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A Vision-based System for Breathing Disorder Identification:
A Deep Learning Perspective

Manuel Martinez1, David Ahmedt-Aristizabal1,2, Tilman Väth1,
Clinton Fookes2, Andreas Benz3, Rainer Stiefelhagen1

Abstract— Recent breakthroughs in computer vision offer
an exciting avenue to develop new remote, and non-intrusive
patient monitoring techniques. A very challenging topic to
address is the automated recognition of breathing disorders
during sleep. Due to its complexity, this task has rarely been
explored in the literature on real patients using such marker-
free approaches. Here, we propose an approach based on deep
learning architectures capable of classifying breathing disor-
ders. The classification is performed on depth maps recorded
with 3D cameras from 76 patients referred to a sleep laboratory
that present a range of breathing disorders. Our system is
capable of classifying individual breathing events as normal or
abnormal with an accuracy of 61.8%, hence our results show
that computer vision and deep learning are viable tools for
assessing locally or remotely breathing quality during sleep.

I. INTRODUCTION

Sleep apnea has a complex nature, as it can be caused by a
variety of underlying problems and remains often undetected
when the person is sleeping alone. As complex as sleep apnea
is, some cases (i.e., obstructive sleep apnea) can be treated
by losing weight or wearing a Continuous Positive Airway
Pressure (CPAP) device during sleep, which has shown a
positive effect on prognosis [1]. For many of the sufferers,
sleep apnea remains undetected for all their lives, due to the
complex diagnosis procedure [2].

There is the common misconception that an apnea episode
corresponds simply to an interruption in the regular breathing
pattern, and thus it can be easily detected by monitoring the
chest expansion and contraction patterns. This misconception
has lead to many experiments where algorithms that are
developed to recognize apnea are tested on healthy volunteers
that simulate apnea events by simply holding their breath
for a few seconds. Instead, when a real patient is suffering
an obstructive apnea event (one of the most common types
of apnea events), it is the airflow between the lungs and
the atmosphere that is obstructed, and is characterized by
significant chest movements as the patient, while sleeping,
is trying to clear the obstruction. The intensity of those
movements increases until the pressure exerted is sufficient to
clear the obstruction and finally the patient is able to breathe,
finalizing the obstructive apnea event.

Motivated by recent advances in healthcare and patient
monitoring based on computer vision and deep learning [3],
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Fig. 1. Top left: our proposed system uses a custom camera system placed
in the ceiling above the bed. Top right: we generate a description based on
the BAM algorithm. Bottom: Our proposed deep learning framework based
on CNNs and LSTM architectures. The output of the system is represented
by the classification accuracy of each breathing condition.

we aim to use deep learning techniques to identify breathing
disorders reducing the need of feature engineering, one
of the most time-consuming phases of traditional machine
learning practice. To address this problem, following the
preliminary studies in [4], we propose a robust deep learning
approach which uses an end-to-end architecture based on
convolutional neural networks (CNNs) and long short-term
memory (LSTM) network. This model classifies breathing
disorders exploiting the discriminative information captured
from depth cameras without using hand-crafted features. The
contributions of our work are summarized as follows:

1) We introduce the first of its kind application of deep
learning for vision-based sleep apnea identification.

2) We propose a robust non-obtrusive monitoring system
to capture motions in natural healthcare conditions
which include factors such as variable illumination
conditions, self-occlusion and changing viewpoints.

II. BACKGROUND

Most research on apnea event recognition is based on
contact sensors [5], e.g., pressure mattress [6]. On the other
hand, computer vision systems aim to provide non-invasive
sleep monitoring methodologies that address the limitations
inherent in invasive sensors and marker-based systems, in-
cluding the need of maintenance, e.g., disinfection, calibra-
tion, keeping batteries charged, etc.

Nakajima et al. [7], used a near-infrared camera to monitor
posture changes and estimate the respiratory rate of a single
subject that wears clothing with a specific mosaic pattern.



TABLE I
BENCHMARK OF MARKER-FREE SYSTEMS.

Patients Breathing analysis

<5 Aoki et al. [12], [13], [15]; Reyes et al. [9]; Zhu et al. [11]

<20 Chase et al. [8]; Takemura et al. [14]; Liao and Yang [10];
Yu et al. [17]; Martinez and Stiefelhagen [16]; Al-Naji et al. [18]

> 20 Martinez and Stiefelhagen [19]R; Martinez and Stiefelhagen [4]R

Patients: Number of participants in the user study. R: Real world scenarios.

Chase et al. [8] and Reyes et al. [9] used the difference
between consecutive images to measure agitation in intensive
care units using color cameras. Similarly, Liao and Yang [10]
used the same technique but were able to work during the
night thanks to the use of infrared cameras. Thermal cameras
have also been used to monitor sleep. However, those are
comparatively expensive and the images are difficult to
process due to the presence of afterimages that are created
by the hot regions of the bed [11].

