
Two-Level Microprocessor-Accelerator Partitioning

Abstract
The integration of microprocessors and field-programmable gate

array (FPGA) fabric on a single chip increases both the utility

and necessity of tools that automatically move software functions

from the microprocessor to accelerators on the FPGA to improve

performance or energy. Such hardware/software partitioning for

modern FPGAs involves the problem of partitioning functions

among two levels of accelerator groups – tightly-coupled

accelerators that have fast single-clock-cycle memory access to

the microprocessor’s memory, and loosely-coupled accelerators

that access memory through a bridge to avoid slowing the main

clock period with their longer critical paths. We introduce this

new two-level accelerator-partitioning problem, and we describe

a novel optimal dynamic programming algorithm to solve the

problem. By making use of the size constraint imposed by FPGAs,

the algorithm has what is effectively quadratic runtime

complexity, running in just a few seconds for examples with up to

25 accelerators, obtaining an average performance improvement

of 35% compared to a traditional single-level bus architecture.

1. Introduction
Platforms incorporating both a microprocessor and FPGA (Field-

Programmable Gate Array) fabric on a single chip are becoming

an increasingly popular software implementation platform in

embedded computing systems. Some such platforms include hard-

core processors, which are physically designed onto the chip

alongside the FPGA fabric. Other platforms utilize soft-core

processors, which are synthesized onto the FPGA fabric itself.

Incorporating both a microprocessor (hard or soft core) and FPGA

fabric on a single chip provides several advantages over multi-

chip solutions, including reduced part counts, faster

communication between the microprocessor and the logic mapped

to the FPGA, and potentially reduced system costs.

The close proximity of FPGA fabric to a microprocessor

encourages movement of a microprocessor program’s critical

computations from microprocessor execution to custom processor

circuit execution on FPGA fabric, to obtain substantial speedups

ranging from 2x to 100x, as well as energy savings [1][5]

[10][18]. Such hardware/software partitioning takes two forms,

one multi-processing oriented, the other sequential processing

oriented. The multi-processing oriented form, sometimes referred

to as system synthesis, maps a task graph to a set of concurrently-

executing communicating microprocessors and custom processors

[4][11]. The sequential processing oriented form creates custom

circuits to execute commonly-executed functions (or sequences of

instructions) found in a single sequential program of one

microprocessor [8][10][15][18]. Several commercial tools

supporting the sequential processing form of partitioning have

recently appeared [3][16]. ASIP (application-specific instruction-

set processing) approaches[21] may also be viewed as a

sequential form of partitioning.

We focus on the sequential form of partitioning. In that form,

the custom circuits may be viewed as accelerators, standard

forms of which include floating point accelerators and graphics

accelerators. In stark contrast to the multi-processing form of

partitioning in which processors execute concurrently and contend

for resources, the accelerators in the sequential processing form

typically execute as microprocessor slaves, thus greatly

simplifying communication and synchronization issues.

Previous partitioning work has assumed a single clock

frequency for all of a microprocessor’s accelerators, or ignores

clock frequencies entirely. However, modern FPGA technologies

support the use of dozens of different clock frequencies on a

single device. Thus, a new aspect of the partitioning problem

consists of determining which accelerators should be tightly-

coupled to the microprocessor, and which should be loosely-

coupled. Tightly-coupled accelerators have direct access to the

microprocessor memory or cache, and thus should operate at a

single clock frequency, which will necessarily be the lowest

frequency of any of those accelerators. Loosely-coupled

accelerators instead access the memory through a bridge, and

thus may have individually optimized clock frequencies. For

example, a Xilinx Microblaze soft-core processor utilizes a dual-

port block RAM for memory (or cache), as shown in Figure 1.

