
HyperTab: Hypernetwork Approach for Deep
Learning on Small Tabular Datasets

Witold Wydmański
Faculty of Mathematics and Computer Science

Jagiellonian University
Kraków, Poland

witold.wydmanski@uj.edu.pl

Oleksii Bulenok
Faculty of Mathematics and Computer Science

Jagiellonian University
Kraków, Poland

oleksii.bulenok@gmail.com

Marek Śmieja
Faculty of Mathematics and Computer Science

Jagiellonian University
Kraków, Poland

marek.smieja@uj.edu.pl

Abstract—Deep learning has achieved impressive performance
in many domains, such as computer vision and natural language
processing, but its advantage over classical shallow methods on
tabular datasets remains questionable. It is especially challenging
to surpass the performance of tree-like ensembles, such as
XGBoost or Random Forests, on small-sized datasets (less than
1k samples). To tackle this challenge, we introduce HyperTab, a
hypernetwork-based approach to solving small sample problems
on tabular datasets. By combining the advantages of Random
Forests and neural networks, HyperTab generates an ensemble
of neural networks, where each target model is specialized to
process a specific lower-dimensional view of the data. Since
each view plays the role of data augmentation, we virtually
increase the number of training samples while keeping the
number of trainable parameters unchanged, which prevents
model overfitting. We evaluated HyperTab on more than 40
tabular datasets of a varying number of samples and domains
of origin and compared its performance with shallow and deep
learning models representing the current state-of-the-art. We
show that HyperTab consistently outranks other methods on
small data (with statistically significant differences) and scores
comparable to them on larger datasets.

Index Terms—hypernetworks, tabular data, deep learning,
data augmentations, projections, small data.

I. INTRODUCTION

Deep learning has already gained great success in various
fields, such as computer vision [1], natural language process-
ing [2], and video analysis [3] or reinforcement learning [4].
However, in tabular data analysis, deep learning methods are
not as popular as in other areas. Somehow, although neural
networks were first created with this aim in mind, it turned
out that their performance on tabular data is subpar to other,
much simpler algorithms [5], [6].

There are many potential reasons for this. Modern deep
learning architectures designed for computer vision, such as
convolutional networks [7] or vision transformers [8], emerged
after years of research to create inductive biases that match
invariances and spatial dependencies of image data. Finding
corresponding invariances in tabular data is hard, which makes

the fully-connected architectures the first choice for tabular
datasets. Moreover, typical computer vision models containing
millions of parameters are trained on an enormous amount
of data coming from common domain, such as photographs,
which allows them to discover sophisticated patterns without
overfitting. In real-world settings, small tabular datasets are
ubiquitous. If the dimension of data is relatively large com-
pared to the number of examples, then the fully-connected
networks rapidly overfit, which prevents from using deeper
architectures.

In our work, we take inspiration from classical ensemble
models, such as Random Forests [9] or random subspace
method [10], which significantly improve the generalization
ability of decision trees even for small high-dimensional data.
Instead of training an individual model, Random Forests
generate an ensemble of trees, each one taking into account
a selected subset of features and specialized for a subset
of samples. The feature subsetting plays the role of data
augmentation, which generates multiple views of a single
instance, allowing the number of available data to be increased.
Following the above reasoning, we introduce HyperTab, a
novel and effective technique for building an ensemble of
neural networks for learning from small tabular datasets, see
Figure 1. HyperTab combines the ensembling strategy with
the augmentation mechanism, which significantly increases
the number of training data and, consequently, allows the use
of larger network architectures. To meet the requirement that
the augmentation is a class-invariant transformation (the class
label does not change after applying the augmentation), we
use the feature subsetting as the admissible augmentations.

HyperTab follows the hypernetwork approach, in which a
single hypernetwork builds an ensemble of target networks.
Given the augmentation identifier (subset of features), the
hypernetwork generates the parameters of the target network,
which is crafted to process data points transformed by this
augmentation. In the case of feature subsetting augmentations,
each target network operates on a lower-dimensional view,

ar
X

iv
:2

30
4.

03
54

3v
2

 [
cs

.L
G

]
 2

4
A

ug
 2

02
3

where data are represented by the subset of features. In this
way, we have as many training examples as the number of
[augmentation, example] pairs. Moreover, since the param-
eters of target networks are not optimized but returned by the
hypernetwork, we significantly reduce the number of trainable
parameters compared to the size of the ensemble. The only
trainable parameters are the weights of the hypernetwork. In
consequence, we obtain an effective and modern framework
for constructing a deep learning model for challenging cases
of small tabular datasets. Finally, generating individual tar-
get networks for specific subsets of features using a single
hypernetwork is also a way to automatically design network
architectures, which include internal dependencies between
coordinates.

To validate our approach, we used a diverse benchmark of
22 public tabular datasets and 20 real microbial data. Our
experiments clearly confirm that HyperTab gives a superior
performance on small datasets – its advantage over current
state-of-the-art models being statistically significant. In the
case of large datasets, where the problem of overfitting is
reduced, HyperTab works similarly to other algorithms. In
addition to benchmark tasks, we performed a detailed analysis
of HyperTab, which allows us to understand how the selection
of hyperparameters affects its performance.

Our contributions can be summarized as follows:
• We introduce HyperTab, which effectively builds an

ensemble of neural networks using the hypernetwork
approach.

• We apply an augmentation strategy based on feature
subsetting, which is consistent with the characteristic
of tabular data, and allows for virtually increasing the
number of training samples.

• We evaluate HyperTab on various datasets and show that
it obtains the state-of-the-art on small data sets.

