
DEW: A Fast Level 1 Cache Simulation Approach for
Embedded Processors with FIFO Replacement Policy

Mohammad Shihabul Haque Jorgen Peddersen Andhi Janapsatya Sri Parameswaran∗

University of New South Wales, Sydney, Australia
{mhaque, jorgenp, andhij, sridevan}@cse.unsw.edu.au

ABSTRACT

Increasing the speed of cache simulation to obtain hit/miss rates en-
ables performance estimation, cache exploration for embedded sys-
tems and energy estimation. Previously, such simulations, particu-
larly exact approaches, have been exclusively for caches which uti-
lize the least recently used (LRU) replacement policy. In this paper,
we propose a new, fast and exact cache simulation method for the
First In First Out(FIFO) replacement policy. This method, called
DEW, is able to simulate multiple level 1 cache configurations (dif-
ferent set sizes, associativities, and block sizes) with FIFO replace-
ment policy. DEW utilizes a binomial tree based representation of
cache configurations and a novel searching method to speed up
sim-ulation over single cache simulators like Dinero IV. Depending
on different cache block sizes and benchmark applications, DEW
oper-ates around 8 to 40 times faster than Dinero IV. Dinero IV
compares 2.17 to 19.42 times more cache ways than DEW to
determine accu-rate miss rates.

1. INTRODUCTION

Cache memories have been used to effectively reduce the ever
in-creasing speed gap between the main memory and the processor.
Uti-lizing data and instruction caches in computing systems
improves performance while reducing energy consumption.

A processor based embedded system, where an application or a
class of applications is repeatedly executed, can be customized by
the adroit selection of a suitable cache. Multiple studies [5, 8, 13,
18] have found that the correct combination of different cache
parame-ters, such as the cache size, number of cache sets(set size),
associativ-ity, cache block size (also known as cache line size), etc.
can reduce the energy consumption and increase the overall system
performance significantly. Application specific processor design
platforms such as Tensilica’s Xtensa [2, 15] allows the cache to be
customized for the processor to meet tighter energy, performance
and cost constraints. A cache system which is too large will
unnecessarily consume power and increase access time, while a
cache system too small will thrash, reducing performance.

Due to the erratic nature of caches, there is no known way of ac-
curately determining hit and miss rates without simulating an appli-
cation’s trace of memory requests. To simulate the trace on caches with
hundreds of differing cache parameters can take several months and is
simply not feasible. Therefore, several studies have endeav-ored to
speed up simulation of cache memories. Among the simula-tion
methods, some approaches simulate caches with all the possible
combinations of cache parameters under consideration extensively to
maintain reliability(i.e., exact values of hits and misses). These are
called ‘Exact Approaches’. One of the widely used exact approach
based single processor cache simulation tool is Dinero IV [7], de-
signed by Jan Elder and Mark Hill. Dinero IV can simulate only a
single combination of cache parameters at a time. Among the exact
approaches, some approaches [13, 20] are able to simulate multi-ple
combination of cache parameters in a single pass directly over an
application trace. These approaches mainly depend upon cache

∗Advisor

inclusion properties to speed up simulation. However, caches with
the FIFO (or round robin) policy do not exhibit inclusion
properties. Therefore, there has been no known work which
attempts to speed up the simulation of multiple caches which
implement the FIFO re-placement policy.

As FIFO replacement is inexpensive to implement in the hardware,
FIFO is a popular choice for level 1 cache in the embedded pro-cessors
(i.e., Xtensa LX2 processor [3] and Intel XScale processors [1]).
Besides that, previous studies [4] have shown that for L1 cache
(especially, data cache), both FIFO and LRU have their own advan-
tages. Therefore, in our research, we have decided to extend the sim-
ulation approach for FIFO replacement policy. In our research, we have
analyzed the features of FIFO replacement policy that prevent us from
establishing fast simulation properties when all the caches under
simulation use the FIFO replacement policy. We have studied the exact
simulation methods, especially Janapsatya’s method with the proposed
enhancements in the CRCB algorithm [13, 20], to de-termine how the
inclusion properties benefit simulators. Resulting from our findings, we
propose a new simulation strategy “Direct Ex-plorer Wave”(DEW) to
speed up simulation of multiple combination of cache parameters with
FIFO replacement policy in a single pass directly over an application
trace.