Tightly-coupled accelerators and a bridge access the second port

of that RAM using a single frequency. Mapping a given function

to the tightly-coupled group provides single-cycle access but at

the expense of running at a possibly slower frequency, versus

mapping to the loosely-coupled group to run at the fastest

possible individual frequency, but requiring multiple cycles

through the bridge for memory accesses. Thus, a new partitioning

problem exists that seeks to determine the best mapping of

functions among tightly-coupled and loosely-coupled groups to

achieve best overall performance – a problem we refer to as the

Figure 1: Target two-level coupled architecture, derived from

Xilinx’s Microblaze base architecture

Area constraint

One clock

1 cycle

access

µP

Memory (or cache)

Tightly

coupled

accelerators

(TC)

Loosely

coupled

accelerators

(LC)

f1

1 cycle access

d cycle access

Bridge

Clock(s)

f2 f3 fm

Scott Sirowy, Yonghui Wu, Stefano Lonardi, Frank Vahid*

Department of Computer Science and Engineering – University of California, Riverside

{ssirowy, yonghui,stelo, vahid}@cs.ucr.edu
*
Also with the Center for Embedded Computer Systems, University of California, Irvine

two-level accelerator partitioning problem.

Although modern FPGA architectures motivated our work on

the problem, as multiple clock domains are becoming common in

ASIC technology also [1], the problem may therefore also exist

for ASIC microprocessor/accelerator architectures supporting

multiple clock domains.

 Figure 3 illustrates the benefits of considering two-levels of

accelerators under the above clock frequency constraints, for an

application with 10 accelerators, with the 1024 possible

partitionings along the x-axis, and the application’s runtime on

the y-axis. The figure shows that making all accelerators either

tightly-coupled or loosely-coupled results in significantly slower

performance than the best two-level partition. Figure 2 further

highlights that a two-level partitioning of an application with

varying numbers of accelerators results in superior execution

times over partitioning all accelerators tightly or all loosely.

Previous hardware/software partitioning work does not

consider two-levels of coupling and in particular does not

consider the clock frequency interactions among tightly-coupled

accelerators, instead assuming all accelerators have single-cycle

access [9][15][17][18], assuming all accelerators have multiple

cycle access [12][20], or simply associating an execution time

with functions without considering details of clock frequency

[4][10].

We present two contributions in this paper. We define the

two-level accelerator partitioning problem and show the

performance benefits achievable by solving the problem. Also, we

introduce a fast optimal algorithm that scales well for even large

problem sizes. The key to the algorithm is to map the problem to

a series of 0-1 knapsack problems, and then to solve each

knapsack problem using a dynamic programming solution having

a pseudo-polynomial runtime, resulting in polynomial (effectively

quadratic) runtime. A fast optimal algorithm not only ensures the

best results, but potentially enables repeated use of the algorithm

as part of higher-level exploration approaches without

accumulated decision errors due to sub-optimal partial solutions.

To our knowledge, our algorithm is novel and might be applied to

number of different problems not previously explored. Many

modern systems implement a two-level bus structure very similar

to the architecture in Figure 1, and thus our problem solution is

applicable to many systems that require performance gains.

2. Two-level Accelerator Partitioning Problem

Definition
The two-level accelerator partitioning problem takes as input a set

of functions to be implemented as accelerators, determined by a

previous hardware/software partitioning decision (note that our

problem and hence algorithm may actually be a sub-problem of a

higher-level exploration technique, and thus hardware/software

partitioning and two-level accelerator partitioning may be done

iteratively). Each accelerator is annotated with four numbers,

determined from the synthesized circuit generated for the

function: the number of memory accesses, the total number of

computation cycles, the synthesized area, and the maximum

possible clock frequency. These numbers are straightforwardly

obtained using simulation and synthesis [18][19]. The number of

memory accesses and computation cycles may represent averages

or worst-case numbers, depending on whether the designer seeks

to optimize for overall average or worst-case performance.

The number of extra cycles introduced by the bridge is also

given. This memory access penalty is an architectural feature of

the bridge, and not a per-application number, so the number is

fixed for all applications. A loosely-coupled accelerator would

incur this latency penalty each time it made an access to memory,

since the accelerator is connected to the memory through the

bridge.