We make a Python package with the code available to down-
load at https://pypi.org/project/hypertab/.

II. RELATED WORK

A. Hypernetworks

Hypernetwork is hardly a new concept – having been
introduced in [11] they have already been successfully used
in various domains. In general, hypernetworks are an effective
alternative to conditional neural networks [12] – the condition
represents the input to the hypernetwork, which generates the
weights of the target networks responsible for solving a target
task. Hypernetworks appear frequently in the meta-learning
literature [13]. In [14], hypernetworks were used to tackle
the problem of catastrophic forgetting – an observation that
networks that are trained sequentially on multiple tasks tend
to vastly underperform in comparison to task-specific training.
The authors of [15] and [16] use hypernetworks to construct a
functional representation of images, in which we can inspect
the image at various resolutions and perform on it arbitrarily
continuous operations. [17] shows that hypernetworks can also
be used to create generative models for 3D point clouds.

X1 X2 X3 X4 X6...

1 0 0 1 1

Target
weights

Hypernetwork

0

Target
network

X5

y

X

X1 X4 X6

Fig. 1: A general HyperTab architecture. Given a binary mask
representing a subset of features (augmentation), the hypernetwork
generates the weights to the target network, which operates on
a lower-dimensional view of data determined by the mask. The
response of HyperTab is based on multiple target networks generated
for individual augmentations.

B. Augmentations

Data augmentation is a key component of current deep
learning models, which allows learning meaningful represen-
tation even in a self- or semi-supervised setting. Although
there is a standard set of augmentations for computer vision
or natural language [18], there is no consensus on how to
select proper augmentations for tabular datasets, in which
spatial or semantic structures usually do not exist. One of the
standard approaches relies on corrupting data, e.g. by adding
Gaussian noise [19]. Alternatively, we can replace the values
of selected features (determined by the mask vector) with the
dummy values [20]. We can either zero out them, perform the
imputation using the mean or median, as well as use values
taken from other instances. Although analogous strategies have
been applied in self-supervised learning or in the definition
of pretext tasks [21], [22] [20], they do not guarantee that
the class label remains unchanged after such augmentations.
The authors of [23] applied mix-up training by mapping
samples to a low-dimensional latent space and encouraging
interpolated samples to have high similarity within the same
labeled class. In our paper, we decided to construct a lower-
dimensional view of the original data by randomly selecting
a subset of features, which is analogous to the idea of the
random subspace method. However, instead of training many
individual models, we employ the hypernetwork, which is
responsible for generating weights to target models. In this
way, we reduce the number of trainable parameters.

C. Shallow models for tabular datasets

In contrast to computer vision or natural language process-
ing, shallow models, such as Support Vector Machines [24],

https://pypi.org/project/hypertab/

[25], Random Forests [26], [9], and Gradient Boosting [27],
are usually the first choice for learning from tabular datasets.
In particular, the family of Gradient Boosting algorithms [27],
including XGBoost [28], LightGBM [29], CatBoost [30], and
GOSDT [31] achieve impressive performance and frequently
exceed the performance of deep learning models. Both Gradi-
ent Boosting as well as Random Forests generate an ensemble
of weak learners composed of decision trees, but they differ
in the way those trees are built and combined.

D. Deep learning on tabular data

To take advantage of the flexibility of neural networks, vari-
ous architectures have recently been proposed to improve their
performance on tabular data. Inspired by CatBoost, NODE
performs a gradient boosting of oblivious decision trees, which
is trained end-to-end using gradient-based optimization [32].
The aim of Net-DNF is to introduce an inductive bias in
neural networks corresponding to logical Boolean formulas
in disjunctive normal forms [33]. It encourages localized
decisions, which involve small subsets of features. TabNet
uses a sequential attention mechanism to select a subset of
features, which are used at each decision step [34]. Hopular is
a deep learning architecture in which every layer is composed
of continuous modern Hopfield networks [35]. The Hopfield
modules allow one to detect various types of dependencies
(feature, sample, and target) and have been claimed to outper-
form concurrent methods of small and medium-sized datasets.
The authors of [36] show that the key to boosting the perfor-
mance of deep learning models is the application of various
regularization techniques. They show that fully connected
networks can outperform concurrent techniques by applying
an extensive search on possible regularizers. Although authors
of recent deep learning models often claim to outperform
shallow ensemble models, other experimental studies seem to
deny these conclusions, showing that XGBoost with careful
hyperparameter tuning presents superior performance [5], [6].

In our paper, we are especially interested in overcoming the
limitations of deep learning models on small tabular datasets.
Although learning from tabular data also poses other chal-
lenges, such as encoding categorical features, we intentionally
focus on that specific case. By taking advantage of feature
subsetting used in decision tree ensembles and hypernetworks,
we build a modern deep learning model which is especially
suited for small sample problems.

III. THE HYPERTAB MODEL

It has been widely noted [6] that tree-like ensemble meth-
ods often outperform deep learning algorithms on tabular
datasets. Following this observation, we introduce HyperTab,
which follows these algorithms and combines an implicit data
augmentation with neural network ensembles to ensure its
performance on small datasets.

A. Model overview

HyperTab consists of two main components: hypernetwork
H and an ensemble of target networks Tj , for j = 1, . . . , k,

see Figure 1. The hypernetwork takes the type of augmentation
as input and returns the parameters of the target network,
which is designed to use such an augmented view of data.
Since augmentations are defined as feature subsetting, every
target network operates on a lower-dimensional view of the
data determined by selected coordinates. In contrast to typical
neural network ensembles, the weights of target networks are
not optimized directly using gradient descent but are generated
by the hypernetwork. The only trainable parameters are the
hypernetwork weights.

