Introducing Hardware-in-Loop Concept
to the Hardware/Software Co-design
of Real-time Embedded Systems

Dogan Fennibay*T, Arda Yurdakul! and Alper Senf
*Corporate Technology, Siemens AS, Kocaeli, Turkey
TDepartment of Computer Engineering, Bogazici University, Istanbul, Turkey
Email: {dogan.fennibay, yurdakul, alper.sen}@boun.edu.tr

Abstract—As the need for embedded systems to interact with
other systems is growing fast, we see great opportunities in
introducing the hardware-in-the-loop technique to the field of
hardware/software co-design of embedded systems. This tech-
nique reduces the need to develop models for existing hardware
and increases the accuracy of the overall system. This work is
especially important now that complexity and time-to-market
constraints demand early simulation, verification, and architec-
tural exploration of systems. We introduce the hardware-in-the
loop technique to the field of hardware/software co-design of
industrial embedded systems using SystemC as the modeling
environment. We conceptualize the hybrid channel to clearly
define the communication between real and virtual (modeled)
subsystems. We patch the SystemC kernel for hard real-time
execution and we improve the underlying operating system to
guarantee an upper bound for the overall system latency. We
have performed tests to measure the performance of our method
in terms of response time and determinism. We have achieved a
stable operating frequency of 10 KHz and an I/O performance
of sub-millisecond round-trip time over Ethernet. Moreover we
have developed a non-timed transaction-level model of a BACnet
Broadcast Management Device (BBMD) and connected it with
real devices to see our method’s performance in a real-life
environment. Our model outperformed the competing real system
up to 80 times in maximum response time. We deem the results
very promising for the future of our method.

I. INTRODUCTION

System-level modeling is a relatively new approach in
the development process (from architectural exploration to
verification) since systems are getting more integrated [1].
In this trend, hardware and software are also getting closer,
hence hardware/software co-design is increasingly employed
and system-level modeling comprises modeling of hardware
and software together. Systems under development are usually
complex. As a result, current design trend is the employment
of models and modular/component-based strategies.

Two additional trends in embedded systems are that (1)
they are increasingly connected with other embedded systems
and (2) they increasingly contain off-the-shelf components to
shorten the time-to-market and reduce development costs. We
refer to other embedded systems and off-the-shelf components
as real subsystems. These trends imply that real subsystems
also have to be modeled even though their implementations
exist. Modeling of such elements has no added value as it

Model __ _ _________
/7 \
| |
: Virtual | o Real
i | subsystem Virtual tp real subsystem
i communjcation
| |
| |
: Virtual to virtual : Real to real
| communication | communication
I
. l
: \ 4 ! \ 4
i Virtual » ! Real
1 | subsystem Real to virtual subsystem
: communication
e 7
Fig. 1. Types of communication in a hardware-in-the-loop setup

multiplies the intrinsic disadvantages of modeling, i.e. inaccu-
racy due to abstraction and additional effort.

We believe that real subsystems should not be modeled
in the systems under development because they are already
implemented and these implementations should be integrated
with the system-under-development. A well-known method
which is used in the test of implemented embedded systems
is hardware-in-the-loop [2]. We introduce the same concept
to hardware/software co-design of embedded systems. We
define novel communication mechanisms between virtual and
real subsystems to implement hardware-in-the-loop (Figure 1)
method for hardware/software co-design. We also introduce
real-time behavior for virtual subsystems, as most commu-
nication mechanisms between subsystems rely on a common
notion of time such as a timeout mechanism in a communi-
cation protocol.

Real-time behavior consists of synchronizing the clocks of
the virtual subsystems with the clocks of the real subsys-
tems and achieving determinism in the overall system. Non-
deterministic behavior is present in all computing platforms
with an operating system and decreases the accuracy of the
model by introducing latency and by increasing the response
time randomly. Achieving determinism in the overall system
requires bounding such latencies to limit the effects on the

accuracy of the models.

We deem SystemC as the most appropriate platform to intro-
duce the hardware-in-the-loop technique to hardware/software
co-design, because it is widely used and standardized [3].
In this study, we introduce the hybrid channels concept by
extending the SystemC channel construct to clearly specify the
communication between real and virtual subsystems. Addition-
ally, we adapt the SystemC kernel to execute the simulation
in real-time and improve the underlying operating system to
limit the system latency. We also add special mechanisms to
properly manage timing of communication between virtual and
real subsystems.