All tightly-coupled accelerators, having single-cycle access to

memory or cache, must run at a single clock frequency – this

assumption matches several modern commercial FPGAs that

incorporate microprocessors. Because all those accelerators must

run at one clock frequency, they all must run at the frequency of

the slowest tightly-coupled accelerator in the group. The tightly-

coupled accelerators’ frequency need not be the same as the

microprocessor’s frequency. Loosely-coupled accelerators, in

contrast, each run at their unique fastest clock frequency. Modern

FPGAs support multiple clock frequencies on the same platform.

For instance, the Xilinx Virtex II Pro supports eight unique clock

frequencies, and the trend is towards more frequencies per device.

Formally, the problem takes as input a set F of n functions {f0,

f1, … fn}, and each function requires accelerator implementation.

Each function f has four attributes: fi.comp_cycles,

fi.mem_accesses, fi.clk_freq, and fi.area. The problem definition

involves two initially empty sets, TC, which represents tightly-

coupled accelerators, and LC, which represents loosely-coupled

Figure 2: The need for a two level coupling architecture. In all

applications examined, two-level accelerator partitioning

resulted in improvement, sometimes quite substantial.

0

20

40

60

80

100

5 7 9 10 11 13 Average

Number of Coprocessors

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

Tightly Coupled

Loosely Coupled

Two Level

Figure 3: Complete two-level accelerator partition solution

space for a 10-accelerator example, showing the benefit of

finding the best two-level accelerator partition vs. making all

processors tightly-coupled or all processors loosely-coupled.

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Partition number

A
p

p
li

c
a

ti
o

n
 r

u
n

ti
m

e
 (

m
s

)

All tightly-coupled

All loosely-coupled

Optimal two-level accelerator partition

accelerators. Each function in F must be mapped to exactly one of

the sets TC or LC.

The objective function is to minimize the total execution time

of all the accelerators, computed as follows:

))_/)_(

)_/_(*(

)min_/)]__(([

1

1

n

i

ii

ii

i

n

i

i

freqclkcyclescomp

freqclkaccessesmemdLC

clockaccessesmemcyclescompTC

min_clock is the minimum clock frequency within the TC set. d is

the memory delay from the bridge for the loosely coupled

accelerators. Figure 1 showed a sample architecture and

mapping. The architecture is based on standard two-level

architectures with both a local processor bus and peripheral bus,

both of which have access to a shared memory (cache).

A size constraint exists for the tightly-coupled accelerator

group, due to FPGA congestion issues relating to providing

multiple accelerators with single-cycle access to memory or

cache. In the completely performance-driven problem where no

such constraint exists, we simply utilize a constraint larger than

all accelerators to match our formulation. No size constraint exists

for the loosely-coupled accelerators, as we assume that the

previous hardware/software partitioning ensured that the functions

mapped to accelerators fit on available FPGA resources.

However, in the case where a size constraint does exist for the

loosely-coupled accelerators, a second FPGA could be added,

which would also communicate through a bridge.

The above problem definition has the limitation of not

considering the situation where the number of frequencies

available to the loosely-coupled processors is less than the

number of such processors. We plan to consider that situation,

along with architectures having more than two levels of

accelerators, in future work.

3. NKDP Algorithm- N 0-1 Knapsacks and

Dynamic Programming

3.1 Exhaustive and greedy solutions
To solve the above problem, we first developed an exhaustive

search algorithm. Exhaustive search finds the optimal solution in

a few seconds for problems involving up to about 15 accelerators.

Larger problems require minutes or hours, and the algorithm does

not complete in any reasonable time for problems larger than 20

functions.

We also developed a greedy heuristic. The heuristic starts

with all functions mapped to the loosely-coupled group. It orders

the functions according to their contribution to total execution

time. It then considers each function in that order, and moves a

function to the tightly-coupled group if such a move improves the

application runtime and if the function fits in the remaining

available size of the tightly-coupled group. This heuristic is fast,

but we found that the heuristic yielded solutions 15% worse on

average compared to optimal.

3.2 NKDP solution
We sought to develop a solution that would yield closer-to-

optimal solutions in reasonable runtime. Upon investigating such

a solution, we came upon an idea that would actually yield

optimal solutions, yet in effectively polynomial time. (The

partitioning problem is known to be NP-complete [14], so a truly

polynomial-time solution is not possible.)

