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Abstract

Whole Slide Image (WSI) classification is often formu-
lated as a Multiple Instance Learning (MIL) problem. Re-
cently, Vision-Language Models (VLMs) have demonstrated
remarkable performance in WSI classification. However,
existing methods leverage coarse-grained pathogenetic de-
scriptions for visual representation supervision, which are
insufficient to capture the complex visual appearance of
pathogenetic images, hindering the generalizability of mod-
els on diverse downstream tasks. Additionally, process-
ing high-resolution WSIs can be computationally expensive.
In this paper, we propose a novel “Fine-grained Visual-
Semantic Interaction” (FiVE) framework for WSI classi-
fication. It is designed to enhance the model’s general-
izability by leveraging the interaction between localized
visual patterns and fine-grained pathological semantics.
Specifically, with meticulously designed queries, we start
by utilizing a large language model to extract fine-grained
pathological descriptions from various non-standardized
raw reports. The output descriptions are then reconstructed
into fine-grained labels used for training. By introduc-
ing a Task-specific Fine-grained Semantics (TFS) module,
we enable prompts to capture crucial visual information
in WSIs, which enhances representation learning and aug-
ments generalization capabilities significantly. Further-
more, given that pathological visual patterns are redun-
dantly distributed across tissue slices, we sample a subset
of visual instances during training. Our method demon-
strates robust generalizability and strong transferability,
dominantly outperforming the counterparts on the TCGA
Lung Cancer dataset with at least 9.19% higher accu-
racy in few-shot experiments. The code is available at:
https://github.com/ls1rius/WSI FiVE.

*Co-corresponding authors. This work was supported by National Nat-
ural Science Foundation of China (Grant No. 62371409).
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Figure 1. Challenges in WSI-text contrastive learning. Most
conventional VLM approaches categorize whole slide images us-
ing category-level text descriptions, overlooking intra-class differ-
ences, leading to a decline in performance and limitations in gener-
alization capabilities. Instead, we extract fine-grained descriptions
from pathology reports as slide-level labels to develop our model,
exhibiting detailed variations in each WSI.

Histological Whole Slide Image (WSI) classification
plays a crucial role in computational pathology by automat-
ing disease diagnosis and subtyping. For high-resolution
WSI analysis, Multiple Instance Learning (MIL) has be-
come the dominant method. These methods treat each WSI
as a “Bag” sample, and aggregate numerous patches within
it as instances for thorough decision-making. Nevertheless,
most existing methods [15, 16, 18, 31] focused on process-
ing image data to conduct WSI classification, potentially
not emphasizing critical pathological insights, particularly
the expert textual annotations that accompany these slides.

Recently, Vision-Language Models (VLMs) [11, 25, 33]
underscored the significance of integrating multimodal in-
formation for developing robust encoders. Zhang et al. [38]
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exploited disease-grade text labels and extracted text in-
sights using pre-trained language models. Qu et al. [23]
utilized GPT-4 in a question-and-answer mode to obtain
language prior knowledge at both instance and bag lev-
els for VLM training. However, the challenge lies in the
uniqueness and variability of content in each WSI. Existing
methods developed their models with coarse-grained de-
scriptions (i.e., simplistic Category-Level text labels [38] or
descriptive Category-Level text labels constructed by GPT-
4 [23]), as shown in Fig. 1. They may have omitted cru-
cial fine-grained pathological details, including differentia-
tion level, vascular invasion, etc., which results in reduced
model performance and limited generalization.

WSIs accompanied by their corresponding reports (i.e.,
WSI-report pairs) offer detailed descriptions and fine-
grained information vital for WSI analysis. Furthermore,
a substantial collection of these pairs is accessible in public
databases, such as The Cancer Genome Atlas (TCGA) [9].
However, their full potential has not been adequately har-
nessed yet. The challenge in developing a Visual Lan-
guage Model (VLM) using WSI-report pairs mainly lies in
the diverse formats and standards of the raw reports from
different hospitals, which increases the complexity of data
preprocessing and standardization processes. Additionally,
pathology reports often contain extraneous information, in-
cluding report metadata, tissue processing descriptions, and
repetitive elements, which can introduce noise to the tex-
tual data. How to extract useful information from raw
pathology reports to construct WSI-report pairs is a key
issue. Moreover, recent studies have demonstrated the effi-
cacy of prompt engineering in enhancing VLMs. In contrast
to natural images, WSI data encompasses extensive profes-
sional pathological information and intricate details. How
to craft prompts to make full use of this semantic informa-
tion to guide fine-grained feature learning is a challenging
task. Besides, the high computational costs to train mod-
els with high-resolution WSIs also limits the promotion of
the model, resulting in a certain resource threshold for WSI
analysis.

To address these issues, we propose a novel whole
slide image classification method with Fine-grained Visual-
sEmantic interaction termed as FiVE, which shows robust
generalizability and efficiency in computation. Firstly, we
obtain WSIs with non-standardized raw pathology reports
from a public database. Collaborating with professional
pathologists, we craft a set of specialized prompts to stan-
dardize reports. Following this, we employ the large lan-
guage model GPT-4 to automatically clean and standard-
ize the raw report data. In addition, we propose the Task-
specific Fine-grained Semantic (TFS) Module, which uti-
lizes manual-designed prompts to direct visual attention to
specific pathological areas while constructing Fine-Grained
Guidance to enhance the semantic relevance of model fea-

tures. Considering the diffuse distribution of pathological
diseases within tissue sections and the presence of numer-
ous non-diagnostic regions in WSIs, we also incorporate
a patch sampling strategy during the training phase to en-
hance training efficiency and reduce computational costs.
The contributions of this paper are summarized as follows:
• We pioneer the utilization of the available WSI diagnos-

tic reports with fine-grained guidance. The obtained fine-
grained description labels lead to improved supervision
by discriminating the visual appearances more precisely.

• We introduce a novel Task-specific Fine-grained Seman-
tics (TFS) Module to offer fine-grained guidance, signifi-
cantly enhancing the model’s generalization capabilities.

• We implement a patch sampling strategy on visual in-
stances during training to enhance computational ef-
ficiency without significantly compromising accuracy,
thereby optimizing the model’s training process.