We evaluate our method in the domain of industrial ap-
plications, more specifically industrial communication. The
basic reasons are: (1) there exist industrial communication
standards that have very strict hard real-time constraints such
as PROFINET [4], [5]; (2) the data exchange rate in industrial
communication ranges up to 10 KHz, and this is achievable
with current computing systems executing the models; and
(3) system-level modeling is starting to be a design trend
in this domain. Our method can also be applied directly to
the design of SoCs if computation power of the modeling
platforms becomes sufficient for executing the complex SoC
models in real-time. There is a vast amount of research to
speed up simulation of SystemC models via parallelization or
optimization. In addition, the increasing use of system-level
modeling for software, which has lower execution speed, will
also be an application area for our method.

This paper is organized as follows: Next section presents
the related work, it is followed by a background section
summarizing the preliminaries. We present our solution in
Section IV and our experimental evaluation in Section V.
Final section concludes the work and sets directions for future
research.

II. RELATED WORK
A. Current hardware-in-the-loop techniques

As a well-established technique, hardware-in-the-loop has
well-established tools. Most famous among them are Math-
Works’ solutions xPC Target [6] and Real-Time Windows
Target [7], where the model is executed on a dedicated system
or on a Windows system, respectively. However, the modeling
language provided by these solutions has not been designed
for hardware/software co-design purposes, so it lacks the
necessary constructs and mechanisms that are already present
in SystemC. Our work is orthogonal to such existing methods,
as we are proposing to introduce the technique to the field
of hardware/software co-design with a much more powerful
modeling language, namely SystemC.

B. Integration of different environments

There have been several studies regarding the integration
of different environments, i.e. enabling different modeling
environments to interact with each other and also enabling
interactions between models and real systems.

1) Integrating different virtual platforms: These methods
introduce concepts and software mechanisms to integrate
different modeling platforms. As there are no real subsystems
involved, there is no need for real-time behavior, but the need
for synchronizing executions of virtual environments.

HetSC [8] accomplishes to integrate multiple models of
computation in a SystemC model together, which allows
more accurate modeling of complete systems. This study only
deals with integration of parts of a SystemC model and not
integration of a SystemC model with external environments.

The work in [9] aims to integrate QEMU emulation envi-
ronment and SystemC. It employs a SystemC module instead
of a SystemC channel for representing the communication,
which we believe would cause design difficulties as SystemC
foresees use of channels for communication purposes. In [9],
an additional channel is necessary to connect the integration
module to the rest of the model. However, this is a double
effort. The integration can be directly implemented with an
hierarchical SystemC channel.

2) Integrating real and virtual environments: A major
decision point in the integration of real and virtual subsystems
is the level of abstraction. The communication between real
and virtual subsystems can range from pin-level to transaction-
level. The works in [10]-[14] are examples of the pin-level
communication, and the works in [9], [15]-[18] are examples
of the transaction-level communication. It should be noted that
not all approaches address the hardware-in-the-loop method;
[11], [15], [17], [18] propose connecting models to real
subsystems only to increase the overall execution performance
by using the real subsystems as coprocessors.

Each work has interesting properties that show the vari-
ety of possible answers to the question of which level of
abstraction to use for the communication. The hardware-in-
the-loop framework proposed by Underwood [12] does the
integration at the analog signal level via A/D, D/A converters,
while Virtual Chip [10] and PinPort [14] use pins directly.
Work in [11] employs register-level transfers, which can
be considered as pin-level. Pin-level approaches offer great
flexibility, as any communication protocol can be modeled on
top of pin-level when necessary. However, when the subsystem
using the communication protocol is in focus rather than the
protocol itself, modeling the protocol will be costly, it will
also decrease accuracy and the execution speed of the whole
model unnecessarily.

Approaches that prefer transaction-level communication be-
tween real and virtual subsystems allow to skip the mod-
eling of the details of the communication and focus on
other interesting parts. Virtual In-Circuit Emulator [15] and
Chip Hardware-in-the-Loop Simulation [16] use the remote
debugging interface of a microprocessor to integrate it to the
simulation model. This approach works well for micropro-
cessors, however it does not address other hardware-in-the-
loop configurations. The approach in [9], is more flexible
in that aspect, it is already able to model two bus systems,
namely Advanced Microcontroller Bus Architecture (AMBA)
and Peripheral Component Interconnect (PCI).