The rest of the paper is structured as follows. Section 2 presents
related works, Section 3 presents the background of our research,
Section 4 describes our DEW simulation approach, Section 5 de-
scribes the experimental setup and discusses the results found for
mediabench applications; and section 6 concludes the paper.

2. RELATED WORK

Cache performance evaluation has been studied extensively for a
long time to find the optimal combination of cache parameters for
level 1 cache in embedded systems. The methods of cache
evaluation can be broadly categorized in two: estimation and
simulation depen-dent. Estimation approaches [8, 10, 17, 21]
depend on heuristics, are fast to compute, but are limited in their
accuracy. Simulation based approaches [7, 12, 13] usually produce
error free results of cache hits and misses. However, they take a
longer time than estimation approaches to execute.

Several techniques are used to make simulation of application
traces faster. One such technique is fractional simulation [12, 16],
which al-lows the simulation of a section of the trace, and obtains
results at the cost of accuracy. Another technique simulates the trace
for a number of cache configurations(different combination of cache
parameters) simultaneously, and produces exact results. These
concurrent simu-lations use the knowledge of cache behavior
between configurations to speed up simulation considerably. For
example, if a hit occurs in a cache with four sets, it is guaranteed to
be a hit on a cache with eight sets, provided that both of the caches
use the Least Recently Used (LRU) replacement policy, and have
equal associativity and block size.

Due to the reliability, many methods have been proposed to im-
prove the speed of exact, concurrent, simulation based cache evalua-
tion approaches. In 1989, Hill et al. in [11] studied the effect of asso-
ciativity in caches. They introduced a forest simulation technique to

978-3-9810801-6-2/DATE10 © 2010 EDAA

 Index 0 Valid bit Tag Data Index 1 Valid bit Tag Data

 Cache with two sets

 0 1 Top Level

 00 10 01 11

000 100 010 110 001 101 011 111 Bottom Level

Index 00 Valid bit Tag Data
Index 01 Valid bit Tag Data
Index 10 Valid bit Tag Data
Index 11 Valid bit Tag Data

Cache with four sets
Figure 1: Formation of simulation tree

simulate alternate direct mapped caches quickly. Another technique
used was the all-associativity methodology, based on the “Stack” al-
gorithm described by Gecsei et al. in [9], for simulating alternate direct
mapped caches, fully-associative caches and set associative caches. Hill
et al. showed that for alternate direct mapped caches, forest simulation
strategy is faster than the all-associativity method-ology. In 1995,
Sugumar et al. [19] proposed a binomial tree depen-dent cache
simulation methodology to improve methods described in [11].

Sugumar’s method had a time complexity of O((log2 (X)) × A) for
searching, where X and A are size and associativity of the cache

respectively. Time complexity of maintaining the tree was O((log2(X))
× A). Sugumar’s method was applicable only for LRU replacement
policy. Due to its flexibility, Sugumar’s method promoted the use of
binomial tree in simulation of multiple cache configurations in a single
pass, took as its input an application trace. Researchers have continued
the use of binomial tree to speed up sim-ulation though the focus has
remained only on LRU replacement pol-icy. In 2004, Li et al. [16]
proposed an improvement to Sugumar’s methodology by introducing a
compression method to reduce sim-ulation time. The authors of [16]
stated that their method can be modified to accommodate the FIFO
replacement policy; however, no modification plan for the FIFO
replacement policy was given.

In 2006, Janapsatya et al. [13] proposed a technique by utilizing
several LRU based cache inclusion properties and a binomial tree
structure. Janapsatya’s top-down tree traverse based simulation strat-
egy helped to speed up simulation of multiple cache configurations by
reading the application trace only once. Janapsatya’s searching
approach, inside a cache set, took advantage of temporal locality to
speed up simulation, as memory address tags were searched accord-ing
to their last access time. Therefore, Janapsatya’s method had a shorter
simulation time than previously proposed solutions. The cache
properties and techniques used in Janapsatya’s method was exclusive
for the LRU replacement policy. Janapsatya’s method had a fixed time

complexity of O(log2 (X) × A) for searching data or in-structions

inside the caches under simulation, where X and A are maximum cache
set size and maximum associativity respectively. Time complexity for

updating the data structure was O(log2 (X)). In 2009, Tojo et al. [20]
proposed two enhancements to Janapsatya’s method in what they called
the CRCB algorithm. These pruning based proposals made the
simulation even faster by reducing the number of addresses to be
examined. The findings of CRCB are also true for FIFO replacement
policy; however, the simulation technique was exclusively proposed for
the LRU replacement policy.
2.1 Contributions and limitations