2. Related Work
2.1. Whole Slide Image Analysis

Contemporary methodologies for WSI analysis predomi-
nantly employ MIL methods where each WSI is treated
as a “Bag” and its extracted patches as instances within
this bag. MIL methods consists of instance-based meth-
ods [3, 14, 32] and embedding representation-based meth-
ods [15, 20, 26, 29, 36]. However, the majority of existing
methods [5, 18, 24, 27] almost exclusively rely on image
data, neglecting vital pathological details, notably the spe-
cialist text annotations that accompany the images. Recent
works [23, 38] have taken note of this issue and started to
utilize text information to improve pathological image clas-
sification. They used bag-level text labels or the descriptive
labels generated by GPT. However, given the unique and
varied descriptions of each WSI, their methods fall short of
fully leveraging the detailed textual information present in
the slides.

2.2. Vision-Language Models

Recent researches have made efforts to develop Vision-
Language Models (VLMs). CLIP [25] gathered 400 million
image-text pairs and initiated training with synchronized vi-
sion and text encoders from the onset. LiT [35] developed a
text encoder compatible with a pre-trained vision encoder.
FLIP [33] integrated region-word alignment in contrastive
learning to enhance detailed vision-language correlation.
Coca [34] pre-trained an image-text encoder-decoder foun-
dation model using contrastive and captioning loss. For
pathological images, some research works adapted VLMs
for training with pathological images and text. Lu et al. [21]
built a VLM using over 1.17 million histopathology image-
caption pairs based on a task-agnostic pre-training approach
derived from Coca. Huang et al. [8] curated the OpenPath
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Figure 2. Left: The structure of the FiVE framework. The model consists of a frozen image encoder, a text encoder, and the TFS module.
Whole slide images are divided into instances for embedding extraction by the image encoder. Raw pathology reports are standardized
by GPT-4 into fine-grained descriptions. The fine-grained descriptions and manual prompts are sampled, shuffled, and reconstructed in
pairs. These prompts aggregate instances into bag-level features, subsequently aligned with the descriptions utilizing contrastive loss. Top
Right: Fine-grained pathological descriptions. The fine-grained pathological descriptions are generated from multiple answers based
on specific queries. These descriptions undergo a process of random sampling, shuffling, and reconstruction to form a unified sentence.
Bottom Right: The Instance Aggregator module. The instance aggregator consists of a self-attention module and a cross-attention
module, fusing image instance embeddings and prompt embeddings to create bag-level features.

dataset, consisting of 208,414 pathology images with nat-
ural language descriptions from public forums, and fine-
tuned a pre-trained CLIP on OpenPath. Lai et al. [13] also
explored the generalization of CLIP in pathology image
classification. These methods typically employ instance-
level images (small patches from WSIs) and descriptions,
requiring significant human and material resources. Zhang
et al. [38] injected meaningful medical domain knowledge
to advance pathological image embedding and classifica-
tion. Qu et al. [23] employed GPT-4 to supplement image
labels to enrich the information for training. However, the
texts employed in their training offer only rudimentary de-
scriptions of the images, primarily categorizing the general
type of pathological slides, such as the disease category.
This approach significantly constrains the model’s capac-
ity to discern fine-grained features, including the degree of
differentiation, spread, and other details. Consequently, this
limitation substantially restricts the model’s generalizability
and applicability to more nuanced diagnostic tasks.

2.3. Prompt Learning in Vision-Language Models

Drawing inspiration from prompt learning in natural lan-
guage processing, some studies have proposed adapting
Vision-Language models through end-to-end training of
prompt tokens. CoOp [40] enhanced CLIP for few-shot
transfer by optimizing a continuous array of prompt vec-
tors within its language branch. CoCoOp [39] identified
CoOp’s suboptimal performance on new classes and tackled

the generalization issue by conditioning prompts directly on
image instances. Lu et al. [22] advocated for optimizing di-
verse sets of prompts by understanding their distribution.
Bahng et al. [1] undertook visual prompt tuning on CLIP,
focusing the prompting on the vision branch. MaPLe [12]
investigated the effectiveness of multi-modal prompt learn-
ing in order to improve alignment between vision and lan-
guage representations. Zhang et al. [37] adopted a set of
learnable adaption prompts and prepend them to the word
tokens at higher transformer layers, efficiently fine-tuning
LLaMA with less cost. Furthermore, in the context of WSI
classification, prompts function as valuable adjuncts, en-
riching contextual information and semantic interpretation.
The strategic utilization of prompts substantially improved
model performance [23].

3. Method

3.1. Overview

Fig. 2 shows the pipeline of our proposed FiVE method.
To initiate the process, we collaborate with professional
pathologists to establish a set of standards. Following this,
we employ GPT-4 to automatically extract and standard-
ize information based on these various standards. During
the training phase, we construct Fine-Grained Guidance by
intricately dividing and reconstructing the text description
labels and manual prompts in pairs. The combination of
manual prompts and learnable prompts forms the Diagnosis



Manual-Designed Standards Fine-Grained Text Description Label Examples

1. What is the differentiation of the lesion? TCGA-44-6774: Lesion differentiation is moderately to poorly
differentiated; Unknown; No indication of vascular invasion by
the lesion; No indication of pleural invasion by the lesion;
Unknown; Margins of the excised tissue are clear of disease.

2. Is there any indication of spread through air spaces
around the lesion?
3. Is there any indication of vascular invasion by the lesion?
4. Is there any indication of pleural invasion by the lesion? TCGA-49-4505: Lesion differentiation is well-differentiated;

Unknown; Unknown; Pleural invasion by the lesion is present,
as the carcinoma extends through the visceral pleura; The lesion
invades adjacent tissues or organs; Margins of the excised tissue
are clear of disease.

5. Is there any evidence of the lesion invading adjacent
tissues or organs?
6. Are the margins of the excised tissue clear of disease?

Table 1. Manual-Designed Standards and Fine-Grained Text Description Label Examples. The answers on the right correspond to the
standards on the left. “Unknown” is used as a placeholder when relevant information cannot be found.

Prompts, which are utilized to enhance the semantic rele-
vance of the features. Subsequently, the instance aggregator
module fuses instance features with fine-grained prompts,
generating bag-level features, subsequently align with the
corresponding fine-grained text description labels. Addi-
tionally, to reduce computational costs, we implement the
patch sampling strategy, optimizing the model’s training ef-
ficiency while minimizing performance loss.

3.2. Text Standardization via GPT-4

We utilize fine-grained text description labels extracted
from pathology reports to align image bag-level features.
Though pathology reports are readily accessible from pub-
lic databases, their content exhibits significant variability
depending on the source. Despite these format differ-
ences, pathology diagnoses consistently adhere to specific
and well-established diagnostic standards. In our work, we
develop fine-grained diagnostic criteria under the guidance
of professional pathologists to standardize report data and
extract fine-grained insights pertinent to pathological diag-
nosis, aiming to enhance its generalization capabilities sub-
stantially.