Event Queue

A

Event Handler State

A

Fig. 2. Basic architecture of a discrete event simulator

C. Timing concerns

Virtual Chip has a contribution in the timing management
between real and virtual subsystems. The authors devise a
three-level device integrating the model and the real system.
The device consists of the Internal Interface Module, the
Operational Buffer Unit and the External Interface Module.
With respect to the timing, behaviors of the Internal and
the External Interface Module are synchronized with the
model and the real subsystem, respectively. Operational Buffer
Unit connecting both interface modules handles the timing
difference via buffering methods [10].

Realtimify is an approach to real-time execution of SystemC
models. Basically, a module is added to the model which
synchronizes the simulation’s execution to real-time with the
objective to monitor the execution in real-time [19]. The ap-
proach is very lean and satisfactory for observing the model’s
execution in real-time. However, it does not address the issue
of determinism as interaction with real subsystems besides
human interaction is not targeted. Additionally the approach
is intrusive as it requires changes in the model. Finally, it
relies on the non-deterministic SystemC scheduler to execute
the synchronization, which results in uncertainty about when
the model will be synchronized.

D. Deterministic behavior

Operating system plays a critical role in the issue of
determinism. Real-time operating systems (RTOS) specialize
in providing deterministic behavior, but they lack the variety
of applications, I/O interfaces and functionality provided by
a general purpose operating system (GPOS). Linux with real-
time improvements seems as a promising tradeoff. Real-time
Application Interface (RTAI) [20] which is used in [13] is
built on top of Adaptive Domain Environment for Operating
Systems (ADEOS) [21] and does time sharing with a Linux
kernel. It provides real-time behavior by itself while leaving
the resources to the Linux kernel for non-critical tasks. On the
other hand RT_PREEMPT [22] employs a more direct method
in which latency is decreased by increasing preemptibility
throughout the Linux kernel.

III. PRELIMINARIES

SystemC simulation kernel is a discrete event simulator
(Figure 2) [1], the simulation clock is advanced in discrete

INITIALIZE

Build model

EVALUATE I —

L Pick a process and execute

<@
[$]
no eligible &
©
P UPDATE y Process £
Q ©
[
g Update channel values
3
=) —
© TIME no eligible
ADVANCE y Process

Advance simulation clock

Fig. 3. Flow of SystemC scheduler [1]

time intervals and changes in the model only happen at
discrete points in time. An event happens at a point in
time, specifies changes to the state of the simulation and
adds/removes elements to/from the event queue. Event queue
holds an ordered list of events according to their timestamps.
Event handler processes events in order and executes changes
specified by events. The simulation clock is part of the state
and is advanced according to the timestamp of the next event
in the event queue. [23].

It should be stressed that a SystemC event is not the same
thing as an event in a discrete event simulator. A SystemC
event only represents an occurrence in the simulation model,
so that processes in the model can notify others via SystemC
events or wait on SystemC events. To avoid confusion, we will
always refer to a SystemC event with sc_event, and use only
event for referring to events in a discrete event simulator.

Two different clocks are involved in a discrete event sim-
ulator: the simulation clock representing the virtual clock
of the model and the wall clock (ak.a. real-time clock)
representing the physical time passing during the execution
of the simulation model [23]. Real-time simulation consists
of establishing the relationship given in Equation (1) between
the simulation clock Ts and the wall clock Ty, so that the
advance of simulation clock is bound to the wall clock [24].

TS - TSstart -1 (1)
TW - TWstart

SystemC kernel’s execution consists of four main phases:
initialize, evaluate, update and time advance (Figure 3). Eval-
uate and update phases form a delta-cycle. A delta cycle is a
zero time advance cycle where only an infinitesimal amount
of time is assumed to pass. The result of operations done
in the evaluate phase are not updated until the update phase
in order to allow arbitrary order of execution of operations

Virtual World

Real World

L

Hybrid Channel

|
-
L

Real Subsystem i ‘ Real Subsystem

ybrid Channel

I

Real Subsystem . i Real Subsystem

Virtual Virtual
Subsystem Subsystem
|| | |
Virtual Virtual H
Subsystem Subsystem
|| ||
Virtual Virtual
Subsystem Subsystem

Hybrid Channel

L

Real Subsystem ﬁ Real Subsystem

Simulation Kernel

I/O Libs

Modeling

Platiorm RTC Driver

Operating System

1/0 Drivers

RT Clock Hardware

D Virtual
[:] Real

1/0 HW

Fig. 4. Architecture of our solution

scheduled to run concurrently. This method allows modeling
concurrent operations in a serial execution thread, but it also
poses a difficulty for real-time simulation as there is no zero
time advance in real-time.

