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Figure 1. Adaptive memory replay for continual pre-training. In our setting, we begin with general image pretraining (Task 0) and
transition to learn different tasks (e.g., Real, Clipart, Painting, Sketch) with full memory access to all past task data. We choose relevant
samples for model training, thereby minimizing catastrophic forgetting while efficiently updating the model with new data. Further, we
replace current task data with selected past task data, hence not adding training cost.

Abstract

Foundation Models (FMs) have become the hallmark
of modern AI, however, these models are trained on mas-
sive data, leading to financially expensive training. Up-
dating FMs as new data becomes available is important,
however, can lead to ‘catastrophic forgetting’, where mod-
els underperform on tasks related to data sub-populations
observed too long ago. This continual learning (CL)
phenomenon has been extensively studied, but primarily in
a setting where only a small amount of past data can be
stored. We advocate for the paradigm where memory is
abundant, allowing us to keep all previous data, but com-
putational resources are limited. In this setting, traditional
replay-based CL approaches are outperformed by a sim-
ple baseline which replays past data selected uniformly
at random [37], indicating that this setting necessitates a
new approach. We address this by introducing a frame-
work of adaptive memory replay for continual learning,
where sampling of past data is phrased as a multi-armed
bandit problem. We utilize Bolzmann sampling to derive

*Work done during internship at MIT-IBM Watson AI Lab.

a method which dynamically selects past data for train-
ing conditioned on the current task, assuming full data ac-
cess and emphasizing training efficiency. Through extensive
evaluations on both vision and language pre-training tasks,
we demonstrate the effectiveness of our approach, which
maintains high performance while reducing forgetting by
up to 10% at no training efficiency cost.

1. Introduction

The concept of the Foundation Models (FMs) [2] has re-
cently gained popularity and became ubiquitous in many
downstream applications, including language [4, 33, 51],
vision [38, 41, 52], and other application domains - advocat-
ing towards the ‘train-once-and-use-everywhere’ paradigm
shift in AI/ML. One of the most attractive features of FMs
is their ability for Zero-Shot [4] prompting, few-shot In-
Context Learning (ICL) [4, 55], and great transferability
to any task [33, 52]. This is due to their massive scale
pre-training, often on billions [43] or trillions [33, 51] of
data points. However, such power comes with high train-
ing costs. The pre-training data size is so large that nor-
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Figure 2. Key difference of our work and prior work. Prior
work assumes that memory is expensive and constrains replay data
to a fixed budget. Our work assumes memory is cheap and stores
all replay data in memory, focusing on how to dynamically select
the most useful replay data for computation-budgeted replay.

mally each sample is observed only a few times or, as in
language training, once (single epoch). Moreover, a com-
mon requirement for FMs is to rather frequently undergo
‘Extended Pre-Training’ (EPT) - a process of updating the
model with new (massive) additional data intended to im-
prove the model’s temporal currency. During EPT the orig-
inal pre-training data cannot be naively replayed as, given
the massive size of both pre-training and EPT data, it would
effectively double the EPT cost (naturally assuming a single
epoch and 50% replay mix for EPT as is customary in such
cases). This would be prohibitive both in terms of the high
cost (millions of dollars) as well as non-negligible negative
environmental impact (extra heat emission).

However, neglecting past data during EPT is prone to
the issue of catastrophic forgetting [21], where models up-
dated with new data tend to underperform on previously
seen data. This leads to an important question: how can
we adapt large-scale FM models to an ever-evolving world
without compromising on performance or efficiency?

The realm of continual learning offers some insights,
but also limitations. While current benchmarks effectively
highlight the challenge of catastrophic forgetting by training
on non-overlapping data tasks sequentially, they are less ap-
plicable to (massive scale) EPT, as they either restrict them-
selves to limited memory storage (while in practical EPT
all data, past and current, is usually available) and do not
take into account the training cost of replay. For practical
EPT, we argue the cost impact needs to be minimal in the
sense that the ‘continual’ EPT needs to have similar cost
as ‘naive’ EPT (disregarding old data and catastrophic for-

getting issue). This is intuitive, as even the tiny overhead
fraction due to replay will be applied as a factor to the train-
ing cost (measured in millions of dollars for the large-scale
models [33]).

This new setting of restricted computation and unlimited
storage of past data has recently been explored for continual
learning of image classification tasks [37]. The results of
that work suggest that a simple baseline which randomly
selects from all past data outperforms other replay-based
CL methods. This creates a demand for a new approach
which can better utilize all of the past data.