The manual-designed standards aim to extract the mor-
phological characteristics under the microscope, such as the
degree of differentiation and lesion invasion, and filter out
information irrelevant to the diagnosis. Subsequently, we
employ GPT-4 to automatically extract answers from the
original diagnosis reports based on prompts composed of
these standards. If the information queried is absent in the
pathology reports, “Unknown” is used as the answer. Tab. 1
shows manual-designed standards and two fine-grained text
description label examples. Then, we recombine these ex-
tracted fine-grained information and integrate it into a com-
plete description of the case image. More details about the
prompts used for Text Standardization are provided in
Supplementary Material.

3.3. Task-specific Fine-grained Semantics Module

3.3.1 Fine-grained Guidance Construction

Due to the Text Standardization process, our data has
achieved standardization. Utilizing these fine-grained text
description directly as training labels can yield performance
improvements. Additionally, leveraging them to generate
more diverse and semantically enriched fine-grained guid-
ance can further boost the model’s performance.

During the training process we utilize these manual-
designed standards as our manual-designed prompts. We
divide the original fine-grained text descriptions into sev-
eral parts according to manual-designed prompts, followed
by random sampling and eliminating “Unknown” tags from
the initial labels. Given that the staged diagnostic reports
in pathological descriptions are sequence-independent, we
shuffle these preliminary labels and reconstruct them into a
full-sentence description. During the training, we train re-
constructed text description labels and reconstructed man-
ual prompts in pairs. For example, consider description A:
“Lesion differentiation is moderately differentiated; Mar-
gins of the excised tissue are clear of disease.” and de-
scription B: “Lesion differentiation is moderately differ-
entiated; Margins of the excised tissue are not clear of
disease, as the tumor is within the bronchial margin and
parenchymal margin.”. When only the first part of each de-
scription is sampled, they would be grouped into the same
category. However, when sampling the entire sections, they
are considered as distinct descriptions. Changes in granular-
ity provide diverse perspectives on the visual image, align-
ing visual image with text descriptions of varying granular-
ities.

This strategy offers three key benefits: 1) Effectively
alleviating the parent-child relationship in pathology cate-
gories. 2) Providing additional hierarchical semantic per-
spectives to enhance the text encoder’s semantic compre-
hension ability. 3) Mitigating discrepancies in category an-
notation due to incomplete diagnostic information.



3.3.2 Diagnosis Prompts

We introduce Diagnosis Prompts to guide the aggregation
of instance features into bag-level features. We compute
the similarity between the instance features and the given
manual prompts, utilizing the similarity scores as weights
W for feature aggregation to improve the task-specific rel-
evance of the features. Here we utilize the identical manual
prompts as those used to standardize the raw data, as shown
in the left of the Tab. 1.

In addition, manual-designed prompts may have some
flaws, potentially failing to comprehensively capture the
specific morphological characteristics of the lesion, and the
model struggles to generalize towards unseen classes due
to the late fusion through the transformer layers. Besides,
fine-tuning the model may not always be feasible as it re-
quires training a large number of parameters. Particularly
in the case of low-data regimes, where the availability of
training data like whole slide images is extremely limited.
LLaMA-Adapter [37] and LLaMA-Adapter-v2 [6] explore
the way to efficient fine-tuning of Language Models and
Vision-Language Models respectively. These approaches
introduced the Adaptation Prompt to gradually acquire in-
structional knowledge. They adopted zero-initialized atten-
tion with gating mechanisms to ensure stable training in the
early stages. Inspired by these methods, we introduce learn-
able continuous diagnosis prompts to enrich the context in-
formation and enhance the model’s transferability.

Specifically, we get the manual text prompt tokens
Qh = [qh1, qh2, · · · , qhn], here n represents the num-
ber of the manual prompts. We concatenate the learn-
able continuous prompt tokens Ql = [ql1, ql2, · · · , qlm]
on it, here m represents the number of the learnable
prompt tokens. Finally we get the diagnosis prompts Q =
[qh1, qh2, · · · , qhn, ql1, ql2, · · · , qlm]. In the training phase,
part of manual prompt tokens Qh will be sampled randomly
paired with text description labels, while the whole learn-
able prompt tokens Ql will be consistently retained.

Different with the traditional context learning prompts
method, our approach pays attention to the acquisition of
prior knowledge, similar to the methodology employed in
Detection Transformer (DETR) [4]. We aim to acquire a
set of appropriate query values to improve performance in
subsequent feature screening processes. Additionally, it can
also enable the model to quickly transfer to other tasks by
fine-tuning this set of queries.

3.3.3 Instance Aggregator Module

The Instance Aggregator (IA) module is used to aggregate
the fine-grained diagnosis prompts and instance features.
As shown in the right of the Fig. 2, IA consists of a self-
attention module and a cross-attention module.

We employ self-attention to enable feature interaction

among instance features Ii = [ei1, ei2, · · · , eij ], resulting in
the feature si. Subsequently, utilizing the diagnosis prompts
Q to aggregate the instance features and acquire the feature
zi. Then we concatenate si and zi, utilizing the learnable
parameter W to fuse these features, yielding the bag-level
feature vi. The formulas are shown as follows:

si = SelfAttention(Ii, Ii) + Ii (1)
zi = CrossAttention(Q, si) (2)
vi = concat(mean(si),mean(zi)) ·W (3)

Ultimately, we acquire the image bag-level features
guided by the fine-grained diagnosis prompts, which are
then employed to align the fine-grained text features.

3.4. Patch Sample Strategy

Each Whole Slide Image (WSI) is partitioned into a vari-
able number of instances, ranging from approximately 50 to
45,000. Handling such a wide range of instances markedly
increases computational complexity and substantially ex-
tends the training duration. FLIP [33] reduced computation
and reached higher accuracy than CLIP [25] counterpart by
randomly removing a large portion of image patches during
training [17]. In the case of whole slide images, pathologi-
cal visual patterns are often redundantly distributed across a
tissue slice. Therefore, it is feasible to sample only a subset
of visual instances during training.

For the instances in each bag (i.e., slide), we select a
sample amounting to Sm percent of the total number p of
each group of instances (patches). The required number of
instances Sn is described by the following formula:

Sn = min(p ∗ Sm, Smaxn) (4)

Here Smaxn denotes the maximum number of sample
instances. To achieve this, we evenly divide each group of
instances into Sn chunks and randomly select one instance
from each chunk. Since the different whole slide images
could sample different Sn, we pad the rest of the space with
the same padding.

