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Abstract
The time and space complexities of Markov random field (MRF) algorithms for image
segmentation increase with the number of edges that represent statistical dependencies between
adjacent pixels. This has made MRFs too computationally complex for cutting-edge applications
such as joint segmentation of longitudinal sequences of many high-resolution magnetic resonance
images (MRIs). Here, we show that simply removing edges from full MRFs can reduce the
computational complexity of MRF parameter estimation and inference with no notable decrease in
segmentation performance. In particular, we show that for segmentation of white matter
hyperintensities in 88 brain MRI scans of elderly individuals, as many as 66% of MRF edges can
be removed without substantially degrading segmentation accuracy. We then show that removing
edges from MRFs makes MRF parameter estimation and inference computationally tractable
enough to enable modeling statistical dependencies within and across a larger number of brain
MRI scans in a longitudinal series; this improves segmentation performance compared to separate
segmentations of each individual scan in the series.

I. INTRODUCTION
Markov Random Fields (MRFs) provide a probabilistic graphical model framework for
solving image processing tasks such as denoising, inpainting, and segmentation. By
modeling each pixel as a node in a graph, and dependencies between neighboring pixels as
edges between nodes, MRFs are able to represent complex statistical relationships between
image pixels in a mathematically principled way. Numerous approaches have been
presented for the two key computational problems that must be solved to use MRFs in
practice: parameter estimation, using labeled ground-truth images to estimate the parameters
of probabilistic models of inter-pixel dependencies; and inference, assigning labels to the
pixels that are in accord with the estimated inter-pixel dependencies [1].

Unfortunately, the time and space complexities of all current approaches to parameter
estimation and inference increase at least linearly with the number of edges that are included
to account for statistical dependencies between adjacent pixels (Table 1). Typically, if each
pixel corresponds to a node in the graph, a lattice of edges is induced that connects each
node to its k nearest neighbors. Thus, for high resolution images with a large number of
pixels, the resulting MRF can include so many nodes and edges that parameter estimation
and inference become intractable. This is becoming an especially important problem in
neuroimaging, where state-of-the-art studies are collecting longitudinal series of 5 to 10
volumetric MRI scans of the same individual over time [2]. Each scan may contain a 3D
array of 256 × 256 × 256 pixels, and besides edges that model dependencies between
adjacent pixels within an individual scan, it is desirable for the MRF to encourage
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biologically-plausible dynamics in segmentation labels over time by including MRF edges
that connect a node from one scan to a neighborhood of corresponding nodes in a scan that
is adjacent in time. Due to their large number of edges, performing parameter estimation and
inference in these large graphs is beyond the scope of even the most state-of-the-art MRF
algorithms unless substantial heuristic approximations are employed.

In this paper we argue for making existing MRF algorithms tractable for such large-scale
applications by removing edges from the graphs on which they operate. We focus on
applications such as brain MRI segmentation for which all images to be segmented are
warped to a template space such that each node and edge corresponds to an analogous
anatomical location across scans. Before parameter estimation, we use training data to
determine which edges to remove from the graph. We then run parameter estimation and
inference on the resulting, reduced graph. We test the accuracy of the reduced graphs for
MRI-based segmentation of white matter hyperintensities (WMHs), a brain imaging finding
important to Alzheimer’s disease, multiple sclerosis, depression, and other brain disorders.
These experiments suggest that a majority of the edges in an MRF can safely be removed
without compromising WMH segmentation performance. Finally, we show that such
reduced graphs give rise to increased WMH segmentation accuracy by enabling unified
segmentation of large graphs that represent a longitudinal series of three or more high-
resolution MRIs along with spatial and temporal label dependencies.

II. RELATED WORK
Several prior algorithms simplify the structure of graphical models. Hierarchical models
connect neighborhoods of pixels not to each other but to a “supernode” that approximates
the entire neighborhood. Neighborhoods of supernodes are connected to supernodes at a
higher level, and so on. This technique forms tree-structured graphs which allow efficient
parameter estimation and inference, but their outputs are often “blocky” due to the fact that
dependencies between neighboring pixels are represented by variable-length paths through
the tree [3], [4].