Taking inspiration from prior works [3, 10, 17] that have
tried to select memory data intelligently by selecting the
most representative samples of each memory replay dataset,
we push the boundaries by considering not which past sam-
ples are the most representative (which is typically pre-
decided before training future tasks), but rather which sam-
ples most effectively prevent forgetting conditioned on the
current task data (which is decided during the training of
future tasks). This notion is based on the intuitive concept
that the model retains full access to previously seen data
and that the ‘optimal’ replay data may be contingent upon
the new data a model encounters during EPT.

We specifically propose an approach that dynamically
adjusts the proportion of replay samples from each past
task based on its propensity to be forgotten given the new
task data. In such an adaptive memory replay for continual
learning (visualized in Figure 1), our algorithm efficiently
decides on the optimal allocation of memory replay sam-
ples among past tasks to minimize overall forgetting, un-
der the vital consideration of how to do this without the re-
quirement for drastic computation. We do this through a
combination of bandit estimation and Boltzmann sampling
from clusters of old datasets store in memory. We evaluate
our replay strategy for both vision and language large-scale
pre-training tasks. In particular, we propose and evaluate a
zero-cost protocol that includes intelligent selection of both
data to replay and reduction in the new EPT data to com-
pensate for the (relatively small) extra cost of the selection
algorithm itself.

In summary, we make the following contributions:
1. We present an adaptive memory replay for continual

learning, a novel scheme inspired by a bandit estima-
tion formulation that assumes full memory access and
dynamically adjusts replay samples based on the new
data, ensuring reduced forgetting.

2. Extensive evaluations demonstrate the efficacy of our
method across both vision and language large-scale pre-
training tasks.

2. Background and Related Work
Continual Learning: In the past few years, there has
been significant progress in continual learning to alleviate



catastrophic forgetting [31]. Regularization-based methods
[24, 27, 44] modify the model parameters with additional
regularization constraints to prevent catastrophic forgetting.
They store no data but explore extra regularization terms in
the loss function to consolidate previous knowledge. Re-
hearsal approaches [6, 40, 40] memorize or generate a small
fraction of data points for previous tasks and utilizes them
to retain the task knowledge. Importantly, what data to re-
tain is decided during the task itself, and subsequently used
throughout future tasks. Expansion approaches expand a
model’s architecture as new tasks are encountered; these
are highly effective for applications where a model growing
with tasks is practical [14, 25, 28, 30, 42]. Our work does
not consider these methods because the model parameters
grow with the number of tasks, but acknowledge that the
contributions could be incorporated into these approaches.

Recently, prompt-tuning methods such as [48, 53, 54]
outperformed rehearsal-based methods without using a re-
play buffer by learning a small number of insertable model
instructions or prompts. Another line of research is the pa-
rameter isolation-based approaches [20, 29, 58] which focus
on freezing the task-specific parameters and growing new
branches for new tasks. [20] propose adapters which add
a small number of parameters to the model for training on
downstream tasks. Low-Rank Adaptation (LoRA) [22] ex-
tends on the above by using low-rank matrix counterparts of
the original weights during fine-tuning, and keeps the actual
weights frozen to further reduce inference costs.
Continual Learning in Transformers: The recent Vision
Transformer (ViT) [12] has made a pure Transformer ar-
chitecture scalable for large scale image classification and
several works [13, 15, 26] have successfully applied the
Transformers architecture for continual learning. In [26],
for each new task, the model is copied and fixed to be used
as the teacher model in the distillation phase. In [13], a uni-
fied model is learned by building upon a new architecture
which dynamically expands the tokens processed by the last
layer to mitigate forgetting. For each task, they learn a new
task specific token per head using task-attention based de-
coder blocks. Recently, [15] proposes a method based on
pre-trained Transformers while maintaining strict control
of the memory usage and reaching state-of-the-art predic-
tive performance. However the above methods either train a
new transformer or need to fine-tune large pre-trained trans-
former models which requires significant compute in con-
trast to our objective of achieving optimal performance with
limited compute.
Coreset Replay for Continual Learning: Rehearsal-based
methods use a memory buffer to store selective samples
of the previous tasks. These samples are then replayed
with new task data to prevent catastrophic forgetting. A
notable rehearsal-based method, Experience Replay (ER)
from memory [40] interleaves the previous task samples

with the current task data for optimizing the network pa-
rameters. E2E [10] deploys a herding algorithm to bol-
ster coreset representativeness of the past task training data.
ERT [7] further extends ER by a balanced sampling strat-
egy and bias control. Selective replay [17] proposes task-
based rehearsal strategies for sample selection based on
class-margin boundary, minimum confidence etc. DER++
[6] mixes rehearsal with a distillation loss for preventing
catastrophic forgetting. HAL [11] integrates ER with an
additional objective of keeping the predictions on anchor
points of past tasks intact. MIR [39], GDumb [36] and
ASER [46] store samples based on parameter updates, or-
der of sample arrival and memory-based class boundaries
respectively. Finally, ACE [3] explores various alternative
population strategies to select coreset replay data. While
the above methods consider the representativeness of data
stored in the memory, they fail to take into account the re-
lationship between memory and the current task at hand, as
is explored in our work.