As mentioned, SystemC uses an event-driven simulation
kernel. However, all events are in the simulation model. There
is no interface for an external event, e.g. new data arriving via
a hybrid channel to the model, in the current implementation
[1]. For example, if the event queue contains events with
timestamps 00:02 and 00:06; the simulation clock will be
advanced from 00:02 to 00:06 directly. So, if data has arrived
from real subsystems to the model at 00:04, it will first be
received at 00:06 by the model. This issue decreases accuracy
of the model and should be addressed.

Another factor affecting accuracy is the nondeterministic
behavior of the system. Due to inherent latencies, all comput-
ing platforms demonstrate a deviation from real-time, so the
response time of the platform cannot be determined 100%.
Assuring deterministic behavior consists of guaranteeing an
upper bound for the system latency, which can be defined
as the time needed for a system to react whenever there is
an action on it. Real-time schedulers guarantee that routines
handling actions are executed when necessary, but regions
preventing schedulers to manage resources such as interrupt
service routines, a.k.a. non-preemptible sections increase sys-
tem latency. Solutions proposed in [22] and [20] decrease the
system latency by increasing preemptibility.

IV. HARDWARE-IN-THE-LOOP WITH SYSTEMC

Figure 4 shows the architecture of our solution. Virtual
subsystems, i.e. models, run on top of a simulation kernel,
which runs on a GPOS. GPOS runs on a computer hardware.
We call the triplet formed by the simulation kernel, the
operating system and the computer hardware as the modeling
platform. Our solution addresses two aspects of the problem:
(1) achieving real-time behavior and (2) integrating real and

virtual worlds.

A. Achieving real-time behavior

We patch the simulation kernel at the point where the time
advance is done (Figure 5). At this point, simulation clock
is still g and is about to be advanced to tg.,eq, While wall
clock has advanced from ty to tywactuar due to the delta
cycle processing time. In order to satisfy Equation (1), our
patch delays the execution of the simulation by an amount of
tWdelay> Which advances the wall clock to tywpew.

To assure determinism, we improve the underlying operat-
ing system’s preemptibility with patches and disable further
sources of latency such as swap memory and power man-
agement. Additionally, we increase the priority of threads
executing the model to guarantee availability of resources.
Single-threaded execution model of SystemC guarantees that
the contention among threads can only happen in hybrid chan-
nels, which can employ additional threads. So we designed the
hybrid channels carefully to avoid excessive contention.

B. Hybrid channels: integrating real and virtual subsystems

We extend the channel concept of SystemC so as to realize
the hybrid channel functionality, i.e. realizing the communi-
cation between the real and virtual subsystems. Furthermore,
we categorize channel types and devise the class hierarchy
shown in Figure 6. dsc_hybrid_channel class at the base of the
hierarchy serves for distinguishing hybrid channels from other
channels and implements the update_real functionality, which
we will explain in the next paragraphs. In SystemC, a chan-
nel can inherit from sc_prim_channel (primitive channel) or
sc_module (hierarchical channel). As hierarchical channels of-
fer a superset of primitive channels’ capabilities [1], we choose
sc_module as the base of dsc_hybrid_channel. A hybrid chan-
nel can carry digital or analog data, which can be specified by
choosing the appropriate subclass dsc_digital_hybrid_channel
or dsc_analog_hybrid_channel. Digital channels can transfer

tg tsnew Ts
| | |
=~—_ By H e B >
tw S—_——_———-- tWactuad =200 T mmm e ——== twnew Tw
thassed the\ay
Fig. 5. Real-time patch to simulation kernel
<<sc_interface>> . dsc_parallel_
[sc_module] sc_signal_inout_if<bool> se_signal<bool> hybrid_channel

dsc_hybrid_channel
Ly—Brlawf

+ dsc_hybrid_channel
+ ~dsc_hybrid_channel
+ update_real
+update real all

dsc_digital_
hybrid_channel

dsc_analog_
hybrid_channel

dsc_serial_

dsc_parallel_

hybridichannel hybrid_channel

Fig. 6. Class diagram of hybrid channels

data in a parallel way, e.g. the parallel port, or in a serial
way, e.g. Universal Serial Bus (USB). Hence we provide two
further subclasses for specifying this characteristic.

