way to distribute the solution process across a network:

which alternative is the most desirable depends on the specific

problem formulation and application.

Coupling for generalized NUM can happen not only in con-

straints, but also in the objective function, where the utility

of source s, Us(xs, {xi}i∈I(s)), depends on both its local rate

xs and the rates of a set of other sources with indices in set

I(s). If Us is an increasing function of {xi}i∈I(s), this coupling

models cooperation in a clustered system, otherwise it models

competition such as power control in wireless network or spec-

trum management in DSL. Such coupling in the objective func-

tion can be decoupled [49] by first introducing auxiliary op-

timization variables and consistency equality constraints, thus

shifting coupling in objective to coupling in constraints, then

introducing “consistency prices” to decouple the consistency

constraints. These consistency prices are iteratively updated

through local message passing.

E. Key Messages

More than just an ensemble of specific cross-layer designs

for existing protocol stacks, “layering as optimization de-

composition” is a mentality that views networks as optimiz-

ers, a common language that allows researchers to quantita-

tively compare alternative network architectures, and a suite of

methodologies that facilitates a systematic design approach for

modularized resource allocation. Some of the key messages and

methodologies that have been obtained from many case studies

are outlined in the following lists.

• Protocols in layers 2,3,4 can be reverse engineered. Re-

verse engineering in turn leads to better design in a rigor-

ous manner.

• There is a unifying approach to cross-layer design, as sum-

marized in Section I of this paper.

• Loose coupling through “layering price” can be optimal,

and congestion price (or queuing delay, or buffer occu-

pancy) is often the right “layering price” for stability and

optimality, with important exceptions as well.

• There are many alternatives in decompositions, leading to

different divisions of tasks across layers and even different

time-scales of interactions.
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• Convexity of the generalized NUM is the key to devising a

globally optimal solution.

• Decomposability of the generalized NUM is the key to de-

vising a distributed solution.

F. Key Methodologies
• Dual decomposition for linear coupling constraints.

• Consistency pricing for coupled objective functions.

• Descent lemma for proof of convergence of dual-based

distributed subgradient algorithm.

• Stability proof through Lyapunov function construction,

singular perturbation theory, and passivity argument.

• Log change of variables to turn multiplicative coupling

into linear coupling, and to turn nonconvex constraints to

convex ones.

• Sufficient conditions on curvature of utility functions for

it to remain concave after a log change of variables.

• Construction of conflict graph, contention matrix, and

transmission modes in contention based MAC design.

• Maximum differential congestion pricing for node-based

back-pressure scheduling (part of the connections between

distributed convex optimization and stochastic control).

III. OPEN ISSUES

Despite the variety of progress made along this research di-

rection, there remain a number of important open issues as out-

lined in this section under six groups.

A. Modeling Challenges
BGP for inter-AS routing is still difficult to be fully incor-

porated in the generalized NUM framework. Similarly, an

optimization-based, unifying view on wireless ad hoc network

routing is lacking. Much further work remains to be done to

model utility functions in specific applications, especially in-

elastic, real-time applications such as VoIP and streaming me-

dia [19]. In a more refined physical/link layer model, the option

of forwarding rather than re-encoding at intermediate nodes

must be considered, as well as retransmission through ARQ.

B. Transient Behavior Characterization
For certain applications, if the resource allocation (e.g., win-

dow size, signal-to-interference-ratio) for a user drops below a

threshold during the transient, the user may be disconnected. In

such cases, the whole idea of equilibrium becomes meaning-

less. Bounding transient behavior, as well as providing tight

estimates of the rate of convergence for popular iterative, dis-

tributed algorithms, remain under-explored topics.

C. Alternative Decomposition
Even a different representation of the same primal problem

may change the duality and decomposability structures even

though it does not change the optimal solution. It remains an

open issue on how to systematically explore the space of al-

ternative vertical and horizontal decomposition, thus the space

of alternative network architectures, for a given set of require-

ments on rate of convergence, symmetry of computational load

distribution, and amount of explicit message passing.

D. Stochastic NUM

When sessions (i.e., flows, connections, end-users) arrive

and depart, packets come in bursts, channels vary over time,

and topology subject to change, new formulations of stochas-

tic NUM become necessary, presenting new challenges on sta-

bility and performance characterization. Most of the known

results concern stochastic stability and validity of the determin-

istic fluid model, with little characterization on the distribution

of utility induced by the distributions of stochastic models at

various levels.