The key idea to our solution approach is that the two-level

accelerator partitioning problem with n functions can be

decomposed into n 0-1 knapsack problems. In the classic 0-1

knapsack problem, the goal is to choose a subset of the items

whose total value is maximized while at the same time the sum of

the weights does not violate the constraint on the overall capacity

given the value and the weight of n items to be stored, and the

capacity of the knapsack S. This problem is NP-complete, but can

be solved optimally with a dynamic programming approach in

pseudo-polynomial time.

We refer to our solution as the n-knapsack dynamic

programming, or NKDP, solution. The pseudo code is presented

in Figure 4. The inputs to our algorithms are S: the total area

constraint of the tightly coupled group, n: the number of

accelerators, d: memory access penalty for the bridge, and A: an

array of n accelerators. The output from the algorithm is the

optimal set of accelerators to be tightly coupled.

To the best of our knowledge, our solution approach to the

two-level accelerator partitioning problem is novel. The idea

behind our algorithm is that if we “would know” the slowest

accelerator in the tightly-coupled set (let the accelerator be X), we

can optimally map all the functions to the tightly and loosely

coupled sets as follows:

1) Map X to the tightly-coupled set, since based on our

assumption, X is in the tightly-coupled set.

2) Map all functions whose accelerators have a slower

frequency than X to the loosely-coupled set, because

otherwise mapping that function to the tightly-coupled set

would violate our assumption that X is the slowest

accelerator in the tightly-coupled set.

3) Let the set of functions whose accelerators have the same

frequencies as or higher frequencies than X be the set

S_FAST. For each function in S_FAST, calculate the

reduction in the function’s execution time should that

function be mapped to the tightly-coupled set as opposed to

the loosely-coupled set. This calculation can be done because

the function’s execution time as a tightly-coupled accelerator

is known (because we know the function will run at the same

Figure 4: NKDP algorithm

NKDP (S, n, d, A)

1. A Sort the accelerators in A in the decreasing order of their frequencies

2. min_t
n

i

clkiAcciAfmemiA
1

].[/)_].[*].[(

3. opt_sol { }

4. for i 1 to n

4.1. freq = A[i].fq

4.2. for j 1 to (i-1)

V[j] ((A[j].mc * f + A[j].cc) / A[j].fq) – ((A[j].mc + A[j].cc) /

freq);

W[j] A[j].size;

4.3. S’ = S – A[i].size

4.4. tmp_sol, tmp_t Knapsack01(V,W,S’)

4.5. tmp_sol tmp_sol A[i]; tmp_t tmp_t + (A[i].mc + A[i].cc)/ freq

4.6. if tmp_t < min_t

min_t tmp_t, opt_sol tmp_sol

5. return opt_sol

frequency as that of X), and because the function’s execution

time as a loosely-coupled processor is known (because we

know the function’s accelerator clock frequency and the

memory access penalty). Note that the reduction in execution

time can be negative, which means mapping the function to

the tightly-coupled set will lengthen its execution time. If

that happens, the function is mapped to the loosely-coupled

set immediately, and is removed from S_FAST.

4) Now the problem of mapping the functions in set S_FAST is

reduced to the classic 0-1 knapsack problem, where S_FAST

contains the set of items to be chosen, the weight of each

item is just the size of the corresponding accelerator, the

value of each item is the reduction of the function’s

execution time that was calculated in the previous step, and

the capacity of the knapsack is the area constraint of the

overall tightly coupled group minus the area of X. We seek a

subset of S_FAST that maximizes the overall reduction in

the execution time while still satisfying the total area

constraint of the tightly-coupled set.

5) The 0-1 knapsack problem that is induced in the previous

step can be solved optimally by dynamic programming, as

we showed in line 4.2 in the pseudo code, which has a time

complexity of O(Sn), where n is the number of items in set

S_FAST and S is the capacity of the knapsack. The optimum

solution to the above 0-1 knapsack problem corresponds to

the sub-set of accelerators in S_FAST that should be mapped

as tightly coupled. The rest of the accelerators should all be

mapped as loosely coupled.