1. In this paper, we have presented a new simulation strategy
“DEW” to simulate multiple level 1 cache configurations of
varying set sizes with the FIFO replacement policy by
passing over an application trace only once.

2. A novel data structure based on binomial trees and utilizing

“wave pointers” has been proposed to enable fast simulation.
3. A search methodology for the above data structure has been

proposed, which eliminates unnecessary tag comparisons.

The limitation of DEW is that it is optimized only for the simu-
lation of the FIFO replacement policy. It can simulate caches with
the LRU replacement policy, but will typically be slower than
Janap-satya’s method [13] and the CRCB algorithm [20], which are
opti-mized only for the LRU policy.

3. CACHE PARAMETERS EXPLORATION

METHODOLOGY
Cache configurations are mainly parameterized using cache set

size (S), associativity (A) and cache block size (B). Cache size (T)
is the total number of bits that can be stored in the cache. Cache set
size (S) is the total number of sets in a set associative cache. The
number of ways to place data inside a set of a set associative cache
is called the associativity(A). Cache block size(B), also known as
cache line size, is the minimum amount of data that can be stored in
a cache. Therefore, T = S × B × A.

In DEW, we perform simulation on the cache parameters to esti-
mate the number of cache misses that would occur for a given col-
lection of cache configurations. In DEW, we optimize the run time
of simulation by replacing multiple readings of large program
traces with a single reading, simulating multiple cache
configurations si-multaneously and reducing search complexity
inside a cache config-uration. This is possible due to the data
structure we have used and the decisions we can make depending
on the data structure. In the following subsections, we are going to
discuss the data structure used in DEW and the properties that can
be used due to the special data structure.

Figure 3: An address request simulation flow diagram for DEW

 MRE Tag MRA Tag

 0110
Associativity 4 1100

Application Level 1

Set
 Way1 Way2 Way3 Way4

Most Trace 1101 1011 1100 0010

Recently
1100

3

Requested

Tag 1011
2 4 1

 Most

 1011 2 Recently

 1101 Inserted

Least 0010 Tag

0110

Recently 1100
Level 2

Requested 1010

Set

Tag Set
101 110 011 001 110 101

 0 1

 Way1 Way2 Way3 Way4 Way1 Way2 Way3 Way4

 Associativity 4 Associativity 4

 MRA Tag
MRE Tag MRA Tag

MRE Tag
110

101

Figure 4: Simulation tree of DEW after new tag insertion

5. EXPERIMENTAL PROCEDURE AND RE-

SULTS
With the implementation described above, DEW can reduce to-

tal simulation time compared to the state of the art cache simulation
tool Dinero IV [7]. We have implemented DEW using C++. We
have compiled and simulated programs from Mediabench [14] with
“SimpleScalar/PISA 3.0d” [6]. Program traces were generated by
SimpleScalar and fed into both Dinero IV and DEW. We have ver-
ified hit and miss rates of DEW by comparing with Dinero IV and
found that they are exactly the same. Simulations were performed
on a machine with dual core Opteron64 2GHz processor and 8GB
of main memory.

In our implementation of DEW, each tag list is an array and each
entry is used to hold a tag (32 bits) and integer wave pointer (32 bits).
In total, each tag list entry needs to store 64 bits. In the simulation tree,
each node stores the MRA tag (32 bits), MRE tag (32 bits) and wave
pointer for the MRE tag (32 bits). Therefore, per tree node or cache set,
(96 + (64 × A)) bits are needed, where A is associativity. Thus, per tree
level or cache configuration, (S × (96 + (64 × A)))
bits are needed, where S is the number of sets.