Such an approach is especially profitable for small datasets,
because augmentations allow us to significantly increase the
number of training examples. Instead of using raw data, we
combine each data point with all types of augmentations,
giving us n · k training examples, where n is the number of
examples, and k denotes the number of augmentations. The
number of trainable weights of HyperTab remains roughly the
same as in typical fully connected neural networks processing
original data.

In the following parts, we describe our approach in detail.

B. Augmentations

It is not obvious how to construct augmentations suit-
able for tabular datasets. Augmentation is a class-invariant
transformation of the data, which means that the class label
cannot change after applying this transformation. Although
recent progress in computer vision delivered a great variety
of augmentations, there is no gold standard for tabular data.
For this reason, we decided to restrict our attention to feature
subsetting as admissible augmentations. By representing a data
point by the subset of its features, we do not introduce noise,
but only limit the information contained in the original data.
Using an analogy with computer vision, feature subsetting is
similar to random cropping. In our case, however, we reduce
the dimension of the original data and completely eliminate
features that have not been selected. An in-depth analysis of
the relationship between feature subsetting and performance
of the algorithm has been performed in section IV-C.

Let X = {x1, x2, . . . , xn} ⊂ Rd be a tabular dataset, which
we want to use in training a deep learning model. By c ⊂
{1, . . . , d}, where |c| = l, we denote the subset of l selected
indices. Applying the augmentation defined by c to a sample
x ∈ Rd produces a vector x[c] ∈ Rl, which represents a lower-
dimensional view of the data point x.

C. Construction of the ensemble

Every target network (component model in the HyperTab
ensemble) is designed to process a specific augmented view
of the data. More precisely, the target network Tc : Rl → Z
takes a lower-dimensional representation x[c] and returns a
vector z ∈ Z, e.g. logits in the case of classification. The
vector z can be converted to the final target value, e.g. a class
label y ∈ Y . The augmentation c determines the form of the
target network Tc.

Instead of training an individual target network Tc using
gradient descent, we construct a central mechanism to generate

the whole ensemble. That is, we use a hypernetwork H , which
returns the parameters of the target network for a given type
of augmentation. Since we work with feature subsetting, the
augmentation c ⊂ {1, . . . , d} can be encoded as a binary mask
m ∈ {0, 1}d indicating the selected features, i.e.

mj =

{
1, for j ∈ c,
0, otherwise. (1)

The hypernetwork is thus a neural network Hψ : {0, 1}d → Θ,
which transforms a binary mask m representing the augmen-
tation c to the weights θc of the target network Tθc , i.e.

θc = Hψ(m).

The architecture is common for all target networks, but their
weights are individually generated by the hypernetwork to
process a specific augmented view of the data. Every target
network returns:

zc = Tθc(x[c]),

given an augmented view of x ∈ Rd.

D. Training

To train HyperTab, we optimize the weights ψ of the
hypernetwork Hψ . As mentioned, we do not optimize the
parameters of the target networks directly, but only the weights
of hypernetwork.

In a training step, we take a minibatch of augmen-
tations Bc = {c1, . . . , ca}, where cj ⊂ {1, . . . , d}
such that |cj | = l < d, and define the corresponding masks
mj ∈ {0, 1}d as in (1). Using the hypernetwork, we generate
the weights of the target networks θj = Hψ(mj). Every target
network is then applied to the minibatch of data points Bx =
{x1, . . . , xb} producing partial predictions zij = Tθj (xi[cj]),
for i = 1, . . . , b and j = 1, . . . , a. Vectors zij are compared to
true targets yi via a given loss function L(yi, zij), e.g., cross-
entropy with softmax in the case of classification. The loss is
minimized by changing the parameters ψ of the hypernetwork
Hψ using gradient descent.

As can be seen, a training sample is a pair of augmentation
and data point. As a consequence, we have as many training
samples as the number of data points times the number of
augmentations. This is especially useful for small datasets
because we can significantly increase the number of train-
ing data. Since the number of trainable network weights is
comparable to that of a typical neural network, our approach
prevents the model from overfitting.

E. Inference

Once trained, the hypernetwork H can produce the ensem-
ble of weak learners θj = Hψ(mj), where mj is a mask
corresponding to the augmentation cj , for j = 1, . . . , a. The
final prediction for a given sample x ∈ Rd is calculated as the
average of the predictions of the target networks taken over
all augmentations:

z =
1

a

a∑
j=1

Tθj (x[cj]).

We emphasize that zc = T (x[c]) is the result of the last
layer of the target network, for example, logits in the case of
classification. We can also use different aggregation methods,
but the mean pooling applied to logits makes HyperTab robust
to the noisy augmentations containing irrelevant features, as
shown in Section IV-C.

IV. EXPERIMENTS

A. Benchmark
a) Experimental setup: In order to thoroughly check the

potential of HyperTab, we check its performance on multiple
datasets coming from diverse domains. For transparency, we
consider classification problems, but HyperTab can also be
applied to regression tasks. We distinguish small datasets,
in which the number of samples is less than 1k, and larger
datasets with more than 1k samples. Since the construction of
HyperTab is suitable for a small sample problem, we expect
it to reach the state-of-the-art at least in the first group of
datasets. An overview of the datasets can be found in Table 1
of the Supplementary Materials.

As an evaluation measure, we use balanced accuracy, which
is especially designed for datasets with unbalanced classes. If
the number of examples in each class is comparable, then
balanced accuracy gives analogical scores to accuracy. In
consequence, balanced accuracy is a perfect measure for our
case, where datasets have diverse characteristics of classes.