The above steps will yield the optimum solution if X is

known. Of course, we do not know X in advance, but that does

not matter since we can try all the possible choices of X. For each

function, we assume the function is X, and we run the above five

steps to obtain a locally-optimal solution. Among all the locally-

optimal solutions thus obtained, the one that has the minimum

overall execution time must be globally optimal.

In our earlier algorithm pseudo-code, we first sort the

functions in decreasing order of their frequencies (line 2 of the

pseudo-code), such that the set S_FAST that corresponds to the

current choice of X can be easily identified, which are just the

functions that precede X in the list.

3.3 NKDP complexity
Since our algorithm decomposes the original problem into n 0-1

knapsack problems, and solves each optimally via dynamic

programming (which has a time complexity of O(Sn) as we

mentioned earlier), the overall time complexity becomes O(Sn2).

In practical applications, the number of functions n will rarely be

higher than fifty, while the size of the knapsack S will usually be

on the order of thousands (of combinational logic blocks or

lookup tables) for FPGA technology and typical numbers of

functions mapped to accelerators. These figures allow us to claim

that our algorithm is in practice computationally efficient, and at

the same time the solution it computes is globally optimal.

3.4 NKDP Quantization
We observe that our dynamic programming formulation relies on

the value of the area constraint input in order to achieve fast

algorithm runtimes. We briefly mentioned in the last section that

the area constraints of typical FPGAs are on the order of

thousands, which could potentially make the dynamic

programming algorithm run very slow. The steady increase in the

amount of configurable logic on typical FPGAs exacerbates the

situation. However, since we are mainly concerned with

application runtime, and area constraints are usually a soft

constraint, especially in the early design stage when such a

decision is made, we can reduce the area constraint by dividing by

a quantization factor, and still achieve near-optimal configuration,

as long as we quantize the areas of the accelerators by the same

factor. Quantizing the area inputs by a factor of ten would result

in filling in a dynamic programming table one-tenth its original

size; quantizing by 100 would yield a table one-hundredth its

original size. Such optimizations would result approximately in

algorithm speedups of 10x and 100x. The proposed quantization

technique makes NKDP suitable for an even larger design space

exploration and/or a dynamically tuned environment.

4. Experiments and Results
This section presents results of applying the NKDP algorithm to a

standard benchmark, a commercial quality H.264 video decoder,

as well as to several synthetic examples.

To evaluate both the quality and performance of our

algorithm, we implemented NKDP, greedy, and exhaustive

solutions. We wrote our implementation with several hundred

lines of C. We ran our experiments on an Intel Celeron 2.5 GHz

machine running with 512 MB RAM.

We first examine NKDP using various levels of quantization,

particularly to determine the returns we achieve for larger

quantization factors, and whether or not those have any effect on

the solution found. Figure 5 shows our findings from applying

quantization factors to NKDP of ten and hundred to three

applications. We observe from Figure 5(a) that moving from no

quantization to a factor of ten results in a much larger difference

in algorithm execution time than moving from ten to hundred.

This suggests there are diminishing returns in applying

quantization to NKDP, at the risk of altering the area constraint

too much. We recall that for every order of magnitude of area

Figure 5: Quantizing area on three applications (labeled 1, 2, and 3) to improve NKDP algorithm runtime: (a) Algorithm runtime for

quantization factors of 10 and 100, and (b) resulting application runtimes found by the algorithm. Quantization factors of 10 and 100

improve runtimes with little impact on quality of results.

0

5

10

15

20

25

30

1 10 100

Quantization(Log Scale)

A
lg

o
ri
th

m
 R

u
n
tim

e
 (

s
)

1

2

3

0

1

2

3

4

5

6

1 10 100

Quantization(Log Scale)

A
p
p
lic

a
tio

n
 R

u
n
tim

e
 (

s
)

1

2

3

quantized, we lose that much accuracy in how much area was

actually used for the tightly couple accelerator group. Figure 5(b)

shows both quantization factors still achieve the same application

execution time, but this may not be the case if we start to quantize

too much. Through similar experiments with other benchmarks,

we felt a quantization factor of ten achieves both an optimal

partition as well as a fast algorithm runtime, suitable for even the

largest of partitioning problems.