Table 1 shows how the 525 configurations we calculated data for
were derived.

Cache Set Size=2
I where 0 <= I <= 14

Cache Block Size=2
I
 Bytes where 0 <= I <= 6

Associativity=2
I where 0 <= I <= 4

Table 1: Cache configuration parameters

We have simulated cache sizes from 1 byte to 16MB, some of

which may be impractical in embedded systems, to have only one
tree per forest, and to follow the same experimental methodology

Algorithm 1 Function Handle hit()
1: N= position of the cache way which holds the requested tag;
2: MRA tag of the current cache set=Requested tag;
3: Parent node’s Matching entry’s wave pointer=N;
4: Matching entry location=N;

Algorithm 2 Function Handle miss()
1: MRA tag of the current cache set=Requested tag;
2: Increase miss counter for the current cache configuration;
3: N= position of the cache way which holds the least recently inserted tag;
4: if The MRE tag of the current cache set is the requested tag then
5: Exchange current cache set’s N

TH
 cache way’s tag and wave pointer

with the tag and wave pointer of the MRE entry;
6: else
7: Replace current cache set’s N

TH
 cache way’s tag and wave pointer

with the requested tag and “empty”;
8: Update the MRE tag of the current cache set and its wave pointer

with the newly evicted tag and its wave pointer;
9: end if

10: Parent node’s Matching entry’s wave pointer=N;
11: Matching entry location=N;

used in CRCB algorithms [20].

Six Mediabench applications were used to verify the simulators.
These are: JPEG encode, JPEG decode, G721 encode, G721 decode,
MPEG2 encode and MPEG2 decode. The numbers of memory ad-dress
requests have been presented in Table 2 for each of the used
applications. All these requests are for byte addressable memory.

Application Number of requests
Jpeg encode(CJPEG) 25,680,911
Jpeg decode(DJPEG) 7,617,458

G721 encode(G721 Enc) 154,999,563
G721 decode(G721 Dec) 154,856,346

Mpeg2 encode(MPEG2 Enc) 3,738,851,450
Mpeg2 decode(MPEG2 Dec) 1,411,434,040

Table 2: Trace files used for simulation

Table 3 presents results comparing the DEW simulation approach to

Dinero IV
1
 . Column 1 lists the applications being simulated. Col-umn

2 shows block size. Columns 3 to 8 show simulation time and columns
9 to 14 show the number of tag comparisons performed by DEW and
Dinero IV for different cache associativity. E.g., columns 3 and 4
provide simulation time for DEW and Dinero IV respec-tively to
simulate direct mapped (1-way) and 4-way set associativity. Direct
mapped cache results are used in both cases as DEW auto-matically
simulates it while simulating any other associativity. Note that DEW is
always much faster than Dinero IV in every case. On average, DEW
operates 18 times as fast as Dinero IV. This is due to the significant
reduction in tag comparisons.

Figure 5 shows speedup of DEW over Dinero IV based on simu-
lation time. Speedup is calculated as the ratio of simulation times. It
shows that DEW can run up to 40 times faster than Dinero
IV(recorded for JPEG decode, associativity 8 and block size 64
bytes). In the worst case, DEW’s run time is still 9 times faster than
Dinero IV which was recorded for MPEG2 decode, associativity 4
and cache block size 4 bytes.

Figure 6 shows the percentage reduction of the total number of
tag comparisons of DEW over Dinero IV. From Figure 6, it can be
seen that Dew can reduce the total number of tag comparisons by
54.9% to 94.9% compared to Dinero IV. DEW reduces 92.97% tag
comparisons compared to Dinero IV for JPEG Decode, block size
of 64 byte and associativity 4; however, when block size is 4 byte,
DEW reduces 70.19% tag comparisons. From Figure 5, it can be
seen that speed up of DEW over Dinero IV for these two cases are
39 times and 23 times respectively. The correlation of Figure 5 and
Figure 6 illustrates that reduction of tag comparisons helps DEW to
reduce total simulation time.