MRF parameter estimation can be performed with an L1 regularizer that encourages zero-
valued parameters that exert no influence on inter-pixel label dependencies and thus
represent removable edges [5]. However, these methods require solving an expensive
regularized parameter estimation problem on a full graph to determine which edges to
remove; our starting point is imaging data so large that solving such a parameter estimation
problem is computationally intractable.

Another set of methods iteratively removes edges from decomposable models such as
Bayesian networks, for which an edge can be removed without modifying any other model
parameters [6], [7]. Lattice-structured graphs that are natural for modeling imaging data are
generally not decomposable. It is possible to convert lattice models into junction trees,
which are decomposable and have several reduction methods designed for them [8], but
converting a lattice-structured graph to a junction tree requires adding triangulating edges
between all square-shaped configurations, rendering this approach intractable. Our approach
is to apply iterative edge removal techniques to large-scale lattice-structured MRFs for
which edge removal has not been investigated in any depth.

III. METHODS
We begin with 3D lattice MRFs with a heterogeneous Potts compatibility function at each
edge, Pseudolikelihood maximization as a parameter estimation objective function, and a
simplex-based optimizer.
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A. MRFs for image segmentation in a template space
MRFs model the joint probability of fields of random variables. In image processing, each
image pixel i typically has a corresponding node vi ∈ 2V, and the label fi ∈ L assigned to vi
is one such random variable. Each neighboring pair of nodes is connected with an edge e ∈
E representing a statistical dependency between adjacent pixel labels. For each edge e a
compatibility function Ψ assigns a probability to each possible assignment of labels to the
nodes it connects. For each node vi the observation function Φ assigns a probability to all
labels in L given the image intensities at that location, oi. The MRF models the field of pixel
labels with the energy function:

(1)

Here, f is an assignment of labels from L to V, and F is the space of all possible labelings.
Inference is the process of finding an f ∈ F that minimizes this energy, and parameter
estimation is the process of determining a set of parameters governing Φ and Ψ that conform
to oi and f provided by labeled training data [1].

Many brain image segmentation tasks, including our WMH segmentation application, are
performed in a template space. All images are nonlinearly warped to a common template
image as described previously [9] so that each pixel corresponds to the same anatomical
location across subjects. This approach allows us to provide a detailed model of label
dependencies that vary from location to location to reflect the spatially-variable properties of
distinct anatomical regions. In particular, our compatibility function Ψ(e, f) is a spatially
heterogeneous Potts model: each e ∈ E is assigned its own free parameter Θe representing
the amount of energy added to Ψ in the event that the nodes connected by e take on differing
labels.

Our observation function is Φ(i, f) = Σi[O(oi, fi) × Fr(i, fi)] in which Fr(i, fi) is the label
prior: the frequency of label fi occurring at location i in the training data. O(oi, fi) gives the
probability of label fi being associated with image intensity oi at pixel i. We model O(oi, fi)
using one log-normal distribution per tissue label, as described previously [9]. These
observation and compatibility functions are used throughout all experiments with full and
reduced MRFs described in Section IV. For parameter estimation, we used a simplex-based
optimizer to maximize graph pseudolikelihood [10], and for inference we used Belief
Propagation [11].

B. Prior-driven edge removal
Under the above formulation, graph reduction is the process of removing as many e ∈ E
from the graph as possible while maintaining the strongest possible connection between
minimizing U(f) and maximizing the accuracy of the resulting pixel labels. Our approach is
based on the intuitive principle that pixel neighborhoods with little inter-subject or inter-
pixel label variability require little or no modeling of inter-pixel label dependencies by Ψ.
For example, a pixel i in an anatomical region where WMHs rarely occur will usually be
assigned a non-WMH label based on the observation function Φ alone, and the labels of
surrounding pixels are so often also non-WMH along with it that they provide little
additional useful information about fi. Thus, edges between pixel i and its neighbors can be
removed with little impact.

We use label frequency information to quantify the importance of edges in the graph in an
approach we call priordriven edge removal. We assign each edge e ∈ E an edge prior pe. If e
connects nodes i and j, we define pe as follows:
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(2)

in which Fr(i,l) denotes the frequency at which label l occurs at location i, in the labeled
training data. The value of pe becomes greater as the label distribution at both of the nodes
becomes more concentrated about a single label; thus, edges with a high pe are likely to be
relatively less relevant because the labels of the pixels that they connect are largely
determined by their frequency irrespective of imaging data or neighboring labels.