3.5. Encoder and Loss Function

We divide each WSI into instances xk and encode these
instances into embeddings ek ∈ RD using pre-trained vi-
sion encoder Eimg , composed with ResNet structure fol-
lowing [15], here D represents the dimension of the embed-
dings. Then we send the instance embeddings into the TFS
Module to aggregate the instance features and prompts, and
obtain the bag-level embeddings vi ∈ RD. The formulas
are shown as follows:

ek = Eimg(xk) (5)
Ii = [ei1, ei2, · · · , eik] (6)
vi = IA(Ii, Q) (7)



Besides, we generate pathologically meaningful text em-
beddings for each WSI, represented as ti ∈ RD, by leverag-
ing the fine-tuned text encoder BioClinicalBERT [30].

tci = Etxt(x
c
txt) (8)

where Etxt denotes the text encoder, and xc
txt(c ∈ [1, C])

where C denotes the number of categories. Here we use
the same embedding dimension D as the vision encoder,
suitable for contrastive learning. For text encoder Etxt, we
adopt the Low-Rank Adaptation (LoRA) [7] approach for
efficient fine-tuning.

Subsequently, the bag-level embeddings vi are aligned
with the text embeddings tci to complete the training pro-
cess. In this case, prediction ŷ is obtained by applying soft-
max on scaled cosine similarities between the image em-
beddings and text embeddings:

p(ŷ = c|I) = exp(sim(tci , vi)/τ)∑C
c′=1 exp(sim(tc

′

i , vi)/τ)
(9)

where sim(·, ·) refers to cosine similarity and τ is the tem-
perature parameter.

The fine-grained training loss is computed as the cross-
entropy between the logits and soft targets as:

Lv→t = − 1

N

N∑
i=1

N∑
i=j

yij log(pij) (10)

here N corresponds to the batch size.
Likewise, we can compute Lt→v and serve L as the final

training objective.

L =
Lv→t + Lt→v

2
(11)

4. Experiments and Results
4.1. Datasets

We evaluated our method on public histopathology WSI
datasets: The Cancer Genome Atlas Lung (TCGA Lung)
Cancer1 and Camelyon16 [2].
TCGA Lung Cancer. The TCGA Lung Cancer dataset
comprises two cancer subtypes: Lung Adenocarcinoma
(LUAD) and Lung Squamous Cell Carcinoma (LUSC). It
includes diagnostic slides with 541 slides from 478 LUAD
cases and 512 slides from 478 LUSC cases. For WSI pre-
processing, following [15], we cropped each WSI into 256 ×
256 non-overlapping patches and removed the background
region. The dataset encompasses approximately 5.2 mil-
lion patches at 20× magnification, averaging about 5,000
patches per WSI. Following [28], we randomly split the
dataset into training, validation, and testing sets with a ratio

1http://www.cancer.gov/tcga

of 65:10:25 on the patient level and adopted 4-fold cross-
validation. We collected corresponding pathology reports
2 and cleaned them by GPT-4 to produce fine-grained text
description labels. To ensure professionalism and accuracy,
we invited professional pathologists to check and correct the
textual labels. Additionally, to evaluate the generalizabil-
ity of the model and perform zero-shot classification, we
utilized a dataset of histological subtype labels for TCGA-
LUAD from the cBioPortal database3, More details about
subtype labels are provided in Supplementary Material.
Camelyon16. The Camelyon16 dataset [2] consists of 399
Hematoxylin and Eosin (H&E) stained slide images, uti-
lized for metastasis detection in breast cancer. We pre-
processed each WSI by segmenting it into 256 × 256 non-
overlapping patches, excluding background regions. In to-
tal, this process yielded approximately 2.8 million patches
at a 20× magnification level, with about 7,200 patches per
bag. We adopted 3-times 3-fold cross-validation.

4.2. Implementation Details

In experiments, we employed ResNet following [15] as im-
age encoder to extract image features, while pre-trained
BioClinicalBERT from [30] as text encoder to generate text
features. LoRA [7] was adopted for fine-tuning the text en-
coder, with an alpha value of 32 and a rank value of 8. We
divided the whole slide image into patches with 256× 256,
then applied a random crop with size 224×224. We adopted
AdamW [19] with beta (0.9, 0.98), eps 1e-8, learning rate
3e-6, warmup ratio 0.1, weight decay 1e-4 as our optimizer.
Additionally, we used the batch size of 1 with an accumu-
lation step of 8 and trained for 150 epochs. We utilized
mixed-precision training on 4 NVIDIA-A800 GPUs.

4.3. Zero-Shot Histological Subtype Classification

Prior researches [23, 28, 38] have predominantly concen-
trated on classifying primary cancer categories. Our ap-
proach extends beyond this by attempting to classify de-
tailed histological subtypes. It is crucial to emphasize that
this task poses a significant challenge, often proving diffi-
cult for even skilled pathologists to make direct judgments.

Since only the LUAD’s histological subtype dataset
was provided on the online database, we conducted zero-
shot subtype classification evaluation on LUAD subtype
datasets, with the model being pre-trained on TCGA-LUAD
or TCGA-LUSC. Throughout the training phase, subtype
label information was deliberately excluded, ensuring that
all experiments are conducted solely with fine-grained la-
bels. This aims to evaluate the model’s ability to identify
novel diagnostic categories without specific training on sub-
types. We extended the morphological appearance text de-

2https://github.com/tatonetti- lab/tcga- path-
reports

3https://www.cbioportal.org/

http://www.cancer.gov/tcga
https://github.com/tatonetti-lab/tcga-path-reports
https://github.com/tatonetti-lab/tcga-path-reports
https://www.cbioportal.org/


scription labels of the target data using GPT-4. After the
text encoder encodes the labels, similarity calculation with
image features achieved zero-shot classification.

Since existing zero-shot learning methods cannot be
used in WSI subtype classification, we constructed three
Linear-Probe method baselines: Mean pooling, Max pool-
ing, and Attention pooling. As shown in Tab. 2, FiVE at-
tains 65.23% top-1 accuracy and 95.18% top-5 accuracy
when pre-trained with TCGA-LUAD fine-grained labels.
When pre-trained with TCGA-LUSC fine-grained labels, it
achieves 62.02% top-1 accuracy and 94.36% top-5 accu-
racy. Moreover, the zero-shot performance of FiVE notably
exceeds that of the baseline. This capability in classifying
LUAD subtypes is attributed to the focus on fine-grained
pathological features during training.