1) Interactions from virtual to real subsystems: Output
values determined in the virtual subsystems can be transferred
to the real subsystems in evaluate, update or time advance
phases (Figure 3). The constraints of the channel model
dictates the best phase for the transfer:

o Evaluate: The data may be transferred as soon as it is
produced. (e.g. a fifo channel whose current value will
not be affected by values in later delta-cycles.)

o Update: There might be several processes that affect the
final value of an output variable. In that case, the data
should not be written to the real subsystem until the
final stable value is reached. If multiple successive delta-
cycles change the data in the channel, real subsystems can
observe this. (e.g. a signal channel whose actual value is
established at the end of a delta-cycle)

o Time advance: Due to the sequential operation of Sys-
temC simulation kernel, concurrent outputs cannot be
transferred to the real subsystems simultaneously. When
output values are transferred in the evaluate or update
phase, real subsystems observe them at time points dis-
tributed in fywpgssed Shown in Figure 5. Delaying the
transfer until the time advance phase will gather the
output points in time together at tyygcruqr- SO, outputs
that are simultaneous regarding to the simulation clock

<<sc_channel>>
sc_hybrid_pin

/dev/port driver

[Parallel Port HW]

Fig. 7. Hybrid pin channel

are generated in a smaller time window regarding the
wall clock. This option has another advantage of reducing
simulation’s execution effort, because the number of I/O
operations are reduced. As a disadvantage, delta-delay
changes are not observable by real subsystems in this
scheme.

SystemC already offers methods for transferring the output
values in evaluate or update phases. Our work further provides
the method update_real which is called at the time advance
phase prior to the advance of the simulation clock. The
developer of the hybrid channel can choose the appropriate
output timing for the type of the channel.

2) Interactions from real to virtual subsystems: SystemC
kernel does not have a mechanism for receiving external
events. Time is always advanced according to internal events
and operations. We use SystemC thread processes to poll the
external interfaces and relay this info to internal sc_events.
This way the SystemC kernel becomes aware of the external
events. However, an additional latency due to polling is
introduced.

V. EVALUATION

We evaluated our method experimentally in three cases. Two
small experiments helped to measure the performance of our
method in terms of real-time behavior and I/O performance.
Last experiment was a case of design of new industrial
software tested with real subsystems already at transaction-
level model (TLM) phase.

A. Implementation details

SystemC simulation kernel was executed on Linux operating
system kernel. We did the real-time patch to SystemC in
sc_simcontext::simulate, where time is advanced. Additionally,
at the same place we also inserted the code for calling up-
date_real methods of all channels of type dsc_hybrid_channel.

Figure 7 shows a simple example of the hybrid channel we
are proposing. It has a SystemC interface sc_signal_inout_if
on one side, and a handle to the I/O driver on the other side.
The pin is a parallel communication, so inherits from the class
dsc_parallel_hybrid_channel.

Two more complex examples realized the communication
over Ethernet: sc_hybrid_eth_in for data from Ethernet to
SystemC model, and sc_hybrid_eth_out for the reverse di-
rection. In order to minimize the time during simulation’s
execution (twpassea in Figure 5), we delegated 1/O operations
to operating system threads. For instance in sc_hybrid_eth_in,
recv_thread does the actual reception from Ethernet, then
a SystemC thread gets the data to the model. Similarly,
actual transmission is done in the operating system thread
send_thread, which is triggered by a SystemC thread. Queues
hold the incoming/outgoing data for the transfer between
threads. Ethernet is a kind of serial communication, so these
classes inherit from dsc_serial_hybrid_channel. On the same
principles as the Ethernet hybrid channel, we also built a
UDP/IP hybrid channel sc_hybrid_udp capable of both input
and output.

We introduced polling mechanisms in hybrid Ethernet chan-
nels in order to incorporate external events in the SystemC
model. For sc_hybrid_eth_out an external event is the end of
transmission, which means an available slot in the outgoing
queue. poll function checks the outgoing queue with a period
of POLLPERIOD_USus and notifies the sc_event if there
is a free slot. sc_hybrid_eth_in has a similar process, but it
checks if there is an element in the incoming queue, and then
sets the sc_event. This way, the external event is bound to an
internal event, which allows the rest of the operation to be
handled via SystemC mechanisms.

Management of delta cycles was done differently in pin
channel and Ethernet channels. Pin channel implements a
SystemC signal, so the value can change in successive delta
cycles and it makes sense to delay the output until the final
value is established for the current simulation time. On the
other hand Ethernet channels are fifo channels, and each
written value should be transferred to the output regardless of
later operations so that the output device can start processing
the data as soon as it receives it [1]. Thus, sc_hybrid_pin
generates the actual output in update_real, i.e. at the beginning
of time advance phase, while sc_hybrid_eth_out sends the data
right away to the operating system thread, which makes the
transmission in parallel to the simulation’s execution.