The target networks in HyperTab are fully connected net-
works with a single hidden layer, with 5 to 50 neurons
(defined by a hyperparameter). The hypernetwork is made
up of 3 hidden layers with 128, 64, and 64 neurons. All
activations are defined by the ReLU function. The number
of augmentations and the number of selected features are
hyperparameters chosen in a grid search procedure.

We test the performance of HyperTab along with two
shallow algorithms and two deep learning models:

• RF (Random Forests). It is an ensemble of decision trees,
which combines bagging with feature subsetting.

• XGBoost (Extreme Gradient Boosting). It is an imple-
mentation of the Gradient Boosting algorithm, which
obtains the best performance among shallow machine
learning models on tabular datasets.

• DN (Fully connected neural network with dropout regu-
larization). We use a typical fully connected architecture
with dropout regularization to avoid overfitting on small
datasets. Dropout regularization before the first hidden
layer makes the model similar to HyperTab, in which an
individual model is trained on a subset of features.

• NODE (Neural Oblivious Decision Ensembles). It is a
recent deep learning ensemble designed for tabular data,
in which an individual decision tree is trained on a subset
of features selected in a differentiable way. Comparing
HyperTab with NODE allows one to verify different
subsetting mechanisms in both methods and the way of
generating the ensembles.

All algorithms are subject to the optimization of hyperpa-
rameters separately for each of the datasets. Grids specific

TABLE I: Performance of the algorithms on: (top) small datasets (n ≤ 1k); (bottom) medium and large datasets (n > 1k). We report the
average of 5 runs and the standard deviation in brackets.

Dataset XGBoost DN RF HyperTab Node

Breast Cancer 93.85 (1.44) 95.58 (1.04) 95.96 (1.52) 97.58 (1.11) 96.19 (1.11)
Connectionist 83.52 (3.94) 79.02 (5.29) 83.50 (5.55) 87.09 (5.53) 85.61 (3.48)
Dermatology 96.05 (0.89) 97.80 (1.17) 97.21 (1.66) 97.82 (1.24) 97.99 (1.20)
Glass 94.74 (3.91) 46.96 (2.56) 97.02 (1.51) 98.36 (3.21) 44.90 (1.90)
Promoter 81.88 (5.59) 78.91 (3.93) 85.94 (6.79) 89.06 (5.41) 83.75 (4.64)
Ionosphere 90.67 (2.75) 93.43 (3.72) 92.43 (2.60) 94.52 (1.47) 91.03 (1.79)
Libras 74.38 (4.55) 81.54 (3.99) 77.42 (3.88) 85.22 (2.92) 82.72 (3.27)
Lymphography 85.94 (3.14) 85.74 (5.28) 87.19 (4.33) 83.90 (5.01) 83.93 (5.82)
Parkinsons 86.35 (4.77) 74.96 (4.90) 86.84 (6.26) 95.27 (3.06) 80.20 (5.29)
Zoo 92.86 (8.75) 72.62 (4.96) 92.62 (7.97) 95.27 (3.06) 89.05 (3.98)
Hill-Valley without noise 65.53 (0.00) 56.39 (2.89) 57.33 (0.00) 70.59 (4.90) 52.71 (0.34)
Hill-Valley with noise 58.45 (0.00) 56.06 (1.65) 55.66 (0.00) 70.16 (3.25) 51.09 (0.26)
OvarianTumour 60.61 (8.80) 33.33 (0.00) 51.24 (7.53) 76.60 (4.48) 68.39 (10.82)
Heart Disease (Cleveland) 79.17 (7.24) 82.62 (4.50) 81.10 (3.89) 83.33 (2.54) 82.38 (4.59)

Mean rank 3.50 3.78 3.07 1.35 3.29



sm
all

datasets

FashionMNIST 89.45 (0.18) 89.01 (0.04) 88.04 (0.21) 90.22 (0.32) 89.51 (0.21)
CNAE-9 90.49 (2.05) 94.97 (0.77) 91.85 (1.36) 92.25 (2.55) 94.72 (1.17)
Multiple Features 98.03 (0.44) 98.27 (0.61) 98.98 (0.36) 98.12 (0.81) 98.58 (0.45)
Devanagari 72.03 (0.58) 75.24 (0.47) 71.15 (0.73) 78.92 (0.66) 78.20 (1.08)
Volkert 63.48 (0.37) 54.32 (1.51) 58.08 (0.26) 57.41 (2.38) 59.25 (0.99)
Nomao 96.50 (0.15) 95.71 (0.30) 95.83 (0.29) 95.53 (0.27) 95.23 (0.26)
Fabert 30.82 (0.78) 27.09 (0.26) 66.74 (1.00) 60.09 (0.09) 67.47 (1.19)
Christine 72.89 (0.98) 71.80 (0.53) 72.21 (0.98) 72.42 (2.19) 71.78 (1.24)

Mean rank 3.00 3.50 3.12 2.75 2.62



larger
datasets

to the algorithms can be found in the Appendix. To reduce
random effects, we report mean and standard deviation across
5 runs of the algorithms. In particular, HyperTab is evaluated
on 5 randomly selected sets of augmentations.

b) Results: The results presented in Table I (top) clearly
show that HyperTab outperforms comparative methods on
most examples of small datasets. In many cases, the difference
between HyperTab and the second best-performing method is
extremely high (e.g., in Parkinson, Hill-Valley, and Ovarian
Tumor datasets), which confirms the advantages of HyperTab
on small sample problems. There are two cases, where Hyper-
Tab does not obtain the best results: on Dermatology HyperTab
is slightly worse than NODE, while on Lymphography the
difference is greater.