 We next begin examining a benchmark derived from the

Pegwit decoder benchmark of MediaBench [13]. Figure 6 shows,

for the most critical four functions of the benchmark, the compute

cycles, number of memory accesses, clock frequency, and area for

the accelerators that would be synthesized for each function. We

obtained these figures from both a Xilinx synthesis tool and hand

analysis of the Pegwit C code.

Figure 8 shows the benchmark execution time achieved by

partitioning using the NKDP solution, compared with a software-

only solution. The greedy solution is also shown. While the

greedy solution was also able to find the optimal for this

benchmark, it fails to do so in later examples. Both NKDP and

the greedy heuristic partitioned functions one and two as tightly

coupled accelerators, and functions three and four as loosely

coupled. This partitioning makes sense, as partitioning either

function three or four would result in a large clock penalty on the

tightly coupled set. Also, since functions one and two spend a

significant portion of their time accessing the memory,

partitioning either function loosely would have resulted in a large

latency penalty through the bridge to the memory (cache). Figure

7 further expands our findings on Pegwit to show that the two-

level partitioning of the accelerators results in a superior

execution time over mapping all functions tightly or all loosely.

Figure 9 shows the partitioning results obtained by the NKDP

algorithm under different area constraints imposed on the tightly-

coupled accelerator set. The results indicate that the algorithm

readily handles a variety of area constraints. The optimal

partitioning of the four accelerators for Pegwit with no size

constraint would be to tightly couple functions one and two, and

loosely couple functions three and four. However, when we

introduce an area of constraint of one thousand LUTs for the

tightly coupled accelerators, we observe that the optimal solution

is to tightly couple functions one and four, and loosely couple the

other two. If we restrict the Pegwit decoder to only 750 LUTs,

then tightly coupling only function one yields the best mapping. It

would have been possible to tightly couple functions three and

four instead, but because coupling function three tightly would

have resulted in a clock speed of 40 MHz, the overall application

runtime would have taken a significant hit. Finally, if we restrict

the decoder to 600 LUTs, tightly coupling only function two

becomes the only real choice since it is the only significant

accelerator to be able to fit within the constraint.

We also tested our two-level partitioning algorithm on a

proprietary H.264 video decoder, part of the MPEG-4 standard.

H.264 consists of a number of functions suitable for hardware

implementation. In our experiments, we chose to implement the

eight most critical functions through results we obtained from

profiling and synthesis. The functions are primarily targeted at the

frame conversion stage of the decoding process, and supplied

ample opportunity for hardware acceleration. Through synthesis

and hand analysis of the C code, we were able to extract estimates

of the number of computation cycles, memory accesses, clock

frequency, and area associated with each function. The results of

running our greedy heuristic and NKDP algorithm are also shown

in Figure 7. An exhaustive search is shown for comparison

purposes to show that NKDP was able to find the optimal

configuration. We also show that a two-level partitioning results

in almost half the execution time than mapping all functions

tightly or all loosely. For the eight functions we looked at, NKDP

partitioned seven of the functions tightly and one loosely. Closer

inspection of the functions’ respective clock frequencies revealed

that the seven functions coupled tightly all had very similar clock

frequencies, while the loosely coupled accelerator had a much

lower frequency. Such a mapping is intuitive since the seven

coupled tightly together would not incur a large penalty because

their frequencies were similar, while the eighth function would

have caused the group to suffer a large clock frequency penalty.

We present results for seven different synthetic benchmarks

of increasing numbers of functions, shown in Figure 10. Figure

Figure 6: Pegwit partitioned functions for accelerator generation. Figure 7: Comparing NKDP to all tightly coupled, all loosely

coupled, optimal (exhaustive), and greedy heuristic.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Pegwit H264

Benchmarks

A
p

p
li
c
a
ti

o
n

 R
u

n
ti

m
e
(s

)

Loosely Coupled

Tightly Coupled

Exhaustive

Greedy

NKDP

Figure 8: Pegwit benchmark results showing that NKDP finds the

optimal solution with an application runtime reduction of 60%.

