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Abstract—This paper describes an automatic tissue 

segmentation algorithm for brain MRI of children with cerebral 
palsy (CP) who exhibit severe cortical malformations. Many of 
the currently popular brain segmentation techniques rely on 
registered atlas priors and so generalize poorly to severely 
injured data sets, because of large discrepancies between the 
target brain and healthy (or injured) atlases. We propose a prior-
less approach combined with a modification of the Expectation 
Maximization (EM)/Markov Random Field (MRF) segmentation 
by imposing a continuous weighting scheme to penalize intensity 
discrepancies between pairs of neighbors within each clique 
neighborhood, to provide robustness to the unique clinical 
problem of severe anatomical distortion. This approach was 
applied to gray matter segmentations in 20 3D T1-weighted 
MRIs, of which 17 were of CP patients exhibiting severe 
malformation. We compare our adaptive algorithm to the 
popular ‘FreeSurfer’, ‘NiftySeg’, ‘FAST’ and ‘Atropos’ 
segmentations, which collectively are state-of-the-art surface 
deformation and EM approaches. The algorithm driven 
approach yielded improved segmentations (DSC 0.66 v 0.44 
(FreeSurfer) v 0.60 (NiftySeg with 100% atlas prior relaxation) v 
0.59 (FAST) v 0.64 (Atropos)) of the cerebral cortex relative to 
several ground-truth manual segmentations, when compared to 
the existing approaches. 

Keywords—Magnetic resonance imaging; expectation 
maximization; Markov random field; cerebral palsy 

I. INTRODUCTION 
Cerebral palsy (CP) is a common physical disability 

(764,000 children in the USA) that can lead to both motor and 
cognitive impairment [1]. Magnetic resonance imaging (MRI) 
has a role in identifying the cerebral injury that underlies CP, 
and allowing quantitative image analysis techniques to 
develop models which link brain structure to patient function. 
One important class of injury observed in children with CP is 
cortical malformations, which present as a heterogeneous 
group of cortical shapes that lead to patient impairment [2]. 
An accurate segmentation of the gray matter is necessary to 
compute meaningful measures of the cortical surface that can 
be used to predict patient outcome and aid in implementing 
effective interventions. This remains a challenging task as the 
organization of the cortical surface can be significantly 
different in patients with severe developmental injury. 

The Expectation Maximization (EM) algorithm [3] has 
frequently been used for the automated segmentation of brain 
MRI data [4], [5]. This approach allows for iteratively 
interleaved image bias correction [6], and a spatial consistency 
of labels through the Markov Random Field (MRF) [7]. It has 
been frequently applied to neonatal data sets [8]–[10] due to 
the robustness of the segmentation in the presence of high 
noise, significant partial volume effects, lack of tissue 
contrast, and extensive anatomical variability typical of these 
data sets. Despite EM being an adaptive approach, these 
studies typically utilize atlases to initialize the EM parameters, 
or iteratively scale the tissue probability of each voxel by the 
expected tissue prior from an atlas. To deal with anatomical 
variability, a non-rigid registration is performed to align the 
atlas priors to the data, and the influence of the atlas is 
subsequently reduced with a relaxation parameter that allows 
for more data-driven segmentation in later iterations [9], [10]. 
However in cases of severe injury, non-rigid registration 
typically fails and even with partial relaxation of the atlas 
priors, the discrepancies between the anatomical assumptions 
of the normative atlases and CP patients are too great to 
provide a robust initialization. Examples demonstrating the 
severity of injury that needs to be catered for are shown in 
Figure 1. 

The limited relevance of atlas based priors for this 
application places more of the burden of accuracy on non-atlas 
priors defined by the clique potentials. Hence, in this paper, 
we propose a modification to the formulation of the local 
clique potentials within the adaptive EM algorithm to enable 
an improved segmentation of the cerebral cortex in the 
structural MRI of children with CP. Using 20 T1-weighted 
MRIs of children, of which 17 were CP patients exhibiting 
severe cortical malformations, the proposed approach was 
compared to four widely used methods: FreeSurfer [11], 
NiftySeg [10], FSL’s FAST [7]) and ANT’s Atropos [12]. The 
FreeSurfer software uses a data-driven deformable surface 
approach, initialized by registration to an atlas, to detect the 
inner and outer surfaces of the cortical gray matter, while 
NiftySeg, FAST and Atropos use an EM segmentation 
algorithm with an incorporated MRF and interleaved bias 
correction. We demonstrate that our proposed approach is able 
to accurately model the cerebral cortex in the presence of large 



injury variability, in comparison to FreeSurfer, NiftySeg, 
FAST and Atropos. 