Method TCGA-LUAD TCGA-LUSC

Top-1 Top-5 Top-1 Top-5

Mean-pooling 40.82 83.46 31.86 82.96
Max-pooling 45.05 88.77 36.36 86.09

Attention-pooling 58.36 93.53 54.41 92.50

FiVE (Ours)
65.23
+6.87

95.18
+1.65

62.02
+7.61

94.36
+1.86

Table 2. Zero-Shot performance on histological subtype classi-
fication. We pre-trained the model using fine-grained labels of
TCGA-LUAD and TCGA-LUSC, then applied zero-shot classifi-
cation to the histological subtypes of TCGA-LUAD.

4.4. Few-Shot Classification

Our model demonstrates adaptability to various tasks even
in scenarios with limited data availability. Few-shot exper-
iments were conducted to demonstrate its transferability to
downstream tasks. We initialized the networks with pre-
trained weights derived from the model trained on TCGA
image-report pairs, and subsequently fine-tuned the model
on downstream datasets for few-shot image classification.
We followed [23] and conducted experiments with 1, 2, 4,
8, 16, and additional 0 shot on the downstream dataset. The
results are summarized in Tab. 3.

Our model exhibites remarkable performance in zero-
shot classification, achieving an accuracy of 71.26%, even
surpassing the SOTA method’s one-shot experiment. Upon
the introduction of training data, our models display excep-
tional transferability, outperforming the SOTA by 12.90%
in the one-shot setting. The model’s performance improves
accordingly with the number of shot. Upon reaching 16-
shot, our model reaches an impressive accuracy of 91.25%,
showcasing a notable 9.19% improvement close to the fully
supervised performance level.

Method 16-shot 8-shot 4-shot 2-shot 1-shot 0-shot

Mean-pool 65.33 53.89 44.85 52.93 45.34 \
Max-pool 48.48 49.55 44.22 48.39 49.03 \
Attn-pool 72.50 65.79 62.47 58.36 56.23 \
CoOp [40] 78.35 67.99 67.60 67.54 67.81 \
TOP [23] 82.06 80.51 75.41 72.38 71.01 \

FiVE
(Ours)

91.25
+9.19

90.80
+10.29

88.10
+12.69

85.51
+13.13

83.91
+12.90

71.26

Table 3. Few-shot classification performance on TCGA Lung Can-
cer. Mean-pool, Max-pool, and Attn-pool correspond to Linear-
Probe implementations with Mean-pooling, Max-pooling, and
Attention-pooling, respectively.

4.5. Performance Comparison with Existing Works

We compared FiVE with ABMIL [10], DSMIL [15],
CLAM-SB [20], CLAM-MB [20], TransMIL [26], DTFD-
MIL [36], and MHIM-MIL [28], all of which are attention-
based MIL methods. In addition, we included two tra-
ditional MIL pooling operations, Max-pooling and Mean-
pooling, for comparison. The results of all other methods
are reproduced using the official code they provide under
the same settings.

To evaluate the performance of FiVE, we conducted fine-
grained pre-training exclusively on the TCGA dataset, fol-
lowed by fully supervised experiments on Camelyon16 and
TCGA Lung Cancer datasets for WSI classification. Note
that the test data is not used in pre-training. Results are
shown in Tab. 4. It can be found that our method outper-
forms all the other baselines by a great margin, which fully
demonstrates the significance of our fine-grained training
scheme in improving performance on downstream tasks.
Besides, since the pre-training data mainly comes from
TCGA data, on the other hand, the task-specific prompt de-
sign is more suitable for TCGA data. This results in the
performance improvement of our method for TCGA data
being greater than Camelyon16 data.

4.6. Ablation Studies

4.6.1 Effectiveness of TFS Module

We focused on evaluating the impact of the TFS module
on the model’s overall performance with the TCGA Lung
Cancer. The results detailed in Tab. 5 reveal significant
improvements at each stage of feature enhancement. Ini-
tially, the model with only Self Attention attained ACC of
89.77%, AUC of 92.85%, and F1-score of 89.95%. The in-
corporation of fine-grained labels led to increases of 1.44%
in ACC, 1.51% in AUC, and 1.43% in F1-score. Subsequent
integration of additional fine-grained guidance further im-
proved performance. Ultimately, full framework with the
TFS Module achieved the highest performance of 94.62%
ACC, 96.33% AUC, and 93.89% F1-score. These ablation



Method Camelyon16 TCGA Lung Cancer

ACC AUC F1-score ACC AUC F1-score

Max-pooling 78.95±2.28 81.28±3.74 71.06±2.59 81.49±1.24 86.45±0.71 80.56±1.09
Mean-pooling 76.69±0.20 80.07±0.78 70.41±0.16 84.14±2.97 90.13±2.40 83.39±3.14
ABMIL [10] 90.06±0.60 94.00±0.83 87.40±1.05 88.03±2.19 93.17±2.05 87.41±2.42
DSMIL [15] 90.17±1.02 94.57±0.40 87.65±1.18 88.32±2.70 93.71±1.82 87.90±2.50

CLAM-SB [20] 90.32±0.12 94.65±0.30 87.89±0.59 87.74±2.22 93.67±1.64 87.36±2.24
CLAM-MB [20] 90.14±0.85 94.70±0.76 88.10±0.63 88.73±1.62 93.69±0.54 88.28±1.58
TransMIL [26] 89.22±2.32 93.51±2.13 85.10±4.33 87.08±1.97 92.51±1.76 86.40±2.08

DTFD-MIL [36] 90.22±0.36 95.15±0.14 87.62±0.59 88.23±2.12 93.83±1.39 87.71±2.04
MHIM-MIL [28] 92.48±0.35 96.49±0.65 90.75±0.73 89.93±3.37 95.53±1.74 89.71±2.92

FiVE (Ours) 94.25±0.33 97.56±0.59 93.24±0.72 94.62±2.13 96.33±1.21 93.89±1.90

Table 4. Comparison Performance of slide classification on Camelyon16 and TCGA Lung Cancer.

SA FGL FGG LDP ACC AUC F1-score
✓ 89.77 92.85 89.58
✓ ✓ 91.21 94.36 91.01
✓ ✓ ✓ 93.56 96.01 93.17
✓ ✓ ✓ ✓ 94.62 96.33 93.89

Table 5. The ablation experiments of the pre-trained model fine-
tuned on the TCGA Lung Cancer. SA, FGL, FGG, and LDP repre-
sent Self Attention, Fine-Grained Labels, Fine-Grained Guidance,
and Learnable Diagnosis Prompts, respectively.

experiments highlight the benefits of integrating these meth-
ods in the WSI classification task.