It should be noted that Dinero IV collects different types of in-
formation about a cache, such as the number of compulsory misses,
number of demand fetches, etc, in addition to cache hit and miss

1
 Due to space limitations, only limited results are presented.

rates. As Dinero IV can simulate only one configuration at a time,
to simulate each cache configuration, Dinero IV needs to build the
storage for the tags and other information. Maintaining the large in-
formation set increases the total simulation time for Dinero IV.

Table 4 shows the effectiveness of each optimization property used

in DEW compared to individual simulation of each cache configura-

tion in a simulation forest of DEW without any of the properties de-

scribed in Section 3.2
1
 . In this table all the results are for cache with

block size of 4 bytes. Column 1 lists the applications being simu-lated.

Column 2 shows number of tree nodes needed to be evaluated when

only Property 1 (i.e. Binomial tree representation) is used in DEW.

This is the worst case number of evaluations for any algorithm. Column

3 shows the total number of simulation tree nodes actually evaluated in

DEW using all the four properties of Section 3.2. Col-umn 4 shows

how many of the evaluations of Column 3 found the tag in the MRA

entry (Property 2); hence avoiding further evaluation of larger set sizes.

These three results are associativity independent. Column 5 to 7 and 8

to 10 show, for 4-way and 8-way associativ-ity(including 1-way)

respectively, how many times a tag list of a cache set is searched for a

requested tag as well as the number of times DEW’s properties that

avoid searches occurred. For example, column 5 shows total number of

tag list searches performed in DEW for associativity 4. Column 6 and 7

show the number of situations, for associativity 4, when a tag list

searching is avoided due to hit or miss determined by wave pointer

(Property 3) or MRE entry (Prop-erty 4) respectively.

From Table 4, it can be seen that the number of node evaluations
and the number of situations when a cache set is searched is signifi-
cantly smaller when all the properties of DEW are used. The first
line of Table 4 can be interpreted as follows. For the JPEG Encode
ap-plication, without any optimization, the number of node
evaluations would be 770.43 million. However, DEW reduced the
total evalua-tions performed to only 140.66 million. This large
reduction is due to the property 2 (MRA), which occurred 23.18
million times. Among these 140.66 million evaluations, cache set
searching has been per-formed only in 83 million cases for
associativity of 4. The reductions arise from the use of properties 3
(Wave) and 4 (MRE) 25.47 million times and 10.24 million times
respectively. Therefore, it is evident that the DEW properties are
effectively helping to reduce simulation time significantly.

When a tag is available in all the cache configurations in a simu-

lation forest, time complexity for DEW’s simulation is O(log2 (X)),
where X is the maximum cache set size in the search space. If the tag
was requested in the previous step, DEW needs only one test. For

compulsory misses, time complexity for DEW’s simulation is O(log2
(X) × A) at best. Dinero IV’s time complexity for simula-tion of a tag

is O(log2(X) × A) for all the cases.
Therefore, considering all the results and complexities, we can

say that DEW shows the fastest performance compared to any other
method proposed so far for simulation of level 1 cache with the
FIFO replacement policy.

6. CONCLUSION

In this paper, we have presented a fast cache simulator, DEW,
that can simulate multiple level 1 cache configurations with FIFO
replacement policy in a single pass directly over an application
trace. Utilizing the features of a binomial tree representation of
cache con-figurations, DEW is able to reduce the total number of
comparisons by up to 94.9% compared to Dinero IV. As a result,
DEW can be almost 40 times faster than Dinero IV. Even in the
worst case, DEW is almost 8 times faster than Dinero IV.

7. REFERENCES

[1] Intel xscale microprocessor data book. www.intel.com.
[2] Xtensa processor. http://www.tensilica.com/.
[3] Xtensa lx2 data book. www.tensilica.com. 3/2007.
[4] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic. Performance evaluation of

cache replacement policies for the spec cpu2000 benchmark suite. In ACM-SE
42: Pro-ceedings of the 42nd annual Southeast regional conference, pages 267–
272, New York, NY, USA, 2004. ACM.

This research was supported under Australian Research Council’s

Discovery Projects funding scheme (Project Number DP0986091).