II. MATERIALS AND METHODS 

A. Subjects 
The data were acquired from two different scanners, and 

with three different sets of scanning parameters, including a 
3T Siemens’ scanner (TR = 1900 ms, TE = 2.32 ms, flip angle 
= 9 degrees), a 1.5T GE scanner with two different scanning 
parameters; (TR = 12.36 ms, TE = 5.17 ms, flip angle = 13 
degrees) and (TR = 124.29 ms, TE = 4.37 ms, flip angle = 10 
degrees). All data was acquired with the appropriate 
institutional ethics approval. A total of 20 T1-weighted 
volumes were analyzed, of which 17 where patients with CP. 
The mean age at the time of the scan was 12.26 ± 2.48 years 
(range 7-17 years), while the male to female ratio was 9/11. 
The images were manually segmented on the hemisphere of 
injury by two raters. 

B. Preprocessing 
Bias correction was performed by the N4 algorithm [13]. 

All images were then aligned using an affine block matching 
registration algorithm [14] to the Colin 27 Average Brain 
Atlas. Image denoising was performed using anisotropic 
diffusion [15] with modified curvature diffusion equation [16]. 
This was critical to reduce the influence of image noise in the 
subsequent weighted clique potential. Skull stripping was 
performed in MATLAB (Mathworks, Natick, MA) using an 
approach that identified intracranial cerebrospinal fluid (CSF) 
at locations proximal to the skull using intensity thresholding. 
Brain tissue was segmented as the region encapsulated by this 
intracranial CSF segmentation, with morphological operations 
implemented to ensure consistent segmentations between 
adjacent MR slices. 

C. Expectation Maximization Algorithm 
The adaptive EM algorithm [3] has been successfully used 

in a number of studies [4], [5], [7] for segmenting T1-
weighted images. In these approaches, the segmentation 
problem is formulated as an incomplete data problem where 
given the set of n voxel intensities in the image, y = {yi, i � [1; 
n]}, the algorithm attempts to compute a set of labels, z = {zi, i 
� [1; K]}, describing which of K tissue classes each voxel 
belongs, with k denoting a specific tissue class 1 ≤ k ≤ K. 

Voxels are indexed by i. Intensity distributions for each tissue 
class k are parameterized by the Gaussian mean and standard 
deviation Φk = (μk, σk). The estimation of the maximum 
likelihood parameters, Φ, is obtained by interleaving the 
estimation of the hidden segmentation, z, (E-step), followed by 
the update of the class distributions, Φ, based on the observed 
image y and segmentation z (M-step). 

Prior to the EM, Φ is initialized using a peak finding 
algorithm that searches the intensity histogram for the two 
sufficiently separated dominant peaks from the brain mask, 
which are labeled as gray and white matter. The mean 
intensity of the CSF distribution is estimated by searching 
backwards from the gray matter peak. The standard deviation 
of each distribution is computed from the gradient of the 
Gaussian intensity distribution on either side of the respective 
maximum. 

In the E-step, tissue labels at each voxel, i, are selected as 
the tissue class k that has the minimum posterior likelihood pik, 
which at iteration m + 1 takes the form: 

 
Given a set of labels z, the parameters are updated in the 

M-step as follows: 

 

 

The form of f(z|Φz) in (1), which is related to the MRF 
implementation, is critical to the performance of the 
algorithm. The modification of this term is the contribution of 
this paper, which is proposed in order to provide robustness to 
the segmentation of MRI scans with extensive CP-related 
injuries, as described in the next subsection. 