4.6.2 Effectiveness of Patch Sample Strategy

We verified the impact of different sampling strategies on
model performance on TCGA data. Here, we assumed
that there are two main indicators that affect model perfor-
mance, sample ratio and max sample threshold (represented
as MAXN). At the same time, in order to differentiate the
experimental results, we used the unfrozen image encoder
for experimental verification.
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Figure 3. Classification performance on TCGA Lung Cancer with
diverse sampling strategies, presenting average and standard devi-
ation (std) ACC values.

As shown in Fig. 3, when MAXN is sufficiently large (≥
2048), the correlation between the model’s performance and
the sample ratio is not significant. Even with a small sample

ratio (≤ 0.5), the model can still effectively align with the
original data distribution. Conversely, when MAXN is not
large enough (<2048), the primary change in the model’s
performance depends on whether the magnitude of the sam-
ple ratio can match the original data distribution. When
the sample ratio increases to 0.75, a steep performance im-
provement can be observed, suggesting that the sampled
data at this point conforms to the original data distribution,
after which the model’s performance stabilizes.

Based on comprehensive experimental results, we estab-
lished the sample ratio and MAXN as 0.5 and 2048 as suit-
able hyperparameters for the unfrozen image encoder. As
for the frozen image encoder experiment, taking into ac-
count the performance constraints imposed by the frozen
image encoder on the model’s performance upper limit [38],
we recommend the sample ratio and MAXN to be set at 0.5
and 16384 based on our experiments.

5. Conclusion

In this paper, we introduce FiVE, a novel framework that
demonstrates robust generalization and strong transferabil-
ity for WSI classification. Our work pioneers the utilization
of non-standardized WSI-report pairs from public databases
to develop a VLM. To capture the complexities and diver-
sity within these reports, we introduce the Task-specific
Fine-grained Semantics (TFS) module. This module re-
constructs fine-grained labels and diagnosis prompts during
training, enhancing the semantic relevance of its features by
introducing diagnosis prompts. Furthermore, considering
that pathological visual patterns are redundantly distributed
across tissue slices, we employ a sampling strategy to re-
duce computational costs. Our experiments demonstrate the
robust generalizability and computational efficiency of the
proposed framework, which can also be easily adapted to
other tasks with minimal fine-tuning. We aspire to provide
empirical insights and contribute to AI pathology research.
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Generalizable Whole Slide Image Classification with Fine-Grained
Visual-Semantic Interaction

Supplementary Material

This supplementary material includes demonstrations
of raw unstandardized pathology reports as presented in
Sec. A. And the detailed process of generating label descrip-
tions using GPT-4, as well as specific label descriptions, are
provided in Section B. Additionally, further elaboration on
the prompts utilized for Text Standardization is provided in
Sec. C. Moreover, a comprehensive explanation of the Fine-
Grained Guidance Construction is outlined in Sec. D.

A. Pathology Report Example
We present a range of pathology report demonstrations in
Fig. 4, highlighting the extracted information utilizing GPT-
4 to generate fine-grained text description label, as depicted
in Tab. 6. The sampled diagrams depict considerable vari-
ability in the formats of pathology reports stemming from
diverse data sources. After the data extraction by GPT-4,
the textual descriptions exhibit a more structured format.
Although some inconsistencies in expression persist, our
objective differs from multi-label classification, emphasiz-
ing the semantic expression within the text. This kind of
comprehensive description at the slide level enhances our
model’s understanding of semantics, consequently refining
the model’s ability to generalize.

B. TCGA Label Description
We utilize the prompt “Describe the morphological charac-
teristics of the LABEL in a single sentence in English.” to
obtain label descriptions through GPT-4. When utilized, the
placeholder tag LABEL is substituted with each specific la-
bel in the process.

B.1. TCGA Lung Cancer Label

LUAD: LUAD (Lung Adenocarcinoma) typically exhibits
a diverse array of cell types, including glandular, papil-
lary, and acinar structures with mucin production, and vary-
ing differentiation levels from well-differentiated to poorly-
differentiated.
LUSC: LUSC (Lung Squamous Cell Carcinoma) is charac-
terized by tumor cells forming sheet-like squamous struc-
tures, possibly showing keratinization features like keratin
pearl formation, and is typically well-differentiated.

B.2. TCGA-LUAD Subtype Label

To evaluate the generalizability of our model and perform
zero-shot classification, we curate a dataset of histological
subtype labels for TCGA-LUAD , including histological

subtypes of 54 samples of Lung Adenocarcinoma Mixed
Subtype, 10 samples of Lung Bronchioloalveolar Carci-
noma Nonmucinous, 5 samples of Lung Acinar Adenocar-
cinoma, 1 sample of Mucinous Adenocarcinoma, 4 sam-
ples of Micropapillary (colloid) Adenocarcinoma, 3 sam-
ples of Lung Bronchioloalveolar Carcinoma Mucinous, 2
samples of Lung Micropapillary Adenocarcinoma, 8 sam-
ples of Lung Papillary Adenocarcinoma.
Adenocarcinoma Mixed Subtype: Adenocarcinoma
mixed subtype is a cancer characterized by the presence of
diverse cell types, exhibiting a combination of morpholog-
ical features from various adenocarcinoma subtypes within
the same tumor, making it a heterogeneous and challenging
histological entity.
Bronchioloalveolar Carcinoma Nonmucinous: Bronchi-
oloalveolar carcinoma nonmucinous is a type of lung can-
cer characterized by the proliferation of well-differentiated,
nonmucinous glandular cells along the bronchiolar and
alveolar structures within the lung tissue, often presenting
as solitary nodules or lepidic growth patterns.
Papillary Adenocarcinoma: Papillary adenocarcinoma
is a type of cancer characterized by finger-like projections
or papillae composed of malignant glandular cells, often
exhibiting a well-differentiated appearance under a micro-
scope.
Acinar Adenocarcinoma: Acinar adenocarcinoma is
a form of cancer marked by the presence of glandu-
lar structures resembling acini, often comprised of well-
differentiated malignant cells that form small, round, or
oval-shaped structures.
Mucinous (colloid) Adenocarcinoma: Mucinous (col-
loid) adenocarcinoma is a cancer subtype characterized by
the presence of abundant extracellular mucin, produced by
malignant glandular cells, giving it a gelatinous or colloid-
like appearance when viewed under a microscope.
Bronchioloalveolar Carcinoma Carcinoma: Bronchi-
oloalveolar carcinoma mucinous is a lung cancer subtype
characterized by the proliferation of glandular cells produc-
ing abundant mucin, often leading to a lepidic growth pat-
tern and presenting as a mass with a mucinous appearance.
Mucinous Adenocarcinoma: Mucinous adenocarcinoma
is a type of cancer characterized by the abundant produc-
tion of mucin, a gel-like substance, by malignant glandular
cells, often resulting in a tumor with a significant mucinous
component.
Micropapillary Adenocarcinoma: Micropapillary ade-
nocarcinoma displays distinct small clusters or papillary