To improve determinism, Linux kernel’s preemptibility was
increased via the RT_PREEMPT patch [22]. SystemC thread
and operating system threads doing the I/O operations were
set to real-time scheduling and their priorities were set to a
priority directly below the interrupt handling threads. Because
a computer with swap memory was used in these experiments,
all memory pages belonging to the simulation process were
locked in memory to avoid latencies due to page faults. Finally,
the thread stack was extended beyond the maximum point
used, in order to avoid page faults due to stack growth.

<<sc_module>>
sc_pwm

<<SsC_cr
sc_hybrid_pin

/dev/port driver @

Parallel Port HW

Experiment setup of PWM

Fig. 8.

<<sc_module>>
sc_eth_mirror

<<sc_channel>>

X Packet generator
sc_hybrid_eth_in

Packet sniffer

<<sc_channel>>
sc_hybrid_eth_out

Test computer

packet socket drv

Ethernet Driver

100 Mbps
switch

Fig. 9. Experiment setup of RTT measurement

B. Experiment setup

Pulse width modulation (PWM) experiment (Figure 8) con-
sists of generating a square wave and examining the jitter in
the output signal. Square wave was generated by a SystemC
module sc_pwm with 50% PWM duty cycle and relayed
to the parallel port of the computer via the hybrid channel
sc_hybrid_pin. An oscilloscope was employed to examine the
quality of the generated signal. The persistence parameter of
the oscilloscope was set to infinite, in order to keep all of
past waveforms and observe the maximum jitter. Parameters
of the PWM experiment were desired frequency (0.01, 0.1,
1, 10 and 100 KHz), and presence of additional CPU load
(yes/mo). The evaluation criterion was the ratio of maximum
jitter to the desired period. Additionally, we also measured the
ratio (tsnew — ts)/twpassea (Figure 5) at each time advance
to separately see the simulation’s performance apart from the
I/O performance.

Figure 9 shows the setup of the round-trip time (RTT)
experiment. Here, the SystemC model functioned as a frame
replier, which sends the incoming frames back. The SystemC
module sc_eth_mirror was responsible for sending the re-
ceived frames back. sc_hybrid_eth_in and sc_hybrid_eth_out
relayed the frames between the Ethernet interface and the
SystemC model. The measurement was then done on the initial
sender’s side. Parameters of the RTT experiment were frame
length (64, 780 and 1514 bytes), and polling period (100 and
1000 ps). Evaluation criteria were maximum, minimum and
average values for RTT. One hundred samples were taken in
each run.

Figure 10 shows the setup of BACnet Broadcast Manage-
ment Device (BBMD) experiment. BACnet is a communica-
tion protocol used widely in building automation networks
[25]. BBMD is a subset of the BACnet protocol and is used
in BACnet networks running over the Internet Protocol (IP)
to ensure that the broadcast packets used by BACnet are

Building
Automation
Station

Building
Automation
Station

IP Router
Packet sniffer

N
BBMD » | “~_

9

\ N | ‘\ IP subnet 1

PC \ H o

\ \ N IP subnet 0
\ N
| SR
Building Building
BBMD Automation | | Automation | | Mapagement
Station Station atio

SystemC Model

Fig. 10. Experiment setup of BBMD

distributed correctly to all IP subnetworks constituting the
BAChnet network. In this experiment we created a non-timed
TLM of a new BBMD, which might be then extended to a
fully BACnet-compliant device. Our method allowed us to test
this model with real partners already in TLM phase. We built
a test network of two IP subnets comprising four Siemens
S7-300 building automation stations, a management station
for monitoring other stations and a PC acting as an IP router
and a packet sniffer. Each IP subnet needs one BBMD. We
configured one of the building automation stations to act also
as a BBMD for one subnet. For the other subnet we connected
the BBMD model to the network using our method. In addition
to the traffic between the management station and the building
automation stations, there was peer to peer traffic between
building automation stations shown with arrows in Figure 10.

Software platform of modeling consisted of Linux 2.6.31.6-
rt19 with RT_PREEMPT mode turned on and SystemC ver-
sion 2.2.0 with our real-time patch. CPU load was generated
via multiple instances of an infinitely spinning shell script. For
the PWM and RTT experiments we used a PC with dual Intel
Quad-Core Xeon processors running at 3.4 GHz and for the
BBMD experiment we used a PC with Intel Pentium 4 3.2
GHz HT.