To summarize the results, we apply statistical tests, see [37],
specifically we used the Friedman test with Nemenyi post hoc
analysis. For this purpose, we ranked all methods on every
data set, i.e. the best-performing method got ranked 1, the
second-best method got ranked 2, etc. Given a ranking of the
methods, the analysis consists of two steps:

• The null hypothesis is made that all methods perform the
same and the observed differences are merely random (the
hypothesis is tested by the Friedman test, which follows
a χ2 distribution,

• Having rejected the null hypothesis, the differences in
ranks are analyzed by the Nemenyi test.

Figure 2 (top) visualizes the results for a significance level
of p = 0.05. The x-axis shows the mean rank for each method.
The groups of methods for which the difference in mean rank
is not statistically significant are connected by horizontal bars.
As can be observed, the difference between HyperTab and

Fig. 2: Statistical comparison of the methods on (top image) small
datasets, (bottom image) lager datasets. A horizontal line connecting
ranks shows which difference is not significant. HyperTab is con-
firmed to perform statistically better than comparative methods on
small datasets.

the second-best method is large. Moreover, the advantage of
HyperTab over all algorithms is statistically significant.

For completeness, we also perform the evaluation on larger
datasets. As can be seen in Table I (bottom), HyperTab
performs on par with other methods, which confirms our initial
hypothesis that HyperTab is best suited to small datasets. It
obtains the highest results on two datasets. However, it is
difficult to indicate the best algorithm across all datasets. The
statistical test shows that the differences between algorithms
are not significant, see Figure 2 (bottom).

Figure 3 shows the relationship between the size of the
dataset and the advantage of HyperTab over other methods.
Specifically, we report the difference in performance between

5 6 7 8 9 10 11
log(n_samples)

5
0
5

10
15
20
25

Di
ffe

re
nc

e
in

 a
cc

ur
ac

y
XGB
DN
RF
Node

Fig. 3: Difference in balanced accuracy between HyperTab and other
methods in function of the number of samples. The advantage of
HyperTab over all algorithms gradually increases as the number of
samples decreases.

HyperTab and other methods in relation to the number of
training samples. For transparency, we illustrate the estimated
correlation. As can be seen, the advantage of HyperTab over all
methods is greater for small samples and gradually decreases
for larger datasets. We verified that the estimated correlation
factor calculated for RF, the second-best performing method,
with respect to the mean rank, is statistically significant with
p-value equal to 0.05. It further supports our hypothesis that
HyperTab is well suited for the classification of small tabular
datasets. For large datasets, HyperTab is outperformed by
NODE, which is one of the SOTA deep learning models for
tabular data.

B. Use-case on microbial data

To further validate the performance of HyperTab, we tested
it in a real-world scenario of metagenomic analysis. The
purpose of this experiment is to assess what results we may
expect to see once HyperTab is adopted by researchers from
domains, who do not necessarily possess machine learning
expertise.

Following the procedure described in [38], we start from an
OTU table: operational taxonomical units of microorganisms
present in the samples. We then apply a rudimentary feature
selection method by discarding constant features and prepro-
cess the data using ANCOMBC [39]. Since the procedure does
not include tuning of the hyperparameters, we decided to also
omit this step to replicate the real-world scenario as closely
as possible.

We test HyperTab against three other algorithms commonly
used in microbiome classification [38]: Random Forest, XG-
Boost, and Support Vector Classifier [40]. Our data consists of
20 datasets (summarized in the Supplementary Materials) that
contain samples of the gut microbiome of patients with and
without colorectal cancer. Their aim is to predict whether the
patient has or does not have the aforementioned cancer based
only on the composition of his gut microbiome.

Table II contains results for each of the datasets, and
Figure 4 shows an overview of the scores. Once again, the

Fig. 4: Analysis performed on microbial datasets shows that the
difference between HyperTab and other algorithms is statistically
significant.

results show that HyperTab consistently outperforms other
methods on small datasets. The difference between HyperTab
and the other methods is statistically significant.

TABLE II: Results on the metagenomic datasets. Each dataset’s name
is derived from the first author’s surname and the year of publication.

Dataset RF SVC XGBoost HyperTab

FengQ_2015 0.84 0.87 0.81 0.98
GuptaA_2019 0.80 0.90 0.82 0.98
HanniganGD_2017 0.59 0.53 0.60 0.71
JieZ_2017 0.73 0.79 0.79 0.93
KeohaneDM_2020 0.60 0.44 0.49 0.50
LiJ_2017 0.49 0.50 0.47 0.58
NagySzakalD_2017 0.73 0.74 0.76 0.79
NielsenHB_2014 0.72 0.71 0.73 0.78
QinJ_2012 0.66 0.70 0.67 0.73
QinN_2014 0.89 0.90 0.87 0.91
RubelMA_2020 0.83 0.82 0.77 0.80
ThomasAM_2018a 0.62 0.54 0.71 0.66
ThomasAM_2018b 0.57 0.58 0.58 0.77
ThomasAM_2019c 0.70 0.67 0.78 0.88
VogtmannE_2016 0.72 0.56 0.70 0.64
WirbelJ_2018 0.72 0.85 0.76 0.92
YachidaS_2019 0.65 0.64 0.65 0.79
YuJ_2015 0.68 0.75 0.73 0.77
ZellerG_2014 0.68 0.75 0.68 0.66
ZhuF_2020 0.72 0.79 0.72 0.70

Mean rank 2.97 2.7 2.73 1.6

C. Analysis

a) Dependence on the selection of augmentations: There
are two main parameters that influence the performance of
HyperTab: the number of augmentations (target models) and
the number of features selected by each augmentation. In this
experiment, we analyze their optimal values on two versions
of the F-MNIST datasets.