agnosis: Lung CA 

Source of Specimen( s): 
I: 4R lymph nodes 
2: Additional 4R lymph nodes 
3: Additional 4R lymph nodes 
4: Level ?lymph nodes 
5: 4L lymph nodes 
6: 4R lymph node 
7: 2R lymph nodes 
8: Level II lymph nodes 
9: I OR lymph node 
10: right middle lobe 
II: IIR lymph nodes 

Gross Description: 
Received in eleven parts. 

Source of Tissue: I. Labeled # I, "4R lymph nodes" 

Frozen Section Diagnosis: IFS- NO TUMOR SEEN. 

 TCGA-64-1678 

Gross Desciiption: Received fi·esh for frozen section evaluation labeled 
"patient name and medical number, 4R lymph nodes" are 1.5 x 1.0 x 0.4 em of 
gray-black anthracotic stained lymph node fi·agments. They are submitted 
in toto for frozen section evaluation and the fi·ozen itself was submitted 
in one block. 

Designation of Sections: I FS 

Summary of Sections: FS-multiple 
************************************************************************* 

Source of Tissue: 2. Labeled# 2, "additional 4R nodes" 

Frozen Section Diagnosis: 2FS- NO TUMOR SEEN. 

Gross Description: Received fi·esh for frozen section evaluation labeled 
" patient name and medical number, additional 4R nodes" are 1.5 x 1.0 x 0.4 
em of gray-black anthracotic stained lymph node fragments. They are 
submitted in toto for fi·ozen section evaluation and the fi·ozen itself was 
submitted in one block. 

(a) TCGA-64-1678

SURGICAL PATHOLOGY REPORT 

SPECII\1EN(S): A. 4L LEFT DISTAL PARA TRACHEAL 
B. 4R RIGHT DISTAL PARA TRACHEAL 
C. ADDITIONAL 4R LYMPH NODE 
D. LEVEL 7 SUBCARINAL LYMPH NODE 
E. 2R RIGHT PROXIMAL PARA TRACHEAL 
F. LEFT UPPER LOBE 
G. PORTION OF LUNG ATTACHED TO MEDIASTINUM 
H. LEVELS LYMPH NODES 
I. LEVEL 9 LYMPH NODES 

CLINICAL HISTORY: 
None given 

PRE-OPERATIVE DIAGNOSIS: 
Left upper lobe lung mass 

INTRAOI'ERA TIVE CONSULTATION DIAGNOSIS: 
FSA, FSB, FSC-lymph nodes 4L, 4R, 4R additional: Negative for tumor. 

FSD-7 subcarinal: Fibroadipose tissue negative for tumor; no lymphoid tissue identified. 

FSE-2R: Negative for tumor. 

FSF-left lung, upper lobe, lobectomy: Bronchial mm·~>in 
adenocarcinoma diagnosis called 

GROSS DESCRIPTION: 
A. 4L LEFT DISTAL PARA TRACHEAL 

~""'"p for carcinoma, tumor is 

(b) TCGA-73-4668

 
Final Pathologic Diagnosis: 
 
A:   Lymph node, 4R subcarinal, resection: 
     Eight benign lymph nodes. 
 
B:   LUNG, Resection:  
     Specimen:  Right Lung; Lower lobe of lung;  
Procedure:  lobectomy 
Specimen laterality:  Right 
Tumor site: Right lower lobe 
Specimen integrity: Intact 
Tumor size (greatest dimension):  2.4x 2.4cm 
Tumor focality:  Unifocal  
Tumor histologic type:  Adenocarcinoma 
Tumor grade: Moderately differentiated  
Visceral pleura invasion:  Present 
Tumor Extension:  Not identified  
Margins: 
     Bronchial:  Uninvolved by invasive carcinoma 
Vascular:  Uninvolved by invasive carcinoma 
Parenchymal:  Uninvolved by invasive carcinoma  
               Parietal pleural:  Not applicable 
     Chest wall:  Not applicable 
Other attached tissue margin:   Not applicable 
If all margins uninvolved by invasive carcinoma:  
     Distance of invasive carcinoma from closest margin:  less than 1mm 
     Specify margin:  visceral pleura 
     Treatment effect:  Not applicable 
Lymph-vascular invasion:  Not identified 
Pathologic staging (pTNM): 
     TNM Descriptors:  none 
Primary tumor:  pT 
Regional lymph nodes:  pN0 
     Number examined:  14 
Number involved:  0 
     Distant metastasis:  pMX 
     Additional pathologic findings:     Emphysematous changes in uninvolved 
lung parachyma 
 
C:   Lymph nodes, #9 inferior pulmonary, excision: 
     Two benign lymph nodes. 
 
D:   Lymph nodes, lower paratracheal, excision: 
     Four benign lymph nodes. 
 
The examination of this case material and the preparation of this report were 
performed by the staff pathologist. 
 ***Electronically Signed***          , ( ) 
     , 
   
Signing Location:   
 

Gross Description: 
Received are three specimen containers, each labeled with the patient's name, 

(c) TCGA-91-6835

Figure 4. Pathology report examples. We randomly sample several pathology reports with different reporting standards for display.
Sensitive information has been masked.

ID Fine-Grained Text Description Label

TCGA-64-1678
Differentiation of the lesion is poorly differentiated; Unknown; No indication of vascular invasion by
the lesion; No indication of pleural invasion by the lesion, as no visceral pleural invasion is seen;
Unknown; Margins of the excised tissue are clear of disease (R0).

TCGA-73-4668

Lesion differentiation is moderately differentiated; Unknown; No indication of vascular invasion by
the lesion, as angiolymphatic invasion is absent; No indication of pleural invasion by the lesion, as
visceral pleural involvement is absent; Unknown; Margins of the excised tissue are clear of disease,
as the bronchial margins are uninvolved.