 Block Total Simulation Time (seconds) No. of tag comparisons (millions)

 Application Size Assoc 1 & 4 Assoc 1 & 8 Assoc 1 & 16 Assoc 1 & 4 Assoc 1 & 8 Assoc 1 & 16

 (Bytes) DEW Din. IV DEW Din. IV DEW Din. IV DEW Din. IV DEW Din. IV DEW Din. IV

 JPEG enc. 4 30 350 30 357 31 355 357 1,397 523 2,067 721 3,195

 G721 enc. 4 191 1,993 197 2,040 220 2,036 2,656 7,921 4,382 11,401 7,170 17,152

 MPEG2 enc. 4 5,558 50,385 5,730 51,918 6,085 51732 81,691 216,232 133,165 330,678 210,704 531,065

 JPEG dec. 4 10 227 10 229 10 228 122 411 193 599 278 931

 G721 dec. 4 198 2,008 201 2,054 225 2,052 2,710 7,942 4,406 11,393 7,289 17,235

 MPEG2 dec. 4 2,141 19,151 2,201 19,720 2,440 19,603 32,509 78,857 52,553 116,519 82,341 179,448

 JPEG enc. 16 21 342 22 348 22 349 148 1,255 198 1,766 280 2,649

 G721 enc. 16 125 1,940 127 1,972 135 1,970 1,062 7,007 1,692 9,444 2,585 13,186

 MPEG2 enc. 16 3,518 48,947 3,619 50,275 3,534 50,207 31,092 192,193 47,924 275,494 70,256 419,894

 JPEG dec. 16 7 221 7 223 7 223 53 364 75 500 101 749

 G721 dec. 16 132 1,954 134 1,993 141 1,989 1,094 7,028 1,699 9,431 2,655 13,341

 MPEG2 dec. 16 1,337 18,479 1,350 18,958 1,429 18,914 13,264 68,287 19,932 94,703 28,500 136,879

 JPEG enc. 64 19 336 18 342 18 344 76 1,161 101 1,583 146 2,218

 G721 enc. 64 99 1,909 99 1,930 101 1,932 328 6,364 482 8,222 692 11032

 MPEG2 enc. 64 2,732 47,813 2,729 49,076 2,488 49,325 10,893 176,249 15,184 240,811 19,953 344,404

 JPEG dec. 64 6 219 6 220 6 220 23 332 32 437 43 608

 G721 dec. 64 101 1,924 100 1,948 105 1,960 401 6,405 587 8,025 821 10,614

 MPEG2 dec. 64 989 18,132 983 18,480 1,018 18,564 4,837 61,783 6,700 81,505 8,156 113,118

 Table 3: Comparison between Dinero IV and DEW showing simulation time and total number of tag comparisons

 Associativity 1 & 4 Associativity 1 & 8

 Application Unoptimized DEW node MRA count
Searches Wave count MRE count

Searches Wave count MRE count

evaluations

evaluations

(Property 2)

(Property 3) (Property 4)

(Property 3) (Property 4)

 JPEG enc. 770.43 140.66 23.18 83.00 25.47 10.24 66.11 42.79 9.45

 JPEG dec. 228.52 46.92 7.31 28.46 8.62 2.87 24.44 14.50 0.90

 G721 enc. 4,649.99 975.85 140.30 623.12 165.45 49.53 555.52 263.00 18.05

 G721 dec. 4,645.69 998.35 141.07 636.09 179.16 44.51 556.95 280.05 21.09

 MPEG2 enc. 112,165.54 28,875.48 3,582.20 19,213.83 4,851.68 1,330.80 16,635.70 8,122.43 591.16

 MPEG2 dec. 42,343.02 11,465.94 1,394.73 7,640.57 1,964.88 507.92 6,552.25 3,333.98 212.69

Table 4: Effectiveness of properties used in DEW (all results in millions)