First, we consider F-MNIST with only 100 samples (10 per
class), which corresponds to the small sample problem. As
can be seen in Figure 5 (top), the highest accuracy is obtained
for a relatively large number of augmentations (80-200) and a
small number of selected features (20-50). The large number
of augmentations virtually increases the amount of training
data, while the small number of selected features allows for
constructing an ensemble with diverse target models.

To extend our analysis, we performed an analogical exper-
iment on the full F-MNIST dataset containing 60k training
samples. In contrast to the previous case, here we observe
that the optimal performance is obtained for a smaller number
of augmentations and a higher number of selected features,
see Figure 5 (bottom). It may follow from the fact that for
large datasets, we do not need to virtually increase the number

of training samples as in the case of small sample problems.
However, if the number of target networks is small, we need
to use many features in each augmentation to provide enough
information about the data.

In conclusion, the number of augmentations should be
selected jointly with the number of features in each augmenta-
tion. For small-sample problems, it is beneficial to use a high
number of augmentations with a small number of features,
while for larger datasets this relation should be inverse.

Fig. 5: Influence of the number of augmentations and the number
of selected features on the HyperTab performance analyzed on two
versions of F-MNIST. Smaller datasets strongly benefit from the
proposed ensembling strategy.

b) Dependence on irrelevant features: A natural question
arises for HyperTab: What if there are few important features
and many augmentations, by chance, happen to omit them? F-
MNIST allows testing that phenomenon to some degree, since
many of their pixels are purely background noise, and there is
a high chance that for small number of selected features most
of them will consist of noise only.

To further investigate this scenario, we devised a synthetic
dataset with 50 columns, 49 of them randomly sampled from
uniform distribution, and one being linearly dependent on the
class of the example. The dataset has 5 unique classes and 50
samples. Each augmentation selects 10 features. We verified
that only 17% of the augmentations use the informative fea-
ture, while the rest of them rely on noise for their predictions.
Despite that, HyperTab was able to achieve perfect accuracy
on this dataset.

To further analyze the reason behind this behavior, we
inspect the predictions of individual target networks and

60 40 20 0 20
logits

0

5

10

15

20

25

Fr
eq

ue
nc

y

Informative
Uninformative

Fig. 6: Histogram of target networks’ predictions (logits) calculated
on informative and non-informative augmentations. Since HyperTab
averages logits of target networks, the contribution of uncertain pre-
dictions generated by non-informative features is marginal compared
to the confident scores obtained using informative features.

present their histograms in Figure 6. We recall that the final
prediction of HyperTab is calculated by taking the average of
logits returned by the target networks. Our analysis shows that
non-informative augmentations tend to craft target networks
that are "uncertain" of their predictions. In order not to
influence the voting too much, their logits are centered around
0. In contrast, target networks generated by augmentations
containing the informative feature return confident predictions.
Since the pooling layer operates on logits, HyperTab is able
to reduce the effect of noisy models.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper introduced HyperTab – a hypernetwork-based
ensemble for deep learning on tabular datasets. Making use of
feature subsetting as data augmentations, we virtually increase
the number of training examples, keeping the number of
trainable weights unchanged. This is especially profitable for
small datasets, where typical deep learning models perform
inferior to shallow methods. Our experiments clearly confirm
that HyperTab obtains state-of-the-art results on small tabular
datasets and performs on par with other methods on larger
datasets.

We strongly believe that this paper may serve as a stepping
stone for hypernetwork-based approaches for tabular data,
as there are still many venues that can be further pursued.
HyperTab relies on a random scheme for sampling augmenta-
tions. Although our analysis shows that HyperTab is robust to
irrelevant features, we can introduce a differentiable procedure
to learn an informative and diverse set of augmentations
(potential ideas can be found in [32]). In addition to the
classification task, we plan to consider regression problems.
Our analysis shows that the target networks tend to produce
near-zero output if they are uncertain of the correct result,
suggesting that HyperTab may be suitable for regression.

TABLE III: Overview of the datasets. Here, n, d, k denote the
number of samples, features, and classes, respectively. Domains
abbreviations: CM - customer metadata, TF - text features, RD -
radar data, CD - clinical data, PX - pixels, Co - compositional, S
- synthetic, VF - video features, IF - image features, VoF - voice
features, Bio - biological dataset, AF - animal features

Dataset n d Dom. Source k
Christine 5418 1637 S OpenML 2
CNAE-9 1080 857 TM UCI 9
Connectionist 208 60 RD UCI 2
Dermatology 366 33 CD UCI 6
Devanagari 12912 784 PX Kaggle 58
Fabert 8237 801 S OpenML 7
FashionMNIST 70000 784 PX - 10
Glass 214 10 Co UCI 7
Heart Disease 303 14 CD UCI 2
Hill-Valley 606 101 S UCI 2
Ionosphere 351 34 RD UCI 2
Libras 360 91 VF UCI 15
Lymphography 148 18 IF UCI 2
Mult. Features 2000 649 IF UCI 10
Nomao 34465 120 CM OpenML 2
OvarianTumour 283 54622 Bio OpenML 3
Parkinsons 197 23 VF UCI 2
Promoter 106 58 Bio UCI 2
Volkert 58 310 181 S OpenML 10
WBC 569 30 IF UCI 2
Zoo 101 17 AF UCI 7

TABLE IV: Overview of the metagenomical datasets.