TCGA-91-6835

Lesion differentiation is moderately differentiated; Unknown; No indication of vascular invasion by
the lesion, as vascular margins are uninvolved by invasive carcinoma; Pleural invasion by the lesion
is present; Unknown; Margins of the excised tissue are clear of disease, as all margins are uninvolved
by invasive carcinoma.

Table 6. Fine-grained text description labels extracted from raw pathology reports.

structures with a central clear space, resembling small
grape-like formations when observed under a microscope.

C. Prompts Used for Text Standardization via
GPT-4

We present the prompt template employed for GPT-4 to ex-
tract information from the raw pathology report, wherein
the placeholder tag REPORT is substituted with each dis-
tinct raw pathology report. Additionally, besides providing
essential prompt information, we have manually annotated
some assistant examples to assist GPT-4 in further standard-
izing the output data format.

C.1. Prompt Template

Based on the diagnose report provided, please summarize
the report briefly and academically from the following per-
spectives as a medical professional, answer in phrases or
medical vocabulary entity whenever possible to save words,
don’t leave out important information. Connect the answers
in one sequence, separated them with semicolons (impor-
tant). Important notes: For all perspectives, focus on the
microscopic description rather than gross description; Ig-
nore the lymph nodes information; If can’t answer from
the specific perspective, just answer “Unknown.” without
another words!!! 1. What is the differentiation of the le-
sion? (maybe: Well-differentiated; Moderately differenti-
ated; Poorly differentiated; Moderately to poorly differen-
tiated; Mixed differentiation. or others.) 2. Is there any



indication of spread through air spaces around the lesion?
and explain the reasons. 3. Is there any indication of vas-
cular invasion by the lesion? and explain the reasons. 4. Is
there any indication of pleural invasion by the lesion? and
explain the reasons. 5. Is there any evidence of the lesion
invading adjacent tissues or organs (excluding the current
lung organ)? and explain the reasons. 6. Are the mar-
gins of the excised tissue clear of disease? (note that: R0
means negative; R1 R2 are both mean positive; Rx means
Unknown, just answer ‘Unknown’ only.). Diagnose report:
REPORT

C.2. Assistant Example

Raw Report Example 1: Gross Description: Micro-
scopic Description: Diagnosis Details: Comments: For-
matted Path Reports: LUNG TISSUE CHECKLIST. Spec-
imen type: Lobectomy. Tumor site: Lung. Tumor size:
6 x6x6cm. Histologic type: Squamous cell carcinoma.
Histologic grade: Moderately differentiated. Tumor ex-
tent: Visceral pleura. Other tumor nodules: Not specified.
Lymph nodes: 1/3 positive for metastasis (Intrathoracical
1/3). Lymphatic invasion: Not specified. Venous invasion:
Not specified. Margins: Not specified. Evidence of neo-
adjuvant treatment: Not specified. Additional pathologic
findings: Not specified. Comments: Left-lower. to 11/8/12
l’es.
Answer Example 1: Moderately differentiated; Unknown;
Unknown; Pleural invasion indicated due to tumor extent to
visceral pleura; Unknown; Unknown.
Raw Report Example 2: REVISED REPORT (Revised
information underlined). TISSUE DESCRIPTION: Tissue
from the left kidney (partial nephrectomy, 3.76. grams, 2.2
X. 2.0 X 1.9 cm). . DIAGNOSIS: Kidney, left, partial
nephrectomy: Grade 1 (of 4) renal. cell. carcinoma, papil-
lary type, forms a 1.9 X 1.7 x 1.7 cm. mass. The tumor is
confined to the kidney. Coagulative. tumor. necrosis is ab-
sent. Sarcomatoid differentiation is. absent. The. surgical
margins are negative for tumor (free by 0.2 cm). AMEND-
MENTS. Revision Description: Review of permanent sec-
tions reveals the tumor to be a. grade 1 (of. 4) renal cell
carcinoma, papillary type. Original Diagnosis. Kidney, left,
partial nephrectomy: Grade 1 (of 4) renal. cell. carcinoma,
clear cell type, forms a 1.9 X 1.7 X 1.7 cm. mass. The.
tumor is confined to the kidney. Coagulative tumor. necro-
sis is. absent. Sarcomatoid differentiation is absent. The.
surgical. margins are negative for tumor (free by 0.2 cm).
Answer Example 2: Lesion is grade 1 (of 4), indicating
well-differentiated; Unknown; Unknown; Unknown; The
lesion is confined to the kidney, indicating no invasion of
adjacent tissues or organs; Margins of the excised tissue are
clear of disease (free by 0.2 cm).
Raw Report Example 3: TISSUE DESCRIPTION: Right
lower lobe lung (305 grams) superior (right upper and

lower. paratracheal) and inferior (subcarinal, inferior pul-
monary ligament). mediastinal lymph nodes and N1 (right
interlobar) lymph nodes. DIAGNOSIS: Lung, right lower
lobe, lobectomy : Grade 3 (of 4) squamous cell. carci-
noma forming a subpleural mass measuring 5 X 4.5 X 2.6
cm,. extending into but not through the pleura. Bronchial
margin is. negative for tumor. Multiple (6) intrapulmonary
peribronchial lymph. nodes are negative for tumor. Lymph
nodes, superior and inferior mediastinal, N1, excision: Mul-
tiple superior (2 right lower and 2 right upper paratracheal)
and. inferior (6 subcarinal, 1 inferior pulmonary ligament)
mediastinal. lymph nodes and N1 (3 right interlobar) lymph
nodes are negative for. tumor.
Answer Example 3: Lesion differentiation is poorly dif-
ferentiated (G3 of 4); Unknown; Unknown; Pleural inva-
sion by the lesion is present, as the carcinoma extends into
but not through the pleura; Unknown; Margins of the ex-
cised tissue are clear of disease (R0).
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Figure 5. Fine-grained guidance construction pipeline.

D. Fine-grained Guidance Construction
Pipeline

As depicted in Fig. 5, we partition the original fine-grained
text descriptions into several parts based on manually de-
signed prompts. Next, we perform random sampling and
remove “Unknown” tags from the answers. Afterward, we
shuffle the retained pairs and reconstruct the answers into
a unified and complete sequence.. This approach enables
our model to undergo a wider range of description trans-
formations, with changes in granularity providing diverse
perspectives on the visual image. Aligning visual images
with text descriptions of varying granularities enriches the
training data, offering more descriptive perspectives and se-
mantic information for visual patterns. This enhances the
semantic richness of the model’s features and facilitates
model transfer to downstream tasks.
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