C. Experiment results

PWM experiment’s results are given in Figure 11. The
signal was stable up to 10 KHz. At this rate jitter became
significantly high, however it was still below half of the period,
so the square wave was still generated at the desired frequency,
hence it may be still considered acceptable. At 100 KHz no
meaningful jitter could be measured, as the waveform was
largely corrupted (Figure 12). At stable frequencies, load had
only a minor effect although the CPU was loaded 100%.
This showed that the real-time operating system scheduler
is working fine. Moreover, the internal measurement of the
maximum value of (tsnew — ts)/twpassed Matched the ex-
ternal measurement, so we can conclude that the simulation
performance was the main factor affecting the performance
rather than the I/O performance. Finally, the average value
of (tsnew — ts)/twpassea showed that there is still unused
capacity for higher frequencies in terms of computation power,
however jitter prevented this capacity from being utilized.

%25,0

%20,0

%15,0

= = w/o CPU load

%10,0 ——with CPU load

%5,0

001 01 1 10
Desired frequency [KHz]

@

= = max (w/o CPU load)
X (with CPU load)

avg (/o CPU load)

— -avg (with CPU load)

=

Desired frequency [KHz]

®

Fig. 11. PWM: For different desired frequencies, (a) Max jitter / desired
period (b) (tSnew - tS)/thassed

M 2500 M 25008

@ ®)

Fig. 12. Waveforms of (a) 10 KHz and (b) 100 KHz desired frequencies
(persistence = infinite)

1800 ps
1600 ps
1400 ps
1200 ps
1000 ps
800 ps
600 ps
400 ps

200 ps
Ous

64 bytes, 100 64 bytes, 1000 780 bytes, 100 780 bytes, 10001514 bytes, 100 1514 bytes,
us us Hs Hs us 1000 ps

frame size, polling period

Fig. 13. RTT’s max/average/min measurement for (frame size, polling time)

In RTT experiment, Figure 13 shows that the polling time
had a more significant effect than the frame size. We also
observed that polling time resulted in high jitter of RTT, be-
cause the response time was directly dependent on the current
phase of the polling cycle. Furthermore, frame size had a linear
effect on RTT, as most operations - copy, Ethernet propagation

- were affected linearly. For cyclic communication, cycle times
of 1 ms may need low polling cycles since measured values
exceeded this value in other cases. However, at periods of 10
ms and higher, no further tuning is necessary for satisfactory
performance.

Our transaction-level model of the new BBMD performed
very well in the experiment. It outperformed the real BBMD
in terms of response time and packet drop rates. Under a traffic
burst of 2000 incoming packets per second, our model did not
drop any packet while the real BBMD dropped 67%. As the
model was non-timed the accuracy of response time was not
an evaluation criterion and the model outperformed the real
BBMD in average response time up to 80 times.

VI. CONCLUSION

In this study we have developed a hardware-in-the-loop con-
cept for hardware/software co-design of real-time embedded
systems, implemented with SystemC and evaluated experi-
mentally. Our encapsulation of the communication between
the real and virtual subsystems in a SystemC hybrid channel
allows minimal interference to SystemC model development
and also provides a very clear interface via SystemC’s native
mechanisms. Hybrid channels are also very generic tools to
implement every kind of communication between real and
virtual subsystems.

We achieved a deterministic behavior for industrial applica-
tions even with commonly available off-the-shelf components
like standard parallel port and Ethernet hardware. We believe
that with further advances in increasing simulation perfor-
mance and computation power, the possible domains to use
our method will multiply.

The solution devised for the incorporation of external events
(polling) is satisfactory as a first result, however it imposes
a difficult tradeoff: simulation speed vs. I/O latency, both of
which are important. It should be listed under future work to
accomplish this in a truly event-driven way, without resorting
to polling. Another point for future study is the scalability, i.e.
how our method will scale to models with higher number of
processes, modules, channels, hybrid channels etc.

ACKNOWLEDGMENT

Alper Sen was supported by a Marie Curie European Reinte-
gration Grant within the 7th European Community Framework
Programme.

REFERENCES

[1] T. Groetker, S. Liao, G. Martin, and S. Swan, System design with
SystemC. Boston/Dordrecht/London: Kluwer Academic Publishers,
2002.