The use of RGB-D cameras (color and depth streams,
e.g., Microsoft Kinect) have shown sufficient accuracy when
compared to the established and precise optical multi-camera
motion capture system [12], [13], [14], [15], [16]. The limita-
tions of RGB-D were analyzed in [16], which suggests that
the signal-to-noise ratio of the respiration signal decreases
with the 4th power of the distance, and thus analyzing
respiration patterns from close distances is easy, but it is
extremely hard to do more than two meters away. The
approach is further evaluated in a real-world setting in [4].

Other relevant works based on the RGB-D camera include
Yu et al. [17] that estimates sleep position and breathing rate,
and Al-Naji et al. [18] who recognizes apnea in infants and
young children. However, these approaches used simplified
techniques that are not suitable for real scenarios (e.g., Al-
Naji et al. [18] require the children to sleep without a
blanket). Martinez and Stiefelhagen [19] used a compact
representation of the depth map to provide summaries for
nursing home residents.

III. MATERIALS AND METHODS
In this paper, we propose a non-invasive computer vision

approach to capture and classify breathing conditions using
a depth camera as a sensor. A block diagram of the proposed
system is displayed in Fig. 1.

We collected a dataset from sleep laboratory patients using
a 3D camera installed above the bed and a polysomno-
gram, which was analyzed according to the Manual of the
American Academy of Sleep Medicine (AASM) by the sleep
laboratory doctors from Thoraxklinik Heidelberg.

We capture depth information as images based on the Bed
Aligned Map (BAM) algorithm [20], that generates a depth
field aligned to the bed. A depth field can be obtained in
the dark, and is robust to changes in camera location, scene
illumination, and clothing, thus providing robust data.

Then, we adopt a deep learning architecture to classify
breathing events between normal and abnormal breathing,
as classified by the clinical experts. Details of the model
architectures and strategy for each phase are described in
the following subsections.

A. Data collection and specifications

A total of 76 patients were observed in a sleep laboratory,
providing 94 records, each representing a night session of 8
hours. We use a custom recording device equipped with an
ASUS Xtion 3D camera, i.e., similar to the Kinect v1 sensor.
The camera is installed in the ceiling, aimed at the patient.
The sensor configuration is illustrated in Fig. 1.

In order to provide a reference for the experiments, we
have also collected the polysomnography signal used in the
sleep laboratory, taking care of having both synchronized
in time. This polysomnogram information was labeled by
the sleep laboratory doctors in ThoraxKlinik Heidelberg,
as is normally performed in sleep studies (AASM 2.5).
Those manually annotated labels are also available to us and
synchronized to the camera data.

Our dataset includes 8 categories for abnormal breathing
conditions: central apnea, obstructive apnea, mixed apnea,
undefined hypopnea, obstructive hypopnea, central hypop-
nea, Cheyne-Stokes respiration, and respiratory event related
arousal. However, Cheyne-Stokes respiration and respiratory
event related arousal events comprise less than 0.01% of all
recorded events, thus those categories were not considered
in this study, and will need to be targeted by specifically
designed studies.

B. Capturing depth information as images

To extract features related to the patients’ motion, we first
define the Region of Interest (RoI) that contains the patient.
This ensures that the majority of depth maps used in the
kinematic analysis are consistent and come from the patient
and not from other objects also visible in the videos. We
perform object boundary detection using the BAM algorithm,
which is robust to self-occlusion and articulation of the
bed. This process converts each depth map into a BAM
representation, which is a normalized depth map, bordered
by the length and width of the bed. The map is divided into
10cm × 10cm tiles, where each tile is assigned to the average
height of its local region minus the height of the bed.

Through the subdivision into tiles, we achieve a heavy
feature size reduction. Hence, while the depth map obtained
by our camera has a resolution of 640 × 480 pixels, the
BAMs in our dataset have a resolution of only 40×26 cells.
Furthermore, we use a sampling rate to 5 frames per second.

We preprocess further the BAMs before feeding it into
our deep learning model with the following specifications:
(1) All BAMs are normalized through mean subtraction,
and division by standard deviation. (2) Depending on the
bed size, the size of the original BAMs can differ between
different records. To ensure a consistent spatial input size, we
zero-pad all BAMs to the maximum size of 40×26. (3) We
augment the data by applying 5 different crops on the zero-
padded BAMs: central, upper left, upper right, lower left,
and lower right. Each crop leads to a size reduction from
40× 26 to 38× 24. Additionally, for each crop, the BAMs
are flipped around their vertical axis. In total, we increase
the number of input samples by a factor of 10.



Fig. 2. An end-to-end CNN-LSTM architecture is designed and trained for
the identification of breathing conditions using sequences of depth images.
The CNN architecture is used to extract spatial features which is followed
by an LSTM architecture to extract temporal features. Classification is
performed using a densely connected layer with a soft-max activation.

C. Deep learning architecture

Human respiration is directly connected to the movement
of the chest when the air is inhaled and exhaled. When
capturing depth images, this movement is encoded through
a change in depth over time. Consequently, we quantify a
sequence of subsequent frames to detect specific breathing
patterns that let us classify different breathing conditions.