Sp
e

ed
 U

p

45

40 CJPEG DJPEG G721_Enc G721_Dec MPEG2_ MPEG2_

Dec

35 Enc

30

25

20

15

10

5

0

4 16

64
 4

16

64
 4

16

6 4 4 16

64
 4

16

64

4 16

64

 Block Size

 Associativity 4 Associativity 8

P
e
rc

e
n

ta
g

e
 R

e
d

u
c
ti

o
n

 o
f

T
a
g

 c
o

m
p

a
ri

s
o

n

100.00 CJPEG DJPEG G721_Enc G721_Dec MPEG2_ MPEG2_

90.00 Enc Dec

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

1
6

6 4

1
6

6
4

1
6

6 4

1
6

6 4

1
6

6
4

1
6

6
4

4

4

4

4

4

4

 Block Size

 Associativity 4 Associativity 8

Figure 5: Speed up of DEW over Dinero IV Figure 6: Reduction of tag comparison in DEW

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-

level power analysis and optimizations. In In Proceedings of the 27th Annual In-
ternational Symposium on Computer Architecture, pages 83–94, 2000.

[6] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. SIGARCH
Comput. Archit. News, 25(3):13–25, 1997.

[7] J. Edler and M. D. Hill. Dinero iv trace-driven uniprocessor cache simulator.
http://www.cs.wisc.edu/ markhill/DineroIV/, 2004.

[8] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria. A design framework to ef-
ficiently explore energy-delay tradeoffs. In CODES ’01: Proceedings of the ninth
international symposium on Hardware/software codesign, pages 260–265, New
York, NY, USA, 2001. ACM.

[9] J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage hierar-
chies. IBN System Journal, 9(2):78–117, 1970.

[10] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: A compiler frame-
work for analyzing and tuning memory behavior. ACM Transactions on
Program-ming Languages and Systems, 21:703–746, 1999.

[11] M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEE Trans.
Comput., 38(12):1612–1630, 1989.

[12] K. Horiuchi, S. Kohara, N. Togawa, M. Yanagisawa, and T. Ohtsuki. A data
cache optimization system for application processor cores and its experimental
evalu-ation. In IEICE Technical Report, VLD2006-122, ICD2006-213, pages 19–
24, 2006.

[13] A. Janapsatya, A. Ignjatovi´c, and S. Parameswaran. Finding optimal l1 cache
con-figuration for embedded systems. In ASP-DAC ’06: Proceedings of the 2006
con-ference on Asia South Pacific design automation, pages 796–801,
Piscataway, NJ, USA, 2006. IEEE Press.

[14] C. Lee, M. Potkonjak, and W. H. Mangione-smith. Mediabench: A tool for evaluat-ing
and synthesizing multimedia and communications systems. In In International

Symposium on Microarchitecture, pages 330–335, 1997.

[15] S. Leibson and J. Massingham. Flix: Fast relief for performance-hungry
embedded applications. Technical report, Tensilica Inc., 2005.

[16] X. Li, H. S. Negi, T. Mitra, and A. Roychoudhury. Design space exploration of
caches using compressed traces. In ICS ’04: Proceedings of the 18th annual in-
ternational conference on Supercomputing, pages 116–125, New York, NY,
USA, 2004. ACM.

[17] J. J. Pieper, A. Mellan, J. M. Paul, D. E. Thomas, and F. Karim. High level cache
simulation for heterogeneous multiprocessors. In DAC ’04: Proceedings of the
41st annual conference on Design automation, pages 287–292, New York, NY,
USA, 2004. ACM.

[18] D. Ponomarev, G. Kucuk, and K. Ghose. Accupower: An accurate power estima-
tion tool for superscalar microprocessors. In DATE ’02: Proceedings of the
confer-ence on Design, automation and test in Europe, page 124, Washington,
DC, USA, 2002. IEEE Computer Society.

[19] R. A. Sugumar and S. G. Abraham. Set-associative cache simulation using gener-
alized binomial trees. ACM Trans. Comput. Syst., 13(1):32–56, 1995.

[20] N. Tojo, N. Togawa, M. Yanagisawa, and T. Ohtsuki. Exact and fast l1 cache
sim-ulation for embedded systems. In ASP-DAC ’09: Proceedings of the 2009
Confer-ence on Asia and South Pacific Design Automation, pages 817–822,
Piscataway, NJ, USA, 2009. IEEE Press.

[21] X. Vera, N. Bermudo, J. Llosa, and A. Gonz´alez. A fast and accurate framework
to analyze and optimize cache memory behavior. ACM Trans. Prog. Lang. Syst.,
26(2):263–300, 2004.