3. Preliminaries
Memory Replay In continual learning (CL)1, the objec-
tive during task T , is to find parameters θ which minimize
the loss L over the current dataset XT and all previously
seen datasets:

O := min
θ

[ ∑
x∈XT

L(x; θ)

|XT |
+

T−1∑
t=1

∑
x∈Xt

L(x; θ)

|Xt|

]
(1)

Typically, CL approaches assume that past data cannot
all be stored. Instead, experience replay approaches store
a subset of past data from all previous tasks in a memory
bufferM⊂ ∪T−1

t=1 Xt, where the size ofM is much smaller
compared to the combined number of data points from all
past tasks. These approaches [40] use M to approximate
the true objective (Eq. 1) and minimize:

min
θ

[ ∑
x∈XT

L(x; θ)

|XT |
+ α

∑
x∈M

L(x; θ)

|M|

]
(2)

where α is a hyper-parameter. The memory buffer is up-
dated after each task but the total number of stored items
is constant. The resulting method’s computational require-
ments scale well with the number of learned tasks, but the
limited size of M means that it becomes less effective at
representing past data, as the number of learned tasks in-
creases.

K-armed Bandits The (stochastic) K-armed bandit prob-
lem [5] considers a setting in which there are K available

1In our setting, the model does not have access to the task id during
inference.



actions, referred to as arms. Performing one of the actions
returns a stochastic reward drawn from an unknown distri-
bution. The problem is selecting a number of actions in a
way which minimizes the expected regret, defined as the ex-
pected difference between the rewards obtained by always
choosing the optimal action and the rewards obtained by
following our strategy. At each step, a bandit strategy ap-
proximates the parameters of the reward distribution of each
of the K actions. Thereafter, the strategy needs to select an
action to perform. One such strategy is Boltzmann Explo-
ration [23] which computes the mean of the observed re-
wards for each action, and then uses all means to define a
categorical distribution, from which the choice of action is
drawn. Finally, if the action’s distributions change between
steps, the bandit problem is referred to as non-stationary
[59].

4. Adaptive Memory Replay

In this section, we first modify the typical CL setting by
challenging the restrictive assumption that past data can-
not be accessed. Second, we modify the objective which
we minimize, in order to better reflect the new CL setting.
Third, we link the resulting problem to that of multi-armed
bandit allocation [5] and detail our approach.

4.1. Replay: A New Perspective

For FM extended pre-training, we challenge the common
CL assumption that past data is unavailable and alter the
common CL setting after making two observations. First,
data storage is cheap, therefore it is possible to store and
sample from any dataset we have seen before. Second, com-
putation is expensive, meaning that we cannot re-train on all
of the past data in memory. Following this insight, we mod-
ify the CL setting so that all of the past data can be stored,
but a CL algorithm’s computational demands to access and
use the past data need to be constant and compensated dur-
ing training to lead to zero extra cost (compared to naive
training only on new data).

Being able to access all of the past data naturally leads
to a rehearsal-based approach where one can only replay a
limited subsetM, due to computational constraints. In con-
trast to the typical memory replay solutions,M is not fixed
while training on a new task, but is instead allowed to adapt
to the new data and the changing model while maintaining
training efficiency. Therefore, we refer to it as an adaptive
memory buffer.