0

0.2

0.4

0.6

0.8

1

1.2

Software

Implementation

Greedy NKDP

Implementation

A
p

p
li
c
a
ti

o
n

R
u

n
ti

m
e
(N

o
rm

a
li
z
e
d

)

Figure 9: Pegwit benchmark partitioning with different area

constraints on the set of tightly-coupled accelerators, compared

to a full software implementation

0

0.1

0.2

0.3

SW None 1000

LUTs

750

LUTs

600

LUTs

Area Constraint

A
p

p
li
c
a
ti

o
n

R
u

n
ti

m
e
(s

)

Function Compute Memory Clock Freq. Area

Cycles Accesses (MHz) (LUTs)

1 405 645 61 618

2 394 627 74 411

3 44 70 40 273

4 44 70 50 305

10(a) shows that NKDP and a quantized version achieves the

optimal results, verified by exhaustive search, as expected

because NKDP is designed to find the optimal. That figure also

shows that the greedy heuristic defined earlier sometimes does not

find the optimal, and in a few cases is significantly inferior to the

optimal. Figure 10(b) shows that the NKDP runtime scales quite

reasonably with problem size, unlike exhaustive search, whose

exponential growth becomes evident at around 20 functions.

Furthermore, NKDP_quantized runs in under 1 second even for

25 functions, with no change in solution quality.

5. Conclusions and Future Work
We introduced the two-level accelerator partitioning problem, and

presented a novel and efficient solution, NKDP, based on a

decomposition of the problem into a series of 0-1 knapsack

problems. NKDP has pseudo-polynomial runtime, and executes in

just seconds for practical-sized examples. The solution produced

optimal two-level partitions outperforming a single level

accelerator architecture by an average of 35%, and outperforming

a greedy two-level partitioning heuristic by an average of 15%.

We also showed that quantizing accelerator sizes could yield

more than 20x algorithm runtime improvements with no

noticeable degradation of partition quality, yielding algorithm

runtimes under 1 second for even large examples. We plan to

extend our techniques to consider more complex exploration

spaces, such as considering a finite number of clock frequencies,

multiple frequencies for tightly-coupled processors,

multidimensional resource constraints that consider hard-core

resources like multipliers and block RAMs, handling memory

accesses that don’t all take the same amount of time, and

architecture with more than two levels of accelerators.

6. Acknowledgements
This work was supported in part by the National Science

Foundation (CNS-0614957) and the Semiconductor Research

Corporation (2005-HJ-1331), and by donations from Xilinx Corp.

References
[1] Chattopadhyay, A. and Z. Zilic. GALDS: A Complete Framework

for Designing Multiclock ASICs and SoCs. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, Vol. 13, No. 6, June 2005

[2] Compton, K. and S. Hauck. Reconfigurable computing: a survey of
systems and software. ACM Comput. Surv. 34, 2 (Jun. 2002), 171-
210. 2002

[3] CriticalBlue. http://www.criticalblue.com
[4] Eles, P., Z. Peng, K. Kuchcinsky, and A. Doboli. System Level

Hardware/Software Partitioning Based on Simulated Annealing and
Tabu Search. Design Automation for Embedded Systems, vol2, no
1, 5-32 January 1997.

[5] Excalibur. Altera Corp., http://www.altera.com
[6] Galanis, M.D, A. Milidonis, G. Theodoridis, D. Soudris,and C. E.

Goutis. A Partitioning Methodology for Accelerating Applications in
Hybrid Reconfigurable Platforms. Design Automation and Test in
Europe (DATE), pp. 247-252, 2005.

[7] Guo, Z., W. Najjar, F. Vahid, and K. Vissers.. A quantitative analysis
of the speedup factors of FPGAs over processors. In Proceedings of
the 2004 ACM/SIGDA 12th international Symposium on Field
Programmable Gate Arrays. FPGA '04. ACM Press, New York, NY,
162-170.2004

[8] Gupta, R. and G. De Micheli. Hardware-Software Cosynthesis For
Digital Systems. IEEE Design and Test of Computers. Pages 29-41,
September 1993.