Dataset n d
FengQ-2015 107 606
GuptaA-2019 60 308
HanniganGD-2017 55 292
JieZ-2017 385 683
KeohaneDM-2020 117 381
LiJ-2017 155 436
NagySzakalD-2017 100 438
NielsenHB-2014 317 606
QinJ-2012 344 651
QinN-2014 237 645
RubelMA-2020 175 370
ThomasAM-2018a 53 477
ThomasAM-2018b 60 503
ThomasAM-2019c 80 519
VogtmannE-2016 104 540
WirbelJ-2018 125 537
YachidaS-2019 509 718
YuJ-2015 128 575
ZellerG-2014 114 652
ZhuF-2020 171 480

ACKNOWLEDGEMENT

The research of M. Śmieja was supported by the National
Science Centre (Poland), grant no. 2022/45/B/ST6/01117. For
the purpose of Open Access, the author has applied a CC-BY
public copyright license to any Author Accepted Manuscript
(AAM) version arising from this submission.

APPENDIX

Overview of basic tabular datasets is presented in Table III.
Real-life metagenomic datasets are described in Table IV.

Each model’s specific set of hyperparameters was evaluated
on the test set. Models were optimized across the following
hyperparameters:

A. XGBoost

XGBoost was optimized with two grids, each containing
a different set of parameters. The optimal hyperparameters
obtained from the first grid were later used when performing
a search on the second grid.

First grid:
• n_estimators: {50, 100, 250, 500, 1000, 3000},
• max_depth: {2, 3, 5, 10, 15},
• learning_rate: Log-Uniform distribution [1e-5,1e-1],
• min_child_weight: {1, 2, 4, 8, 16, 32}
• gamma: {0, 0.001, 0.1, 1}.

Second grid:
• subsample: {0.5, 0.6, 0.7, 0.8, 0.9, 1},
• reg_lambda: Log-Uniform distribution [1e-5, 10] ini-

tial_value = 0,
• reg_alpha: Log-Uniform distribution [1e-5, 10] ini-

tial_value = 0.

B. NODE

• layer_dim: {64, 128, 256, 512, 1024}. In some cases
value 1024 was omitted due to memory issues (big
datasets),

• num_layers: Discrete uniform distribution [1, 5],
• depth: Discrete uniform distribution [2, 7],

C. DN

• epochs: {100, 150},
• dropout_layer1: {0.1, 0.3, 0.5, 0.7} (ordered),
• dropout_layer2: {0.1, 0.3, 0.5, 0.7} (ordered),
• dropout_layer3: {0.1, 0.3, 0.5, 0.7} (ordered),
• dropout_layer4: {0.1, 0.3, 0.5, 0.7} (ordered),
• learning_rate: {3e-5, 3e-4, 3e-3, 3e-2, 3e-1},
• batch_size: {32, 64},

D. RF

Common:
• max_features: {’sqrt’, 0.2, 0.3, 0.5, 0.7},
• criterion: {’gini’, ’entropy’},
• max_depth: {’default’, 2, 4, 8, 16},

Small datasets:
• n_estimators: Discrete uniform distribution {50, 3000},

quantized to increments of 50,
Big datasets:

• n_estimators: { 50, 100, 200, 500, 1000, 3000 }

E. HyperTab

Common:
• epochs: {100},
• target_size: {5, 10, 20, 50},
• learning_rate: {3e-5, 3e-4, 3e-3, 3e-2, 3e-1},

Big datasets:
• masks_no: {3, 5, 7, 20},
• mask_size: {30%, 50%, 70%, 80%} of n_features,

In the case of Small datasets, it was dependent on the dataset
itself. Here we provide a generalized grid:

• masks_no: Discrete uniform distribution [10, 200],
quantized to increments of 10,

• mask_size: Discrete uniform distribution [2, n_features
* 0.9]

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the
ACM, vol. 60, no. 6, pp. 84–90, May 2017. [Online]. Available:
https://dl.acm.org/doi/10.1145/3065386

[2] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent Trends
in Deep Learning Based Natural Language Processing,” Nov. 2018,
arXiv:1708.02709 [cs]. [Online]. Available: http://arxiv.org/abs/1708.
02709

[3] D. Michelsanti, Z.-H. Tan, S.-X. Zhang, Y. Xu, M. Yu, D. Yu,
and J. Jensen, “An Overview of Deep-Learning-Based Audio-Visual
Speech Enhancement and Separation,” Mar. 2021. [Online]. Available:
http://arxiv.org/abs/2008.09586

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” 2013. [Online]. Available: https://arxiv.org/abs/1312.5602

[5] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all
you need,” Information Fusion, vol. 81, pp. 84–90, 2022.

[6] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on tabular data?” arXiv preprint
arXiv:2207.08815, 2022.

[7] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold,
S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is
worth 16x16 words: Transformers for image recognition at
scale,” CoRR, vol. abs/2010.11929, 2020. [Online]. Available:
https://arxiv.org/abs/2010.11929

[9] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[10] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE transactions on pattern analysis and machine intelligence,
vol. 20, no. 8, pp. 832–844, 1998.

[11] D. Ha, A. Dai, and Q. V. Le, “HyperNetworks,” Dec. 2016,
arXiv:1609.09106 [cs]. [Online]. Available: http://arxiv.org/abs/1609.
09106

[12] T. Galanti and L. Wolf, “On the modularity of hypernetworks,” Advances
in Neural Information Processing Systems, vol. 33, pp. 10 409–10 419,
2020.