We begin developing our approach by modifying the ob-
jective function to better reflect our goal. First, as detailed
in the Appendix, we express the main objective (Eq. 1) in
terms of its forgetting F on past data, compared to the per-
formance of the optimal parameters for the previous task:

O = min
θ

[ ∑
x∈XT

L(x; θ)

|XT |
+

T−1∑
t=1

∑
x∈Xt

F(x; θ)
|Xt|

+ C

]

where C is a constant. This change reflects the fact that
we fine-tune the previously optimal model on the new task
and that our focus is on minimizing forgetting, rather than
improving our performance on past data. Next, we define
the optimal memory bufferM∗(θ) as the subset of past data
for which our model has the maximum forgetting. We then
following replay-based methods (Eq. 2) and similarly opti-
mize:

min
θ

[ ∑
x∈XT

L(x; θ)

|XT |
+ α

∑
x∈M∗(θ)

F(x; θ)
|M∗(θ)|

+ C

]
(3)

Minimizing this objective leads to our rehearsal-based
CL algorithm with adaptive memory M∗(θ) which replays
the past data points x ∈ M∗(θ) that have currently been
forgotten the most. Importantly, to minimize the overhead
which replaying imposes on the training process, we keep
the number of computed gradients constant by discarding a
portion of the data on the new task. To do this, we remove
|M∗(θ)| randomly selected data points for each batch of
inputs from the new task, thus keeping the total number of
processed inputs the same.

In order to compute Eq. 3, we need to be able to se-
lect M∗(θ) — the subset of all past data with the highest
forgetting. This subset changes as we update the parame-
ters θ, and it is computationally infeasible to evaluate the
forgetting of each of the past data points. Instead, we seek
to divide all past data into clusters Ai of items expected to
have similar forgetting values.

This allows us to infer the forgetting values of the data
points in a cluster, based on a small number of evaluations,
and use this to select data points for our adaptive memory
buffer which exhibits a high amount of forgetting. Cur-
rently, we place all of the data from the same previous
task into the same cluster, i.e. Ai = Xi, and assume that
it would exhibit similar forgetting values. We leave more
elaborate clustering techniques for future work.

4.2. Adaptive Memory as a Bandit Optimization

Formally, we divide all past data into K disjoint subsets
Ai, s.t. ∪Ki=1Ai = ∪T−1

i=1 Xi, where the forgetting of an in-
put is distributed according to a subset-specific distribution:
F(x) ∼ Di, for x ∈ Ai. For the parameters θj at training
iteration j, we would like to select a subset M(θj) which
exhibits close to the worst forgetting, minimizing the fol-
lowing quantity:

r(M(θj)) :=
∑

x∈M∗(θj)

F(x; θj)−
∑

x∈M(θj)

F(x; θj).
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Figure 3. Overview of our adaptive memory replay approach. New task data is integrated with selectively rehearsed old data from
full replay memory to update the task model. Unlike simple iid replay, our rehearsal data is chosen through a combination of bandit
estimation and Boltzmann sampling from clusters of old datasets stored in memory. To reduce computation costs associated with data
replay, we randomly discard samples from the training data to be replaced with the selected replay data. This ensures a cost-effective
balance between incorporating new information and retaining knowledge of previous tasks, thus mitigating catastrophic forgetting with
minimal computational overhead.

We frame this as a non-stationary K-armed bandit (KAB)
problem [47], where pulling an arm and receiving a reward
corresponds to sampling a data point from a cluster and
evaluating its forgetting. Then, at each training iteration,
we have to choose which of the K arms to pull in order to
select |M| data points with maximum forgetting. As we se-
lect different M over all training steps, we would like to re-
duce the expected regret: ER := E[

∑
j r(M(θj))], which

is the expected difference in forgetting values betweenM
andM∗ over all training steps. In this work, we implement
the Boltzmann Exploration [23] approach which, at training
step j, approximates the mean reward of each arm, denoted
by µ

(j)
i , and then uses all arms’ means as parameters for

a categorical distribution over the choice of arms to pull.
This distribution is then used to sample |M| arms and in
turn sample the adaptive memory bufferM(θj).

To approximate the mean forgetting values µ(j)
i of clus-

ter i at training step j, we first sample a small number of
data points from the cluster Ai and evaluate the average
of their forgetting values — f̄

(j)
i . We would like to com-

pute µ
(j)
i based on the previously computed mean value

µ
(j−1)
i and the currently computed forgetting average f̄

(j)
i .

However, we note that the forgetting values depend on our
model’s parameters θj , thus change between training itera-
tions. We account for this by using a moving average, which
is used for KAB when the underlying distributions are non-
stationary [49]: µ(j)

i = β f̄
(j)
i + (1− β)µ

(j−1)
i .