D. Gradient weighted MRF 
The calculation of (1) in the EM approach includes 

consideration of the spatial relationship between a voxel and 

(1) 

(2) 

(3) 

Figure 1. An illustration of extensive injury common in CP patients: (a-b) cortical malformation and (c-e) ventriculomegaly. 
Regions of injury or artifact are highlighted by red arrows. 



its six adjacent neighbors. It is assumed that the incorporated 
random field follows a Gibbs distribution: 

 
where Z(Φz) = Σz exp(-Umrf) is called the partition function 

and Umrf is called the energy function. The energy function is 
formulated as the sum of clique potentials Vc(z) over all 
possible cliques, C: 

 
Traditionally, clique potentials simply compute the sum of 

mismatched labels between the voxel xi and the neighbors in 
the clique: 

 
This standard formulation of the clique potential is 

implemented in the Atropos software [12]. More sophisticated 
modulation of MRF parameters are proposed in the seminal 
works of Geman and Geman, and Mumford and Shah [17], 
[18]. These techniques modulate clique potentials based on 
gradients or smooth edges in the label field, z, respectively. 
Both FSL’s FAST  and NiftySeg use a clique potential 
discretely weighted by gradients in the label field, as in 
Geman and Geman [17].  

To compensate for the lack of an informative atlas-based 
prior, the proposed approach instead incorporates a new 
assumption in the model, that a mismatch of labels at a clique 
edge will have an associated mismatch of intensity at defined 
tissue boundaries. Contrary to previous studies, in the 
proposed modification the cost of neighboring voxels with 
different labels is scaled down by the presence of intensity 
gradients between the voxels in the image, y. Correspondingly, 
the cost of neighboring voxels with identical labels is scaled 
up in the presence of intensity gradients between the voxels. 
Hence, in the modified MRF the cost of neighboring labels is 
weighted by the gradient of intensity between the neighboring 
voxels, which is congruous with the concept that different 
labels in a clique should have a different intensity, and vice 
versa. Therefore the cost of neighboring voxels as follows: 

 
In (7), s is a free parameter that can be adjusted based on 

the gradient across tissue boundaries present in the MRI. This 
parameter was chosen to be half of the difference in intensity 
between WM and GM at initialization, which was consistent 
due to intensity normalization in MRI pre-processing. 

We note that using intensity gradients to weight clique 
potentials is common in graph cut image segmentation [19], 
which has previously been applied to brain segmentation [20], 
[21]. The benefit of the proposed weighted MRF formulation, 
however, is that incorporating intensity information within the 

MRF assists in the optimisation of the interleaved EM-based 
segmentation in cases where voxel-wise atlas priors cannot be 
provided. 

III. RESULTS 
To assess the accuracy of the gray matter segmentations, 

the segmentations obtained from the proposed EM approach 
with the gradient weight MRF were compared to the manual 
segmentations performed by two raters using the Dice 
Similarity Coefficient (DSC) metric [22]. In addition, the 
segmentations obtained from the EM approach with the 
standard MRF formulation of (6), FreeSurfer, NiftySeg, FAST 
and Atropos were compared. The NiftySeg algorithm was run 
twice, once using the default relaxation of the atlas priors, and 
once with the relaxation parameter set to its maximum. In this 
second implementation, atlas priors are still used to initialize 
tissue distributions, but the atlas priors were subsequently 
given zero weight during EM optimization. The mean DSC of 
the two raters for each method are reported in Table 1. Not all 
the data was segmented by rater 2 and is indicated by a dash in 
the inter-rater reliability column. The gray matter 
segmentations provided by these approaches for a typical 
subject is illustrated in Figure 2. 

The data was divided into the 3 healthy cases and the 17 
cases with injury. The proposed approach gave comparable 
performance (0.773) to the best performing approach among 
the healthy data, and gave the best performance among the 
injured data (0.655). NiftySeg with 100% relaxation obtained 
the best performance among the healthy data (0.775), but a 
substantially reduced DSC for the 17 injured cases (0.596). In 
all injured cases, NiftySeg with 100% relaxation was in 
greater agreement with the manual raters compared to the 
default relaxation of priors, highlighting the deleterious effect 
of using atlases on scans containing injury. Atropos gave the 
second highest performance among the injured data (0.632). 
Neither FreeSurfer nor the classic MRF implementation 
demonstrated performance comparable to the proposed 
approach. Overall, the proposed approach consistently had the 
best performance: in 10 of the 20 cases, versus 6 cases for 
100% relaxed NiftySeg, two cases for classic MRF and two 
cases for Atropos. 

In all cases, the inter-rater reliability was greater than the 
DSC obtained for any of the methods. The agreement between 
the raters went as low as 0.662, which was largely due to local 
reductions in the contrast between the gray and white matter, 
obscuring the tissue boundary. An illustration of the 
segmentations obtained from the several methods from an 
image containing severe injury is shown in Figure 2. 

IV. DISCUSSION 
The proposed approach outperformed all the other state-of-

the-art EM methods with integrated atlas priors on the cases 
with cortical injury, demonstrating the potentially deleterious 
effect of incorporating atlas-based priors when segmenting 
scans with severe injury. This improvement is the result of the 
weighted MRF, which provides additional robustness by 
forcing the labeling to be consistent with intensity gradients in 
the image. The benefit of the modified MRF is demonstrated 

(4) 

(5) 

(6) 

(7) 



by the slightly reduced DSC’s obtained using the EM with the 
standard MRF, as this approach computes high neighbor costs 
at tissue boundaries. Consequently, thin extensions of white 

matter or CSF are smoothed over and labeled as gray matter 
using this method, as is shown in Figure 2(d). 

TABLE I.  MEAN DSC RESULTS COMPARING THE SEGMENTATIONS OBTAINED FROM THE PROPOSED EM AND WEIGHTED MRF APPROACH, EM WITH THE 
STANDARD MRF, FREESURFER, NIFTYSEG WITH DEFUALT AND 100% RELAXATION OF ATLAS PRIORS, FAST AND ATROPOS WITH THE MANUAL SEGMENTATIONS 
OBTAINED FROM TWO RATERS. INTER-RATER RELIABILITY IS PROVIDED BASED ON THE DSC OVERLAP BETWEEN THE SEGMENTATIONS FROM THE TWO RATERS. FOR 
EACH PATIENT, THE LARGEST DSC IS IN BOLD.  

Subject Age 

EM -

weighted 

MRF 

EM - 

standard 

MRF 

Free- 

Surfer 
NiftySeg 

NiftySeg 

100% 

relaxation 
FSL’s FAST ANT’s 

Atropos 

Inter-rater 

reliability 

Healthy cases 

8 0.776 0.628 0.473 0.767 0.791 0.761 0.737 0.813 

12 0.810 0.694 0.489 0.791 0.804 0.735 0.741 0.825 

15 0.732 0.642 0.536 0.700 0.729 0.684 0.692 - 

Mean DSC 0.773 0.654 0.499 0.753 0.775 0.727 0.723 0.819 

Cases with cortical injury 

7 0.739 0.432 NA 0.567 0.569 0.601 0.695 0.749 

9 0.707 0.681 NA 0.677 0.696 0.698 0.712 0.745 

10 0.351 0.357 NA 0.312 0.324 0.146 0.355 - 

10 0.716 0.636 0.568 0.711 0.727 0.702 0.687 0.813 

10 0.559 0.585 NA 0.423 0.441 0.522 0.542 0.730 

12 0.625 0.601 0.458 0.457 0.472 0.553 0.644 0.634 

12 0.681 0.429 0.365 0.417 0.419 0.548 0.668 - 

13 0.651 0.627 0.472 0.468 0.489 0.610 0.622 - 

13 0.725 0.600 NA 0.708 0.720 0.674 0.717 0.771 

13 0.610 0.564 NA 0.518 0.547 0.508 0.563 0.662 

14 0.714 0.543 0.242 0.724 0.748 0.683 0.683 0.802 

14 0.664 0.428 0.486 0.628 0.650 0.646 0.647 0.714 

14 0.700 0.671 0.348 0.671 0.705 0.632 0.665 0.737 

14 0.741 0.735 0.537 0.656 0.682 0.673 0.701 - 

14 0.640 0.637 NA 0.575 0.585 0.596 0.613 - 

15 0.654 0.443 0.461 0.645 0.656 0.581 0.647 0.672 

15 0.657 0.523 0.480 0.671 0.697 0.674 0.654 0.695 

Mean DSC 0.655 0.558 0.442 0.578 0.596 0.591 0.632 0.727 

The limitation of using atlas priors for segmentation in the 
presence of injury is illustrated in Figure 2(f-g). Specifically in 
Fig. 2(g), due to the extreme anatomical malformations, much 
of the CSF was incorrectly labeled as gray matter during 
initialization, resulting in poor and irrecoverable initial 
estimates of distribution. The same issue resulted in one 
injured case where the DSC<0.2 was observed for FAST. 
Although this highlights the limitation of atlases to initialize 
prior tissue distributions, many atlas-based segmentation 
algorithms accommodate pathologies using a local relaxation 
of atlas priors [23], [24]. These approaches, while validated on 
data with brain tumors, have unique challenges in the CP 
setting, where the region of severe malformation may include 

gray matter that needs to be continuously segmented along 
with healthy regions of gray matter, and not as a separate 
tumor entity. In the proposed EM-weighted MRF 
implementation, a straightforward peak-finding algorithm was 
instead used to robustly estimate initial tissue distributions, 
assisting an accurate segmentation of cortical gray matter in 
injured cases. Alternative approaches, such as Otsu 
thresholding [25] or fuzzy c-means [26], could similarly 
provide robust tissue distribution initializations. These 
methods are used for initialization in the Atropos software 
[12], potentially accounting for its second-highest 
performance among the injured cases.  



FreeSurfer failed to produce a result (NA in Table 1) on 
seven of the 20 MRI scans, corresponding to data sets 
exhibiting more severe injury causing failure in the 
deformation of the cortical surface. For the remaining scans, 
the presence of injury was observed to impact the deformation 
of the cortical surfaces. This is illustrated in Figure 2(e), 
where the presence of injury affected the deformable surface 
such that it does not accurately represent the gray matter from 
Figure 2(a). 

Even in healthy brains, the segmentation of cortical gray 
matter is challenging with DSC’s of ~0.8 reported in the few 
available references [8], [9], [27], due to the narrow and 
complex morphology of cortical GM and partial volume 
effects. The extensive injuries typical of CP compound this, 
making the distinction between gray and white matter 
ambiguous and impacting on the DSC. Additionally, for the 
cases where DSC’s of 0.351 and 0.559 were obtained using 
the proposed approach, the overlap measure was impacted due 
to the significant absence of gray matter on the injured side. 

A limitation of this work is that the proposed modification 
has only been applied to the segmentation of tissue types, with 
specific focus on improving cortical grey matter 
segmentations. As shown in Figure 2(c), the proposed 
modification mislabels the caudate nucleus. Anatomical 
parcellation requires the use of a priori information provided 
by atlas-based methods. 

In summary, the results highlight the challenges of using 
atlas-based priors in cases of severe injury, as healthy atlases 
do not generalize to unhealthy cases and even sophisticated 
non-rigid registration algorithms like that used by NiftySeg, 
FAST or Atropos cannot compensate for severe changes in 
anatomy. This places the burden of obtaining robust 
segmentations on the design of the clique weighting function 
as opposed to dictating a need for more training data. 
Although relatively simple adaptive approaches such as the 
proposed modified MRF can yield a robustness to severe 
pathology or injury, atlas-based approaches are still necessary 
to perform subcortical anatomical, or gyral, labeling, that EM 
segmentation approaches alone cannot accurately replicate. 
The authors also note that sufficient data coupled with an 
efficient atlas selection and relaxation strategy could also yield 
improvements to the results obtained. Therefore, future 

investigations applying atlas-based approaches to images 
containing severe pathology should consider using simple, 
adaptive algorithms for initializing tissue distribution 
estimates, or modifying the posterior likelihood estimation via 
the neighborhood potential, for providing additional 
robustness. 

V. CONCLUSION 
In this paper we have described a modification to the EM-
MRF approach tailored specifically for the automated cortical 
gray matter segmentation of MRI of children with CP. The 
extensive anatomical malformations caused by injury related 
to CP limit the utility of atlas based priors. To impart 
robustness to the formulation of the posterior likelihood, and 
to compensate for the limited relevance of atlas priors, the 
clique potentials in the MRF were modified to include 
penalization for mismatched labels over low intensity 
gradients, and matched labels over high intensity gradients. 
The result is an improved segmentation at the boundary of 
cerebral tissues in a cohort of patients with severe CP-related 
injury in comparison to four state-of-the-art segmentation 
methods: FreeSurfer, NiftySeg, FAST and Atropos. In future, 
we recommend atlas-based approaches take advantage of 
robust initialization methods and modified neighborhood 
potentials to provide greater robustness to injury. 
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