[9] Hauser, J.R. and J. Wawrzynek. Garp: A MIPS Processor with a
Reconfigurable Accelerator. FPGAs for Custom Computing
Machines, 1997. Proceedings., The 5th Annual IEEE Symposium
on16-18 April 1997 Page(s):12 – 21

[10] Henkel, J. A low power hardware/software partitioning approach for
core-based embedded systems. In Proceedings of the 36th
ACM/IEEE Design Automation Conference, 122–127.1999

[11] Kalavade, A. and Subrahmanyam, P. A. 1997. Hardware/software
partitioning for multi-function systems. In Proceedings of the 1997
IEEE/ACM international Conference on Computer-Aided Design

[12] Laufer, R., R.R Taylor, and H. Schmit..PCI-Piperench amd the
Sword API: A system for Stream-based Reconfigurable Computing.
Field-Programmable Custom Computing Machines. FCCM '99.
Proceedings. Seventh Annual IEEE Symposium on
21-23 April 1999 Page(s):200 – 208.1999

[13] Lee, C., M. Potkonjak., and W.H Mangione-Smith. MediaBench: a
tool for evaluating and synthesizing multimedia and communicatons
systems. In Proceedings of the 30th Annual ACM/IEEE international
Symposium on Microarchitecture International Symposium on
Microarchitecture. IEEE Computer Society, Washington, DC, 330-
335. 1997.

[14] Lengauer, T. 1990. Combinatorial Algorithms for Integrated Circuit
Layout. John Wiley & Sons, Inc., New York, NY.

[15] Miyamori, T., and U. Olukotun. A Quantitative Analysis of
Reconfigurable Coprocessors for Multimedia Applications. FPGAs
for Custom Computing Machines. Proceedings. IEEE Symposium on
15-17 April 1998 Page(s):2 – 11.1998

[16] Poseidon Triton System. http://www.poseidon-systems.com
[17] Rupp, C.R.; M. Landguth,, T. Garverick., E. Gomersall, H. Holt.;

J.M Arnold,. And M. Gokhale. The NAPA Adaptive Processing
Architecture. FPGAs for Custom Computing Machines, 1998.
Proceedings. IEEE Symposium on15-17 April 1998 Page(s):28 - 37

[18] Stitt, G., F. Vahid, and S. Nematbakshi. Energy Savings and
Speedups From Partitioning Critical Software Loops to Hardware in
Embedded Systems. IEEE Transactions on Embedded Computer
Systems, January 2004.

[19] Suresh, D. C., W.A Najjar,, F. Vahid,., J. Villarreal., and G. Stitt..
Profiling tools for hardware/software partitioning of embedded
applications. In Proceedings of the 2003 ACM SIGPLAN
Conference on Language, Compiler, and Tool For Embedded
Systems (San Diego, California, USA, June 11 - 13, 2003). LCTES
'03. ACM Press, New York, NY, 189-198. 2003.

[20] Wildfire Reference Manual, Annapolis, Maryland: Annapolis
Microsystems, Inc., 1998

[21] Yiannacouras, P., Steffan, J. G., and Rose, J. 2006. Application-
specific customization of soft processor microarchitecture. In
Proceedings of the internation Symposium on Field Programmable
Gate Arrays (Monterey, California, USA, February 22 - 24, 2006).
FPGA'06.

.

Figure 10: Results for applications of increasing numbers of functions, comparing exhaustive, greedy, NKDP, and NKDP Quantized solutions: (a)

application runtimes, (b) algorithm runtimes (greedy and NKDP Quantized were less than one second and are thus not shown).

0

10

20

30

40

50

60

70

5 7 10 12 15 20 25

Number of Coprocessors

A
p

p
li
c
a
ti

o
n

 R
u

n
ti

m
e
(s

)
Exhaustive

Greedy

NKDP

NKDP_Quan

0
5

10
15
20
25
30
35
40
45
50

15 17 20 23 25

Number of Coprocessors

A
lg

o
ri

th
m

 T
im

e
(s

)

Exhaustive

NKDP

(a)
(b)