Once we have approximated the mean forgetting values
for all clusters, we use them to create a categorical dis-
tribution over the choice of clusters, with the help of the
tempered softmax function [19]. We compute: p(Ai)

(j) =

Algorithm 1 Adaptive Memory Replay

Require: Pre-trained model with parameters θ, datasets
{Xi}Ti=1, constant C, learning rate η, replay buffer size
|M|, and temperature t

Ensure: Updated model θ that has minimal forgetting
1: Initialize replay bufferM← ∅
2: Initialize clusters Ai ← Xi for each past dataset
3: Initialize mean forgetting µ

(0)
i ← 0 for each cluster Ai

4: for each training iteration j do
5: Sample a batch B from new data XT

6: for each cluster Ai do
7: Sample points from Ai to est. forgetting f̄

(j)
i

8: Update means µ(j)
i ← β f̄

(j)
i + (1− β)µ

(j−1)
i

9: end for
10: Compute distribution p(Ai)

(j) using softmax
11: Sample based on p(Ai)

(j) to fill bufferM(θj)
12: Remove |M(θj)| random data points from B
13: Update model to minimize objective fn (Eq. 3)
14: end for

exp{µ(j)
i /t}/Z, where t is the temperature hyperparame-

ter and Z is the normalization constant. Afterwards, we
use this distribution to sample |M| cluster indices. Finally,
we sample one input from each selected cluster, uniformly
at random, and combine the samples to create the adap-
tive memory buffer for the current training step. Our full
method is summarized in Algorithm 1.

5. Experiments
We evaluate the efficacy of our proposed adaptive mem-
ory replay for continual learning of FM pre-training (i.e.,



Table 1. Results on DomainNet [34]. Results are included for 6 tasks. Final Loss and Forgetting are reported using test data loss across
all tasks after training on the entire sequence, normalized by the Oracle (full re-training on all datasets at each task). Training time for each
approach is normalized using the Oracle training time. The ‘0-cost’ result indicates the number of training steps of our approach is reduced
to align with the training time of naive fine-tuning.

Approach

Normalized MAE Loss Normalized Training Time

Final Loss
(↓)

Forgetting
(↓) Total Selecting

Replay Data
Training
Model

Oracle 0.0% 0.0% 100.0% 0.0% 100.0%
Base 100% 0.0% 0.0% 0.0% 0.0%
Naive 54.73% 70.95% 34.19% 0.0% 34.19%

Standard Rehearsal 30.41% 22.97% 34.61% 0.0% 34.61%
Our Rehearsal 23.65% 4.39% 36.07% 2.45% 33.61%

Our Rehearsal (0 Cost) 26.69% 12.84% 34.26% 2.31% 31.93%

Table 2. Results on Medical MNIST [57]. Results are included for 5 tasks. Final Loss and Forgetting are reported using test data loss
across all tasks after training on the entire sequence, normalized by the Oracle (full re-training on all datasets at each task). Training time
for each approach is normalized using the Oracle training time. The ‘0-cost’ result indicates the number of training steps of our approach
is reduced to align with the training time of naive fine-tuning.

Approach

Normalized MAE Loss Normalized Training Time

Final Loss
(↓)

Forgetting
(↓) Total Selecting

Replay Data
Training
Model

Oracle 0.0% 0.0% 100.0% 0.0% 100.0%
Base 100% 0.0% 0.0% 0.0% 0.0%
Naive 82.36% 98.80% 35.22 0.0% 35.22

Standard Rehearsal 12.57% 5.19% 36.05% 0.0% 36.05%
Our Rehearsal 9.73% 1.61% 37.39% 1.69% 35.71%

Our Rehearsal (0 Cost) 11.44% 1.98% 35.52% 1.60% 33.92%

extended pre-training) in both the vision and language do-
mains. We utilize two distinct pre-trained models as our
backbones for these experiments: a Vision Masked Autoen-
coder (MAE) [18] pre-trained on ImageNet-1K for vision-
related tasks, and LLaMA [50] with 7 billion parameters
for language experiments. The evaluation metrics for our
experiments are twofold: test data Final Loss and test
data loss Forgetting. The Loss metrics are standard for
FM training (especially in Language Modeling) as they are
known to correlate with downstream use due to the massive
pre-training volumes and de-facto seeing most of the sam-
ples only once. These metrics are normalized between 0%
and 100%, where 0% represents an offline upper bound with
all data trained independently and identically distributed
(iid), and 100% corresponds to the performance of the pre-
trained model without any fine-tuning.

Because our primary contribution lies in our novel per-
spective of full-memory replay, we compare our approach
with full memory-access iid data replay as opposed to typi-
cal continual learning methods. We hypothesize that coreset
selection replay methods are effectively upper-bounded by

full iid replay, given their goal of identifying the most rep-
resentative data for replay (rather than our perspective of
identifying the most forgotten data for replay as a function
of the current data). Consequently, we do not compare our
method against sampled data replay in our main results ta-
bles as we store all data in memory.