We remove edges based on pe using two approaches. In backward selection, we begin from
a full graph and iteratively remove a designated number of randomly-selected edges from
among those with a high pe. In the forward selection approach, we begin from a graph with
no edges and iteratively add a designated number randomly selected from among those with
low pe. We choose edges randomly based on their pe value, rather than adding or removing
individually based on a sorting by pe, because nearby edges often have highly similar pe
values. The random element thus decreases the spatial locality of inserted or removed edges,
and thus encourages more global changes to the graph in a smaller number of insertions or
removals.

C. Alternative edge removal criteria
We compared prior-driven edge removal against theoretically-driven, computationally-
expensive criteria that evaluated the impact of edge insertions and removals on MRF
parameter estimation and inference diagnostics. First, we considered a forward selection
approach in which the next edge to be added is the one that provided the greatest increase to
the training data pseudolikelihood [10], which can be thought of as approximating an
exponential of the U function evaluated over all training examples. We then considered a
backward selection approach designed to first train the full graph and remove edges that
minimally modified the behavior of that graph in terms of the distribution of U(f) values
over all possible label sets F. We used the Kullback-Leibler (K-L) divergence [12] to
quantify differences between full and reduced graphs in this sense. We evaluated the
viability of these more expensive approaches on small graphs in Sec. IV-B to show that they
lack substantial advantages over our prior-driven method.

D. Retraining Approaches
Because lattice-structured MRFs are not decomposable, removal or addition of a single edge
could theoretically change the optimal values for compatibility function parameters
throughout the graph. This means that retraining is theoretically required: a new run of
parameter estimation after every such graph modification. However, in real-world graphs,
removing or adding an edge in one corner of a large graph is expected to have little effect on
compatibility parameters of distant edges, especially because parameter estimation
algorithms applied to large-scale graphs effectively only optimize parameter values with
respect to an extended local neighborhood. Therefore, in Section IV-B we experimented
with omitting re-training for small graphs, and showed that doing so does not substantially
alter the inference performance of the reduced graphs.

IV. EXPERIMENTS
A. Data

We evaluated the utility of graph reduction on 958 fluid-attenuated inversion recovery
(FLAIR) MRI scans of elderly individuals aged 70-90 in the University of California, Davis
Alzheimer’s Disease Center (ADC) Longitudinal Cohort covering a range from normal
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cognition to dementia. Subject recruitment, image acquisition, ground-truth semi-manual
WMH segmentation, and warping of these images to a common anatomical template has
been described previously [13].

B. Segmentation of small sub-images
In these experiments we compare our prior-driven edge removal and edge removal based on
the more costly pseu-dolikelihood and K-L divergence criteria (Sec. III-C). We selected the
same 4 × 4 pixel sub-image from each of the images described in Sec. IV-C and ran WMH
segmentation on 88 of them, using the other 870 sub-images as training data. For each
method, and for each reduced graph resulting from iterative edge removal or addition, we
performed parameter estimation on the 870 training images and inference on the 88
remaining ones, and calculated the intraclass correlation coefficient (ICC) between the
volume of pixels the automated method labeled as WMH, and the volume of WMH-labeled
pixels provided by ground-truth semi-manual FLAIR segmentation. Higher ICC values
denote stronger agreement between estimates and ground truth (Fig. 1). The expensive
pseudolikelihood and K-L divergence methods did not perform substantially better than the
prior-driven reduction method in graphs of any size. In addition, re-training as described in
Sec. III-D did not lead to substantially higher performance either. We concluded that prior
driven edge removal without retraining performs comparably to more costly and
theoretically more accurate methods and therefore applied this method to the full images.

C. Segmentation of full images
We performed the forward and backward variants of our prior-driven edge removal and
calculated the ICC between ground-truth WMH volumes and those estimated automatically
using the reduced graphs (Fig. 2). The ICC drops slightly on removal of the first few edges,
but then remains remarkably stable until as many as 58% of edges have been removed. This
suggests that more than half of MRF edges can safely be removed without substantially
damaging WMH segmentation performance. We also note that the performance of forward-
and backward-selection methods are convergent around this point, suggesting that there may
be no strong reason to prefer one or the other approach.