Session level. For Poisson arrivals of sessions with exponen-

tially distributed file size, [1], [10], [38] showed that, for certain

classes of utility functions under the time-scale separation as-

sumption 3, the stability region of the basic NUM is the largest

possible, which is the capacity region formed by the fixed link

capacities. Then [33], [47] extended this stochastic stability re-

sult to the case without the time-scale separation assumption.

Extensions have recently been carried out to other models [48],

[56], with fluid limits and diffusion approximations proposed as

well [24], [25]. In [35], stochastic stability and optimality (in

the expected sense) for general, constrained convex optimiza-

tion is proved for any concave utilities and without time-scale

separation.

Packet level. There have been two major approaches that ap-

peared over the last two years: translating on-off HTTP ses-

sion utility into transport layer TCP utility (mapping from mi-

croscopic to macroscopic model) [2], and showing many-flow

asymptotical validation of fluid model (justifying the transition

from microscopic to macroscopic model) [11], [45].

Channel level. Channel variations offer both the challenge to

prove stability/optimality for existing algorithms and the abil-

ity to do opportunistic transmission and scheduling. In [3], sta-
bility and optimality are established for dual algorithms under

channel-level stochastic for any convex optimization where the

constraint set has the following structure: a subset of the vari-

ables lie in a polytope and other variables lie in a convex set

that vary according to an irreducible, finite-state Markov chain.

“Layering as optimization decomposition” type of algorithms

that only require instantaneous knowledge of the current chan-

nel state (e.g., queue-lengths) remain stable and optimal (in the

expected sense).

Topology level. Very little has been explored on this topic,

which is important for battery based or highly mobile wireless

ad hoc networks.

E. Nonconvex NUM

Non-zero duality gaps may arise due to a variety of reasons:

integer constraints (e.g., in single path routing, admission con-

trol, scheduling, algebraic coding, constellation size), noncon-

cave utilities (e.g., power efficiency or some empirically veri-

fied utility curves), and constraints describing nonconvex sets.

A nonzero duality gap means that the standard dual-based dis-

tributed subgradient algorithm, and in general dual decompo-

sition approaches, may lead to suboptimal and even infeasi-

ble primal solutions and instability in cross layer interactions.

3Here time-scale separation means that the resource allocation algorithm con-
verges before the number of sessions changes.
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This very difficult problem can be tackled through a combi-

nation of well-established and more recent optimization tech-

niques (e.g., sum-of-squares programming [44] and geometric-

signomial programming [6]). For example, there have been

three recent approaches to solve nonconcave utility maximiza-

tion over linear constraints:

1) [29] proposes a distributed, suboptimal heuristics (for

sigmoidal utilities) called “self-regulating” heuristics,

which is shown to avoid link congestion caused by sig-

moidal utilities. It attains the optimal rate allocation x∗ in

the asymptotic case when the proportion of sources with

nonconcave utilities vanishes.

2) [17] determines optimality conditions for the dual-based

distributed algorithm to converge globally (for all non-

linear utilities). The engineering implication is that ap-

propriate overprovisioning of link capacities will ensure

global convergence of the dual-based distributed algo-

rithm even when user utility functions are nonconcave.

3) [15] develops an efficient but centralized method to com-

pute the global optimum (for a wide class of utilities that

can be transformed into polynomial utilities), using the

sum-of-squares method.

F. Network X-ities

Protocol design and layering architecture are not just for

maximizing the efficiency of performance metrics, such as

throughput, latency, distortion, but also robustness metrics,

such as evolvability, scalability, and manageability. Interactions

among layers introduce the risks of losing robustness against

unforseen demands arising over time or significant growth over

space. Despite the importance in practical network operations,

these network X-ities remain as important yet fuzzy notions,

and a quantified foundation for them is long overdue [8]. In-

tuitively, “design by decomposition” enhances scalability and

evolvability, but may present risks to manageability such as di-

agnosability and optimizability. Quantifying network X-ities

and trading-off network X-ities with performance metrics in

layered protocol stack design is a long-term, challenging di-

rection.