Furthermore, our experiments are designed to demon-
strate the advantages of our adaptive memory replay ap-
proach over traditional iid replay, especially in terms of
computational efficiency and reduced forgetting. We con-
sider gains of our approach to be orthogonal to the realms
of non-replay regularization-based continual learning meth-
ods, and thus these comparisons are not the main focus of
our results. Besides, from the perspective of computational
efficiency, recent work has found such approaches to be
impractical for computationally bounded continual learn-
ing [16]. However, we do discuss the interaction of our ap-
proach with different continual learning strategies like reg-
ularization methods and knowledge distillation in our Ap-
pendix.

The hyperparameters for our experiments were meticu-



Table 3. Results on Synthetic Visual Concepts [9]. Results are included for 4 tasks. Final Loss and Forgetting are reported using test data
loss across all tasks after training on the entire sequence, normalized by the Oracle (full re-training on all datasets at each task). Negative
forgetting indicates forward transfer (which is only present in this unique dataset). Training time for each approach is normalized using the
Oracle training time. The ‘0-cost’ result indicates the number of training steps of our approach is reduced to align with the training time of
naive fine-tuning.

Approach

Normalized MAE Loss Normalized Training Time

Final Loss
(↓)

Forgetting
(↓) Total Selecting

Replay Data
Training
Model

Oracle 0.0% 0.0% 100.0% 0.0% 100.0%
Base 100% 0.0% 0.0% 0.0% 0.0%
Naive 52.11% 27.93% 38.87% 0.0% 38.87%

Standard Rehearsal 35.86% -6.61% 41.96% 0.0% 41.96%
Our Rehearsal 34.82% -7.78% 46.40% 44.94% 1.46%

Our Rehearsal (0 Cost) 35.36% -7.43% 37.31% 1.36% 35.94%

Table 4. Results on 5-task Causal Language Modeling benchmark. Final Loss and Forgetting are reported using test data loss across
all tasks after training on the entire sequence, normalized by the Oracle (full re-training on all datasets at each task). Training time for each
approach is normalized using the Oracle training time. The ‘0-cost’ result indicates the number of training steps of our approach is reduced
to align with the training time of naive fine-tuning.

Approach

Normalized MAE Loss Normalized Training Time

Final Loss
(↓)

Forgetting
(↓) Total Selecting

Replay Data
Training
Model

Oracle 0.0% 0.0% 100.0% 0.0% 100.0%
Base 100% 0.0% 0.0% 0.0% 0.0%
Naive 137.54% 180.36% 36.05% 0.0% 36.05%

Standard Rehearsal 44.11% 76.97% 40.32% 0.0% 40.32%
Our Rehearsal 12.88% 38.06% 45.76% 40.33% 5.42%

Our Rehearsal (0 Cost) 14.60% 39.75% 36.80% 4.04% 32.76%

lously chosen based on a series of small task experiments.
We update our model on 10, 000 new data examples per
task. In the interest of computational resources for the larger
Llama model, we approximate the training of all the model
parameters with LoRA finetuning [22] in the language mod-
eling experiments. In our experience, conclusions attained
for LoRA finetuning reflect the same in full model train-
ing. We use a learning rate of 2e − 5 for full model fine-
tuning and 2e − 4 for LoRA-based fine-tuning. For our
proposed adaptive memory replay bandit scheme, we found
that a temperature of t = 0.1 and forgetting mean update
ratio of β = 0.01 performed best. We compose our replay
batches for both iid replay and our adaptive memory replay
with a 1:1 ratio of replay data to new task training data. We
conducted evaluations on a hold-out test dataset comprising
500 samples per dataset. Additional training details can be
found in our Appendix.

5.1. Results for Vision SSL

In Tables 1,2,3, we benchmark our proposed approach on 3
different continual pre-training sequences composed of vi-
sion datasets. Our goal was to demonstrate the robustness
of our findings with a variety of unique and practical dataset
sequences. The first dataset is the DomainNet [34] dataset
(Table 1), containing 6 different domains of common ob-
jects. The next is the Medical MNIST dataset [57] (Table 2),
from which we sampled 5 standardized biomedical image
datasets containing the highest number of samples. Finally,
we use 4 attribute splits from the Synthetic Visual Concepts
(SyViC) dataset [9] (3).