D. Longitudinal Segmentation of multiple MR Images
To determine whether graph reduction enables new approaches to segmentation of
longitudinal MRI series, we performed graph reduction using the backward-selection, no-
retraining variant of our proposed method and used a graph with about 58% of edges
removed for longitudinal segmentation. To jointly segment a series of k images for each
subject, we created k replicas of the reduced graph and introduced new edges that connected
corresponding nodes across adjacent time points. First, we performed joint segmentation
with full and reduced graphs on the scans of 179 subjects with exactly two scans. Next, we
performed joint segmentation with the reduced graph on each of the 40 subjects with scans
at three or more time points. Joint inference on a full graph is intractable for these longer
series, and so was not performed. For comparison to a more traditional approach, we also
segmented each scan in a series separately from the rest of the series.

To analyze these results, we examined occurrences of an implausible result: WMH volumes
decreasing over time. For each subject, we calculated change in segmented WMH volume
between subsequent pairs of time points. We then counted those pairs with significant
decreases in WMH volume (> 0.43 CC), and calculated the average magnitude of these
decreases. We present these results in Fig. 3.

In these experiments, joint segmentation led to fewer occurrences of such implausible results
versus corresponding separate approaches. Joint segmentation also reduced the magnitudes
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of these decreases, when they did occur. Consistent with Sec. IV-C, segmentations using
reduced graphs were only slightly inferior to their non-reduced counterparts, when available.
The lowest average change magnitude overall was achieved by joint segmentation of the
multitime point dataset, which could not practically be performed without the reduced
graph.

V. DISCUSSION
In this work we proposed reducing the computational cost of MRFs for image segmentation
by removing edges from the graphs. We showed that for a WMH segmentation task,
removing the majority of edges leads to a negligible drop in segmentation accuracy, and we
showed that removing edges in this way makes joint segmentation of longer MRI series
possible. Such joint segmentation of longitudinal series led to greater biological plausibility
in WMH change.

Future work should investigate why more costly, theoretically-driven edge removal metrics
showed no substantial benefit over randomly driven edge removal. Additional work will also
focus on extending edge removal to other MRF tasks such as 3-tissue brain segmentation
and MRI smoothing.
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Fig. 1.
Results of WMH Segmentation on a small 4 × 4 subgraph of MR Images at varying levels of
graph reduction with each technique. Note that our proposed prior-driven reduction method,
without retraining, performs comparably and often better than the more costly methods that
are intractable for larger graphs.
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Fig. 2.
Results of applying various levels of our proposed prior-driven graph reduction in both the
backward-selection and forward-selection variants, without retraining, to a WMH
segmentation task. Note that as many as 58% of the edges can be removed without
substantially damaging segmentation performance, and that the two directional variants
perform comparably for similar levels of reduction.
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Fig. 3.
Occurrences (above axis) and magnitudes (below axis) of significant decreases in segmented
WMH volume, a biologically implausible event, between sequential pairs of segmented
scans. Joint inference with full graphs is intractable for 3+ scans at a time, and so was
omitted. Note that joint segmentation reduces these occurrences and their magnitudes versus
the traditional separate method, and that segmentation performance of reduced graphs is
only slightly reduced compared to full graphs.
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TABLE I

COMPLEXITY OF MRF ALGORITHMS

Method Time Complexity Space Complexity

Direct Inference O(|L||V||E|) O(|L||V|)

Simulated Annealing O(n|E|) O(|V|)

ICM O(n|E||L|) O(|V||L|)

Belief Propagation O(n|E||L|) O(|E||L|)

Junction Tree Algorithm O(|L|k) O(|L|k)

Graph Cuts O(|E||V|2) O(|V|)

IPF O(nIPFnBP|E||V|) O(|E|)

Pseudolikelihood O(n|T||E|) O(|T||E|)

Time and space complexity of major algorithms for MRF inference and parameter estimation, assuming a naive implementation for graphs with |V|
nodes and |E| edges, each of which correspond to a compatibility function with a single unique free parameter. Other terms are: n: the number of
iterations, |T|: the size of the training set, and |L|: the number of possible pixel labels. Note that |E| occurs in the time complexities of all but the
Junction Tree Algorithm, for which the tree width k depends indirectly upon |E| as well. The |E| term also appears in many of the space
complexities.
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