Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Jan 2015]
Title:Mirror, mirror on the wall, tell me, is the error small?
View PDFAbstract:Do object part localization methods produce bilaterally symmetric results on mirror images? Surprisingly not, even though state of the art methods augment the training set with mirrored images. In this paper we take a closer look into this issue. We first introduce the concept of mirrorability as the ability of a model to produce symmetric results in mirrored images and introduce a corresponding measure, namely the \textit{mirror error} that is defined as the difference between the detection result on an image and the mirror of the detection result on its mirror image. We evaluate the mirrorability of several state of the art algorithms in two of the most intensively studied problems, namely human pose estimation and face alignment. Our experiments lead to several interesting findings: 1) Surprisingly, most of state of the art methods struggle to preserve the mirror symmetry, despite the fact that they do have very similar overall performance on the original and mirror images; 2) the low mirrorability is not caused by training or testing sample bias - all algorithms are trained on both the original images and their mirrored versions; 3) the mirror error is strongly correlated to the localization/alignment error (with correlation coefficients around 0.7). Since the mirror error is calculated without knowledge of the ground truth, we show two interesting applications - in the first it is used to guide the selection of difficult samples and in the second to give feedback in a popular Cascaded Pose Regression method for face alignment.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.