Our results demonstrate the advantages of our adaptive
memory replay method in the vision domain. Our approach
consistently outperforms full memory iid replay (which
serves as an upper bound for other replay-based contin-
ual learning methods that sample from a limited coreset),
achieving lower final loss and forgetting rates. The slight
increase in normalized training time is negligible compared



to the performance gains, and furthermore, we show a 0-
cost result where we reduce the number of training steps
of our approach to align with the training time of naive fine-
tuning, and show that even this result outperforms iid replay
in all three benchmarks.

We note that our strongest performance gains come from
the DomainNet results. The gains for the medical data se-
quence and synthetic data pre-training are much more mod-
est, yet remain pronounced. The synthetic data sequence is
interesting in that forward transfer (i.e., negative forgetting)
appears in all results - however, our method still has more
forward transfer compared to iid replay. In practical terms,
our results imply that vision systems equipped with our con-
tinual learning strategy would exhibit improved robustness
over time, adapting to new data without significant loss of
prior knowledge or computational costs. We re-iterate that
there is much more room for improvement from our full-
memory continual learning perspective - advanced strate-
gies can close the gap between our method and the upper
bound with fixed time costs by exploring interesting ques-
tions such as how to better cluster the data and which new
data is more or less favorable to discard.

5.2. Results for Causal Language Modeling

Our approach is further affirmed through our language ex-
periments using the Llama model. In Table 4, we bench-
mark on a 5-dataset sequence using datasets from Hugging-
face [56]. These datasets were chosen based on the signif-
icant variations in loss observed post fine-tuning, thus pro-
viding a rigorous test for our approach. The datasets en-
compass a broad range of language tasks, ensuring that our
results are representative of diverse language modeling sce-
narios. Further specifics about these datasets are available
in our Appendix.

The performance of our adaptive memory replay in our
language experiments mirrors the success observed in the
vision tasks. We see a significant reduction in both forget-
ting and final loss compared to the iid full-memory replay.
Furthermore, the ‘0-cost’ variant of our method is partic-
ularly noteworthy, as it manages to retain a high level of
performance without additional computational expenditure
compared to naive fine-tuning. This aspect is crucial for ap-
plications where computational resources are limited, espe-
cially fitting LLM extended pre-training where due to high
data volumes and enormous model sizes even a tiny fraction
of extra cost is intolerable.

5.3. Additional Analysis

In Figure 4, we present a comprehensive comparison of the
final loss versus training time for our adaptive memory re-
play method against the Oracle, using the Synthetic Visual
Concepts dataset sequence [9]. This plot demonstrates how
our method converges towards the Oracle’s performance as

Figure 4. Final Loss vs Training Time for adaptive memory replay
vs Oracle using the Synthetic Visual Concepts [9] sequence.

we increase the compute budget of our method (via using
more replay samples and discarding fewer new task sam-
ples). With a limited budget, there is a notable difference
in the final loss between our method and the Oracle. How-
ever, as training progresses, our method steadily approaches
the Oracle’s level of performance, matching and even out-
performing Oracle (which as a fixed compute budget itself,
pre-defined by the number of training steps we use) with a
lower compute cost. The horizontal dotted line marks the
point at which our approach reaches the Oracle’s normal-
ized loss, showcasing the efficiency of our method in terms
of both loss minimization and computational time. This re-
sult is significant as it not only validates the effectiveness
of our adaptive memory replay in reducing the final loss but
also highlights its capability to achieve this with a substan-
tially lower training time.

6. Conclusion

In this paper, we underscored the importance of adapting
machine learning methodologies to the ever-evolving de-
mands of real-world large-scale continual learning. Our
findings, rooted in extensive evaluations across both vision
and language tasks, validate the advantages of our adaptive
memory replay for continual learning. By dynamically se-
lecting past training data samples, our method offers a nu-
anced balance, ensuring minimized forgetting without im-
posing costly computational requirements. Ultimately, we
hope to inspire methodologies that are both computation-
ally efficient and effective in real-world continual learning
scenarios, where data access and computational resources
are bound by practical constraints. This research trajectory
serves as a stepping stone towards the development of con-
tinually learning systems that efficiently and intelligently
utilize all available data, enhancing their learning and adapt-
ability across a series of tasks throughout their life-cycle.