[13] D. Zhao, J. von Oswald, S. Kobayashi, J. Sacramento, and B. F. Grewe,
“Meta-learning via hypernetworks,” 2020.

[14] J. Von Oswald, C. Henning, J. Sacramento, and B. F. Grewe, “Continual
learning with hypernetworks,” arXiv preprint arXiv:1906.00695, 2019.

[15] S. Klocek, L. Maziarka, M. Wołczyk, J. Tabor, J. Nowak, and M. Śmieja,
“Hypernetwork functional image representation,” in Proceedings of
the International Conference on Artificial Neural Networks, 2019, p.
496–510.

[16] I. Skorokhodov, S. Ignatyev, and M. Elhoseiny, “Adversarial generation
of continuous images,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 10 753–10 764.

[17] P. Spurek, S. Winczowski, J. Tabor, M. Zamorski, M. Zięba,
and T. Trzciński, “Hypernetwork approach to generating point
clouds,” Oct. 2020, arXiv:2003.00802 [cs]. [Online]. Available:
http://arxiv.org/abs/2003.00802

[18] K. D. Dhole and et al., “Nl-augmenter: A framework for task-
sensitive natural language augmentation,” 2021. [Online]. Available:
https://arxiv.org/abs/2112.02721

[19] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,” in
Proceedings of the 25th international conference on Machine learning,
2008, pp. 1096–1103.

[20] T. Ucar, E. Hajiramezanali, and L. Edwards, “Subtab: Subsetting features
of tabular data for self-supervised representation learning,” Advances
in Neural Information Processing Systems, vol. 34, pp. 18 853–18 865,
2021.

[21] R. Fakoor, J. W. Mueller, N. Erickson, P. Chaudhari, and A. J. Smola,
“Fast, accurate, and simple models for tabular data via augmented dis-
tillation,” Advances in Neural Information Processing Systems, vol. 33,
pp. 8671–8681, 2020.

[22] J. Yoon, Y. Zhang, J. Jordon, and M. van der Schaar, “Vime: Extending
the success of self-and semi-supervised learning to tabular domain,” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 11 033–
11 043, 2020.

[23] S. Darabi, S. Fazeli, A. Pazoki, S. Sankararaman, and M. Sarrafzadeh,
“Contrastive mixup: Self-and semi-supervised learning for tabular do-
main,” arXiv preprint arXiv:2108.12296, 2021.

[24] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[25] B. Schölkopf, A. J. Smola, F. Bach et al., Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press,
2002.

[26] T. K. Ho, “Random decision forests,” in Proceedings of International
Conference on Document Analysis and Recognition, 1995, pp. 278–282.

[27] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[28] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[29] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

[30] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” Advances in
neural information processing systems, vol. 31, 2018.

[31] J. Lin, C. Zhong, D. Hu, C. Rudin, and M. I. Seltzer, “Generalized
optimal sparse decision trees,” CoRR, vol. abs/2006.08690, 2020.
[Online]. Available: https://arxiv.org/abs/2006.08690

[32] S. Popov, S. Morozov, and A. Babenko, “Neural oblivious decision en-
sembles for deep learning on tabular data,” CoRR, vol. abs/1909.06312,
2019. [Online]. Available: http://arxiv.org/abs/1909.06312

[33] L. Katzir, G. Elidan, and R. El-Yaniv, “Net-dnf: Effective deep modeling
of tabular data,” in International Conference on Learning Representa-
tions, 2020.

[34] S. Ö. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular learn-
ing,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 8, 2021, pp. 6679–6687.

[35] B. Schäfl, L. Gruber, A. Bitto-Nemling, and S. Hochreiter, “Hop-
ular: Modern hopfield networks for tabular data,” arXiv preprint
arXiv:2206.00664, 2022.

[36] A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka, “Well-tuned simple
nets excel on tabular datasets,” Advances in neural information process-
ing systems, vol. 34, pp. 23 928–23 941, 2021.

[37] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine learning research, vol. 7, pp. 1–30, 2006.

[38] K. Qu, F. Guo, X. Liu, Y. Lin, and Q. Zou, “Application of Machine
Learning in Microbiology,” Frontiers in Microbiology, vol. 10, 2019.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fmicb.
2019.00827

[39] H. Lin and S. D. Peddada, “Analysis of compositions of microbiomes
with bias correction,” Nature Communications, vol. 11, no. 1, p.
3514, Jul. 2020, 232 citations (Semantic Scholar/DOI) [2023-01-17]
Number: 1 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/s41467-020-17041-7

[40] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifiers,” in Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, ser. COLT ’92, 1992, p.
144–152. [Online]. Available: https://doi.org/10.1145/130385.130401

https://dl.acm.org/doi/10.1145/3065386
http://arxiv.org/abs/1708.02709
http://arxiv.org/abs/1708.02709
http://arxiv.org/abs/2008.09586
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/2003.00802
https://arxiv.org/abs/2112.02721
https://arxiv.org/abs/2006.08690
http://arxiv.org/abs/1909.06312
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00827
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00827
https://www.nature.com/articles/s41467-020-17041-7
https://doi.org/10.1145/130385.130401

	Introduction
	Related work
	Hypernetworks
	Augmentations
	Shallow models for tabular datasets
	Deep learning on tabular data

	The HyperTab model
	Model overview
	Augmentations
	Construction of the ensemble
	Training
	Inference

	Experiments
	Benchmark
	Use-case on microbial data
	Analysis

	Conclusion and future directions
	Appendix
	XGBoost
	NODE
	DN
	RF
	HyperTab

	References