IV. CONCLUSION

“Layering as optimization decomposition” is a unifying

framework for understanding and designing distributed control

and cross-layer resource allocation in wired and wireless net-

works. It has been developed by various research groups over

the last several years, and is now emerging to provide a mathe-

matically rigorous and practically relevant approach to quantify

the risks and opportunities of modifying existing layered net-

work architecture. It shows that network protocols in layers 2,

3, and 4 can be reverse-engineered as implicitly solving some

optimization-theoretic or game-theoretic problems. By dis-

tributively solving generalized NUM formulations through de-

composed subproblems, we can systematically generate layered

protocol stacks. There are many alternatives for both horizontal

decomposition into disparate network elements and vertical de-

composition into functional modules (i.e., layers). While queu-

ing delay or buffer occupancy is often used as the “layering

price”, it may sometimes lead to unstable interactions. A va-

riety of techniques to tackle coupling and nonconvexity issues

have become available. A more detailed survey of the recent

efforts to establish ‘layering as optimization decomposition’ as

a common “language” for systematic network design can be

found in [7].
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V. APPENDIX: CASE STUDIES

Brief summaries of some case studies from our recent publi-

cations are provided to illustrate the ideas in Section II.C.

A. Jointly optimal congestion control and adaptive coding
Adaptive error correction channel coding in physical layer

can change the “pipe sizes” of communication channels, adding

another dimension in the “supply-demand” balance in NUM.

Indeed, the concept of signal quality is absent from the ba-

sic NUM (1). The link “capacities” c in (1) implicitly assume

fixed decoding error probabilities Pe = {Pe,l}. In wireless net-

works, adaptive channel coding (including adaptive control be-

tween diversity-gain and multiplexing-gain in space-time cod-

ing) can change the rate-reliability tradeoff. A link can have a

larger cl and accommodate more flows, by increasing its de-

coding error probability Pe,l, or vice versa. A source may

transmit at a higher rate if the end-to-end signal quality is al-

lowed to degrade, i.e., the end-to-end decoding error probabil-

ity Pe,s ≈ ∑
l∈L(s) Pe,l is larger. Of course, each source’s

utility depends on both rate xs and reliability Pe,s. In [30], we

develop distributed algorithms to obtain the globally optimal

rate-reliability tradeoff in the following NUM, with nonconvex

constraints over variables {xs, Pe,l}:

maximize
∑

s Us(xs, Pe,s)
subject to

∑
s:l∈L(s) xs ≤ cl(Pe,l), ∀l

(3)

where each function cl(Pe,l) represents a nonlinear, generally

nonconcave, and rather complicated dependency of a link’s at-

tainable throughput cl on the desired decoding error probability

Pe,l. We show that, when each link provides the same decoding

error probability for all flows through the link (an “integrated

policy” for dynamic reliability optimization), as in the formu-

lation (3), a new distributed algorithm that uses pricing on both
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rate and reliability can be proved to converge to global optimal-

ity, as long as the channel codes are strong enough. When each

link provides different decoding error probabilities for different

flows (a “differentiated policy”), which expands the model in

(3), the problem becomes a nonconvex optimization with cou-

pling among the terms, even for strong channel codes. Using

various decoupling techniques and log change of variables, con-

vergence to a global optimum can be proved for utility functions

whose curvature is sufficiently negative U
′′
(x) ≤ −U ′(x)/x,

i.e., if the traffic is elastic enough.

B. Jointly optimal congestion and contention control

In [31], we investigate joint end-to-end congestion control

and per-link random access control in ad-hoc wireless net-

works. Using a generalized NUM formulation, we can accom-

modate multi-class services as well as exploit the tradeoff be-

tween efficiency and fairness of resource allocation by adjusting

the types of utility functions. Define Lout(n) as a set of outgo-

ing links from node n, and N I
to(l) as the set of nodes whose

transmission cause interference to the receiver of link l, exclud-

ing the transmitter node of link l. Each node decides to contend

the medium with a persistence probability Pn, with each of its

outgoing link’s contention probability denoted as pl. The effec-

tive link capacity becomes a product form as in the following

generalized NUM with both source rates {xs} and persistence

probabilities {pl, P
n} as optimization variables:

maximize
∑

s Us(xs)
subject to

∑
s:l∈L(s) xs = clpl

∏
k∈NI

to(l)(1 − P k), ∀l
∑

l∈Lout(n) pl = Pn, ∀n

0 ≤ Pn ≤ 1, ∀n
(4)

Despite the inherent difficulties of nonconvexity and non-

separability of the optimization problem, we show that, again

under curvature negativity conditions on utility functions, we

can develop a distributed algorithm, with limited message pass-

ing, that converges to the globally and jointly optimal rate allo-

cation and persistence probabilities. These results can accom-

modate general concave utility function (the special case of log-

arithmic utility function is readily separable as shown earlier

in [52]). Different from the other three sample case studies in

the appendix, it is better to use a primal penalty function ap-

proach rather dual decomposition in this case, the engineering

implication of which is that global congestion control and local

contention control can operate on the same timescale.

C. Jointly optimal congestion control, routing, and scheduling

In multihop ad hoc wireless networks, end-to-end congestion

control, routing, and scheduling among contending links are

coupled. Route choices not only affect congestion control in

the transport layer, but also determine schedulable regions at the

physical layer. In [3], we model contention relations between

wireless links as a conflict graph (first proposed in [41]), which

indicates the set of links that mutually interfere and cannot be

active simultaneously. This determines a feasible rate region Π.

Consider an ad hoc wireless network with a set N of nodes and

a set L of logical links. We assume fixed physical layer resource

allocations so that each logical link l has a fixed capacity cl

when it is active. The feasible rate region at the link layer is the

convex hull of the corresponding rate vectors of independent

sets of the conflict graph. Let xk
i be the flow rate generated at

node i for destination k. Let fk
ij be the amount of capacity of

link (i, j) allocated to the flows on that link for final destination

k. Consider the following generalized NUM in variables {xs}
(where xs is a shorthand for xk

i ) and {fk
ij}:

maximize
∑

s Us(xs)
subject to xk

i ≤ ∑
j:(i,j)∈L fk

ij −
∑

j:(j,i)∈L fk
ji, ∀i, j, k

f ∈ Π.
(5)

Dual decomposition of the above joint congestion control,

routing, and scheduling NUM then leads to a jointly optimal

cross-layer design where a source adjusts its sending rate based

on the congestion prices generated locally at the node, the back-

pressure from the differential price of neighboring nodes is used

to perform optimal scheduling, and routing is automatically

generated by the scheduling decision. The implication of this

particular decomposition alternative to network architecture is

that routing is essentially absorbed into congestion control and

scheduling. We also prove that it converges arbitrarily close to

the system optimum, and remain stable and optimal (on aver-

age) when the schedulability constraint set is modulated by a

Markov chain representing time-varying channels.

D. TCP/IP interactions

TCP reverse engineering assumes fixed routing R. The rout-

ing is computed by variants of IP and updated on a different

timescale, based on traffic condition in the network. There is

hence a feedback loop where IP routing decision at time t de-

termines flow rates x(t) and congestion prices λ(t) through the

capacity constraints in (1), and the congestion prices λ(t) af-

fects routing in the next time instance. First consider the case

where TCP converges faster than each IP update. It is shown

in [53] that an equilibrium of TCP/IP, if exists, indeed solves

NUM over both source rates x and routes R, provided conges-

tion prices are used as link costs in the shortest-path computa-

tion. Since the routing matrix is discrete, the NUM problem is

no longer a convex optimization problem. An equilibrium ex-

ists if and only if this NUM and its Lagrange dual have zero

duality gap. When there is a non-zero duality gap, the gap can

be interpreted as the penalty (in utility) in not splitting the traf-

fic.

In [18], we further consider three alternative timescale sepa-

rations for the joint congestion control and shortest-path rout-

ing dynamics based on congestion price. Analytic characteri-

zations and simulation experiments demonstrate how the step

size of the congestion-control algorithm affects the stability of

the system models, and how the timescale of each control loop

and homogeneity of link capacities affect system stability and

optimality. In particular, the stringent conditions on capacity

configuration for TCP/IP interaction to remain stable suggests

that congestion price, on its own, would be a poor “layering

price” for TCP and (dynamic routing based) IP in practice. Al-

ternative traffic engineering methods should be considered.
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