Limitations & Future work. Future work should focus
on refining the adaptive memory replay mechanism, partic-
ularly exploring more sophisticated bandit-based selection
strategies to further enhance the balance between retaining
old knowledge and accommodating new information. The
decision of which data to discard during the replay phase
also warrants deeper investigation to avoid potential loss of
critical information (and furthermore potential unrealized
gains in discarding repetitive or similar samples). There is
also a great need to develop advancing clustering techniques
to capture the subtleties of data evolution which can lead to
more representative memory buffers. In addition, bringing
greater realism into continual learning models by incorpo-
rating real-world constraints and scenarios will be crucial,
such as blurred task boundaries and online clustering.
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Appendix

A. Method

This section shows how to express the CL objective (Eq. 1)
in terms of the amount of forgetting. To start off, for task
T , we denote the optimal parameters found on the previous
task as θ∗T−1. Then, we define the forgetting for some pa-
rameter on some example to be positive if the loss on that
example has increased: F(x; θ) = L(x; θ) − L(x; θ∗T−1).
Starting from our objective in Eq. 1, we write:

min
θ

[ ∑
x∈XT

L(x; θ)

|XT |
+

T−1∑
t=1

∑
x∈Xt

L(x; θ)

|Xt|

]

= min
θ

[ ∑
x∈XT

L(x; θ)

|XT |

+

T−1∑
t=1

∑
x∈Xt

L(x; θ)− L(x; θ∗T−1) + L(x; θ∗T−1)

|Xt|

]

= min
θ

[ ∑
x∈XT

L(x; θ)

|XT |

+

T−1∑
t=1

∑
x∈Xt

L(x; θ)− L(x; θ∗T−1)

|Xt|

+

T−1∑
t=1

∑
x∈Xt

L(x; θ∗T−1)

]

= min
θ

[ ∑
x∈XT

L(x; θ)

|XT |
+

T−1∑
t=1

∑
x∈Xt

F(x; θ)
|Xt|

+ C

]

Finally, we note that when minimizing the forgetting
F(x; θ) = L(x; θ) − L(x; θ∗T−1), only only needs to com-
pute and minimize the loss on the new task L(x; θ), since
L(x; θ∗T−1) is a fixed value. Therefore, we can optimize
F without introducing extra computational demands to our
training process.

B. On Regularization Losses

In our approach, we prioritize computational efficiency and
focus on methods that do not incur additional computational
costs. This decision is informed by the findings of Ghu-
naim et al. [16], who demonstrate that both simple and ad-
vanced regularization-based continual learning techniques
struggle to perform effectively under computational budget
constraints. Moreover, their research suggests that simple
experience replay is a more effective strategy in such sce-
narios. Thus, when extending such computational consid-
erations to the setting of extended continual pre-training,
we focus on outperforming iid experience replay without

introducing any additional computational costs. Further-
more, we consider gains of our approach to be orthogonal
to the realms of non-replay regularization-based continual
learning methods, and thus our method could potentially be
integrated with these regularization techniques to enhance
overall performance, offering a synergistic effect.

C. Expanded Implementation Details
We use A100 GPUs to generate all results. The hyper-
parameters for our experiments were meticulously chosen
based on a series of small task experiments in which we
use only used half of the number of tasks. We update our
model on 10, 000 new data examples per task. In the inter-
est of computational resources for the larger Llama model,
we approximate the training of all the model parameters
with LoRA finetuning [22] in the language modeling exper-
iments. In our experience, conclusions attained for LoRA
finetuning reflect the same in full model training. We use a
learning rate of 2e− 5 for full model fine-tuning and 2e− 4
for LoRA-based fine-tuning. For LoRA-based fine-tuning,
we use a rank of 8 for the Llama model experiments. For our
proposed adaptive memory replay bandit scheme, we found
that a temperature of t = 0.1 and forgetting mean update
ratio of β = 0.01 performed best. We compose our replay
batches for both iid replay and our adaptive memory replay
with a 1:1 ratio of replay data to new task training data. We
conducted evaluations on a hold-out test dataset comprising
500 samples per dataset. We used a batch size of 128 and
16 for the Masked Autoencoder and Llama models, respec-
tively, which was chosen based on GPU memory. For the
Llama experiments, we leveraged low-precision training.

D. Expanded Benchmark Details
In our main text, we evaluated the Masked Autoencoder
model for three vision datasets. The first dataset is
the DomainNet [34] dataset, containing 6 different do-
mains of common objects. The next is the Medical
MNIST dataset [57], from which we sampled 5 standard-
ized biomedical image datasets containing the highest num-
ber of samples. Finally, we use 4 attribute splits from the
Synthetic Visual Concepts (SyViC) dataset [9].

For the Llama model, we benchmarked on a 5-dataset
sequence using datasets from Huggingface [56]. The
datasets involved in this sequence were banking77 [8], wiki-
cat-sum/animal [35], bigbio/hallmarks-of-cancer [1], big-
patent [45], and wikitext [32].
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