We adopt a cascade network to first extract discriminative
representations from static images using CNNs, and then
input these features to sequential networks such as an LSTM
for the computation of temporal features [21]. Through
extensive experiments, we explore different design choices
for our model. The network architecture that shows the best
performance is displayed in Fig. 2.

The CNN architecture contains three convolutional layers
all with 16 filter kernels of size 3×3 with a stride of 1 and
ReLU non-linearity activation functions, each followed by a
batch normalization layer. After each convolutional layer, the
dimension is reduced through 2×2 max pooling with a stride
of 2. The CNN output is subsequently fed to an LSTM with
a single layer of 48 units. NormStabilizer layers are placed
behind every LSTM to stabilize activations [22]. Finally, the
output of the recurrent layer is fed into a densely connected
layer with a soft-max activation function to identify abnormal
or normal breathing condition.

IV. EVALUATION

A. Experimental setup

We split the dataset patient-wise into a training set (60
patients) and a test set (16 patients). Each patient was
monitored over one or two nights. To balance the data per
patient, we first set the number of samples per patient to a
task-specific value. When there exists more than one record
for a patient, the drawing of samples is equally distributed
to all available records. After the balancing process, the
reminder class imbalance can be addressed by applying class
weights on the gradient update. Common values for the class

weights are the inverted frequency of the class appearance
in training. The frequency can be estimated by averaging the
appearance frequency of the class samples in some trial runs.

We train the CNN-LSTM network by optimizing the
stochastic gradient descent (SGD) and a learning rate of
0.001 on mini-batches of size 30 and 300 samples per patient.
To diminish the classification towards one class, we try out
class weights on the gradient updates with weights as high
as the inverted frequency of the classes in the training set.
The described framework is implemented with the machine
learning framework Torch v7 [23]. The weight initialization
scheme from LeCun et al. [24] is used for all layers, which
is the default one in Torch.

B. Experimental results

The framework takes a sequence of 101 BAMs (approxi-
mately 20 seconds) as input and classifies it as a normal or
abnormal breathing condition. The model reached an overall
accuracy of 61.87%. Fig. 3 shows the resulting confusion
matrix. To provide another deep learning baseline for the
breathing analysis, we build up a 3D-CNN architecture based
on widely used architectures for action recognition [25]. The
designed architecture with a stack of 5 convolutional and 5
max-pooling layers reduces the input size from 101×38×24
to a final output size of 2×2×2. Throughout the network,
we compute 64 feature maps. However, experimentally, we
prove that this architecture shows slightly worse performance
and a steady increase of the validation loss as depicted in
Fig. 4. Therefore, we adopt the CNN-LSTM approach over
the 3D-CNN approach.

C. Discussion
A more fine-grained differentiation between the breathing

patterns has not shown to be manageable by our proposed
model. Nevertheless, the results are promising by eliminat-
ing the need for feature engineering and managing highly
complex clinical situations. Other marker-free studies that
record their data from some distance, require a frontal view
on the chest to recognize breathing patterns, and then use
hand-crafted features to make a prediction. Instead, we deal
with arbitrary sleep positions, the usage of blankets, and
only rely on automatically learned features, extracted from
the depth maps (BAMs). A general problem in the area of
sleep-related breathing disorders is a consistent definition of
the disorders. The most common guideline [26], published by
the American Academy of Sleep Medicine (AASM), states a
minimum breathing pause of 10 seconds for an apnea event.

The main problem in training has been overfitting.
Throughout our experiments, common regularization strate-
gies, like dropout or weight decay, have not shown to
work. In the best case, they slow down convergence, and
regularly lead the training to collapse. Instead, batch normal-
ization [27] has shown better performance which is what we
adopted in the proposed model. An additional problem of our
automated approach is related to the manual correction of the
annotation in the data, e.g. when the patient is not actually
in the bed because of visits to the toilet, thereby triggering



Fig. 3. Confusion matrix when we differentiate between normal and
abnormal events. It states a classification accuracy of 61.87%.

Fig. 4. Loss progress on the validation set for the CNN-LSTM and 3D-
CNN architecture.

the need to incorporate human detection techniques in the
system.

We argue that the automatic identification of breathing
disorders enables more objective information to support
the evaluation of these conditions. Our system is a novel
approach based on computer vision and deep learning to take
on the complex nature of breathing monitoring. Reasonable
performance on heavily compressed input data is reached
without the use of hand-crafted feature engineering. This
opens up new opportunities in this research direction, such as
evaluating the computational cost and performance of using
higher imaging resolution as input, and by capturing depth
information only from the automatic detection of the chest
area.

V. CONCLUSIONS
We have presented a computer vision approach to capture

motion in order to evaluate breathing conditions. This paper
presents the first quantitative representation of the evolu-
tion of breathing following a deep learning approach under
challenging natural clinical settings. The simplicity of our
methodology is a promising baseline for assistive medical
diagnosis based on the monitoring of patients’ behavior.
This work is a completely novel method, unreported in the
literature, to attempt to tackle a highly complex area through
further research.
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