[2] M. Bacic, “On hardware-in-the-loop simulation,” in 44th IEEE Con-
ference on Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05, 2005, pp. 3194-3198.

[3] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,
2005.

[4] Industrial communication networks - Fieldbus specifications, IEC Std.
61158, 2007.

[5] Industrial communication networks - Profiles, IEC Std. 61784, 2007.

[6] MathWorks. (2010) Xpc target. [Online]. Auvailable:
http://www.mathworks.com/products/xpctarget/

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]

(23]

[24]

(25]

Available:

(2010) Real-time windows target. [Online].
http://www.mathworks.com/products/rtwt/

F. Herrera and E. Villar, “A framework for embedded system specifi-
cation under different models of computation in systemc,” in DAC ’06:
Proceedings of the 43rd annual Design Automation Conference. New
York, NY, USA: ACM, 2006, pp. 911-914.

M. Monton, A. Portero, M. Moreno, B. Martinez, and J. Carrabina,
“Mixed SW/SystemC SoC Emulation Framework,” in /EEE ISIE, 2007.,
2007, pp. 2338-2341.

N. Kim, H. Choi, S. Lee, S. Lee, I. Park, and C. Kyung, “Virtual chip:
making functional models work on real target systems,” in Proceedings
of the 35th annual conference on Design automation. ACM New York,
NY, USA, 1998, pp. 170-173.

Y. Nakamura, K. Hosokawa, I. Kuroda, K. Yoshikawa, and T. Yoshimura,
“A fast HW/SW co-verification method for SoC by using ac/c++ sim.
and FPGA emu. with shared register comm.” in Proc. DAC, 2004.

R. Underwoood, “An Open Framework for Highly Concurrent
Hardware-in-the-Loop Simulation,” Master’s thesis, University of
Misouri-Rolla, 2007.

B. Lu, X. Wu, H. Figueroa, and A. Monti, “A low-cost real-time
hardware-in-the-loop testing approach of power electronics controls,”
IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 919—
931, 2007.

SynaptiCAD. (2002) Pinport. [Online].
http://www.syncad.com/pr_pinport_release.htm

L. Benini, D. Bruni, N. Drago, F. Fummi, and M. Poncino, “Virtual in-
circuit emulation for timing accurate system prototyping,” in ASIC/SOC
Conference, 2002. 15th Annual IEEE International, 2002, pp. 49-53.
C. Koehler, A. Mayer, and A. Herkersdorf, “Chip Hardware-in-the-Loop
Simulation (CHILS) - Embedding Microcontroller Hardware in Simula-
tion,” in Proceedings of the 19th IASTED International Conference on
Modelling and Simulation. Acta Press Inc,# 80, 4500-16 Avenue N.
W, Calgary, AB, T 3 B 0 M 6, Canada, 2008.

Available:

U. Nageldinger, A. Pyttel, and H. Kleve. (2004)
System simulation speedup combining systemc mod-
els and reconfigurable hardware. [Online]. Available:

http://speac.fzi.de/WORKSHOP2/Speac_Paris_2004_01.pdf

R. Ramaswamy and R. Tessier, “The integration of systemc and
hardware-assisted verification,” in FPL ’02: Proceedings of the Recon-
figurable Computing Is Going Mainstream, 12th International Confer-

ence on Field-Programmable Logic and Applications. London, UK:
Springer-Verlag, 2002, pp. 1007-1016.
M. Trams. (2005) Realtimify - a small tool for real

time systemc simulations. [Online]. Available: http://www.digital-
force.net/download.php?file=publications/systemc_realtimify.pdf

P. Mantegazza, E. Dozio, and S. Papacharalambous, “RTAI: Real time
application interface,” Linux Journal, vol. 2000, no. 72es, 2000.

K. Yaghmour, “Adaptive domain environment for operating systems,”
Opersys Inc., 2001.

(2009) Real-time linux wiki.
http://rt.wiki.kernel.org/index.php/Main_Page
T. J. Schriber and D. T. Brunner, “Inside discrete-event simulation
software: how it works and why it matters,” in WSC ’04: Proceedings
of the 36th conference on Winter simulation. Winter Simulation
Conference, 2004, pp. 142-152.

R. Fujimoto, Parallel and Distributed Simulation Systems.
Wiley-Interscience, 2000.

BACnet - A Data Communication Protocol for Building Automation and
Control Networks, ASHRAE Std. 135-2004, 2004.

[Online]. Available:

New York:

