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Abstract—Vision-language models have emerged as a powerful
tool for previously challenging multi-modal classification prob-
lem in the medical domain. This development has led to the
exploration of automated image description generation for multi-
modal clinical scans, particularly for radiology report generation.
Existing research has focused on clinical descriptions for specific
modalities or body regions, leaving a gap for a model providing
entire-body multi-modal descriptions. In this paper, we address
this gap by automating the generation of standardized body
station(s) and list of organ(s) across the whole body in multi-
modal MR and CT radiological images. Leveraging the versatility
of the Contrastive Language-Image Pre-training (CLIP), we
refine and augment the existing approach through multiple ex-
periments, including baseline model fine-tuning, adding station(s)
as a superset for better correlation between organs, along with
image and language augmentations. Our proposed approach
demonstrates 47.6% performance improvement over baseline
PubMedCLIP.

I. INTRODUCTION

Over the last decade, deep learning models from CNNs
to Vision Transformers (ViT) [1] have gained prominence in
aiding clinicians in performing their medical imaging studies
efficiently through consistent image acquisition, reconstruction
and AI-assisted reporting. Recent advances in Large Language
Models (LLMs) have led to the integration of vision and
text encoders, giving rise to Vision-language Models (VLMs),
incorporating semantic descriptions into medical image anal-
ysis, and correlating textual information with image features.
State-of-the-art models such as CLIP [2], ALIGN [3], BASIC
[4], and LiT [5] have shown remarkable results in cross-
modal search using zero-shot classification and image-to-text
and text-to-image applications over the multi-modal datasets
[6], [7]. In the medical context, where images often require
descriptive textual interpretation, VLMs become crucial for re-
lating visual features to clinical findings, supporting prognosis
and diagnosis by leveraging multi-modal data.

This work explores VLMs to describe organs and anatom-
ical regions in multi-modal radiology images. This is crucial
to describe the anatomical context for image acquisition and
reporting. Given challenges in semantically segmenting diverse
anatomies across each image, a vision encoder-only approach
may not be ideal due to wide patient pose, orientation, and cov-
erage variations. Text-based descriptors for organs and regions
is much more attractive due to simplified labelling and the
potential for capturing detailed hierarchical information. We
utilize CLIP for its proven effectiveness in addressing multi-
modal challenges, specifically within the realm of medical

data [8]. For clinical applications, CLIP has been refined
to PubMedCLIP using multi-modal medical image-text pairs,
demonstrating organ-specific vision and language embeddings
[9]. Since PubMedCLIP has been trained over images obtained
from publications, it typically fails to provide good results on
pristine medical image data.

In this work, we evaluated a methodology to fine-tune
PubMedCLIP model over clinical imaging data for labelling
organs and anatomical regions (stations). Further, this paper
demonstrates the importance of text prompts [2], [10] draw-
ing inspiration from LLMs, where manipulating the textual
modality is a common practice. We use VLMs inherent data
manipulation capability to our advantage for multi-modal
classification. Our key contributions include, (1) analysing
PubMedCLIP model over multi-modal, multi-label classifi-
cation on pristine clinical single slice datasets for anatomy
description; (2) fine-tuning PubMedCLIP on approximately
4000 clinical scans to achieve enhanced performance for multi-
label anatomy detection; (3) showcasing enhanced model
performance using data augmentations for both images and
text phrases.

II. METHODS

The proposed multi-modal anatomy detection framework is
shown in Fig. 1.

A. Base model
In this study, we have used PubMedCLIP as our base model

which is CLIP fine-tuned over ROCO (Radiology Objects in
Context) dataset [11]. ROCO dataset comprises approximately
82K radiology images and captions from diverse modalities,
typically image-caption pairs from PubMed. ROCO dataset
has provided promising outcomes in clinical use cases [6],
[11]. Our experiments have demonstrated the ineffectiveness of
PubMedCLIP describing organs, possibly due to the presence
of various artefacts like figures, portraits, digital arts, and
illustrations in the ROCO dataset, unrelated to clinical medical
scans. Moreover, MR and CT scans in ROCO dataset have
highlighted or marked artefacts, and an imbalance towards
some organs. Due to these limitations, we further fine-tune
PubMedCLIP with additional clean multi-modal clinical im-
ages and labels.

B. Data description
We fine-tuned the base model for our study using data from

various sources, including in-house and clinical open-source
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Fig. 1. Pipeline of our approach for anatomy classification. (a) Dataset creation – multi-modal anatomy dataset creation with label pools for detailed caption
of images, (b) pre-processing – image augmentation and language augmentation, involving set of labels from label pool passing through a manual prompt
phrasing system providing 10 different sets of prompts for each image, and (c) baseline model – PubMedCLIP model with ViT-B/32 as vision encoder and
text tokenizer as text encoder will be fine-tuned over these images to give us our proposed model for anatomy detection.

datasets (TotalSegmentator [12]). The data includes modalities
(MR and CT), orientations (axial, coronal, and sagittal), and
covers different organs. MR includes data across protocols:
T1, T2, FLAIR, DWI, ADC and STIR. The images were
taken from five different stations of the human body: head,
chest, abdomen, pelvis, and lower body. The image labels have
been distributed over 20 organ labels–brain, mandible, neck,
shoulder, humerus, elbow, forearm, wrist, hand, lungs, heart,
liver, kidneys, intestine, pelvic bone, thigh, knee, leg, ankle,
and foot. We included additional labels, such as modality
(including protocols), orientation, and stations/regions along
with the organs, to generate text captions similar to the
ROCO dataset. The overall training dataset contains single-
slice images, captions, and organ labels. The total training
dataset size was 4994 images, comprising 3995 for model
training and 999 validation images. We used two datasets to
test the approach: Set #1 comprising 262 MR and CT in-house
images and Set #2 comprising of open-source visible human
project [13] with 650 CT images.

C. Augmentation and pre-processing of images

To mimic the data variety encountered in clinical practices,
we include data from different modalities and apply augmen-
tations. We have used these augmentations: 1) histogram ma-
nipulations (CLAHE, contrast enhancement using PIL library
[14] and gamma correction), 2) rotation (−180 to 180◦) and
3) translation (−100 to 100 pixels). Using combinations of
these augmentations, we generate 10 different images for each
image. CLIP model itself performs some data augmentations
involving random resizing, random noise, gaussian blur, colour
jittering, horizontal and vertical flips and arbitrary rotation.
Our augmentations yielded better results than baseline meth-
ods, further discussed in the results section.

D. Language augmentation for training

Augmentation on text prompt phrases and fine-tuning make
the model task-specific, generalized for different modalities,
and more robust to distribution shift. A complete prompt will
describe modality, orientation, station and anatomy. Complete
prompt diversity is obtained by shuffling the entities. To
enhance model’s robustness, we augmented text prompts with
incomplete information, such as missing station or organ
details. See Table I for examples.

E. Fine tuning

We experimented with fine-tuning PubMedCLIP, with en-
coders from two architectures: ResNet50 [15] and ViT–B/32
[1]. We proceeded further with ViT–B/32 since it provided
comparatively better performance. We retained the baseline
text tokenizer, and trimmed longer captions while zero padding
the shorter ones, according to CLIP’s maximum acceptable
text length of 76. Moreover, we used the baseline loss function,

L = λH(ŷvision, Y ) + (1− λ)H(ŷtext, Y ), (1)

where H is the cross entropy loss, Y is the set of labels, and
λ = 0.5 for equal weightage to vision and text losses. Further,

TABLE I
EXAMPLES OF PROMPT TEXTS GIVEN AS CAPTIONS FOR IMAGES FOR

TRAINING AND VALIDATION DATASETS

Prompts

1. A {orientation} oriented {modality} image of {organ} organs
belong to {station} region
E.g., A sagittal oriented MR T2 image of knee organs belong to
lower body region

2. An image of {orientation} {modality} scan consisting of {organ}
organs
E.g., An image of axial CT scan consisting of liver, intestine organs



TABLE II
LIST OF EXPERIMENTS PERFORMED

Experiments Augmentations
Exp 1. (PMC) Tested baseline model (PubMedCLIP
with ViT-B/32 vision encoder). No

Exp 2. (PMC-M) Fine-tuned baseline model over
multi-modal anatomy dataset of 3995 training images
and corresponding captions involving organ(s), modal-
ity, and orientation labels (see Section II-B).

No

Exp 3. (PMC-MS) Revised captions for better region
segregation by including station labels. For eg., labels
like brain and knee do not get paired in an axial scan.

No

Exp 4. (PMC-MSA) Performed augmentations over
training images and captions as described in Section
II-C, and Section II-D, respectively.

Yes

we explored multiple training approaches including expanding
the input training data. The resulting performance is discussed
in the experiments section.

F. Zero–shot prediction

After fine-tuning the model on our multi-modal anatomy
dataset, we set up a zero-shot classifier, independently for
5 station labels and 20 organ labels. Logits are computed
between fixed dimensional text and image feature vectors,
obtained by sending text prompt to the text encoder and image
to the image encoder, respectively, as shown in Fig. 1. Zero-
shot classification is accomplished by using

logitsm = [Im · T1, . . . , Im · Tk, . . . , Im · T20], (2)

ŷ1m = argmax softmax(logitsm), (3)

to get the top prediction, where Im is individual image embed-
ding, T1, . . . , T20 are text embedding for 20 labels prompts,
and ŷ1m is the top prediction. A similar computation is done
for stations. To ensure computational accuracy, we verify if
the predicted label exists within the set of target labels by

accuracy =

∑N
i=1 # correct matches for image i

N
, (4)

where N is the size of the total test dataset.

III. EXPERIMENTS

A. Annotation and Implementation

We annotated the datasets in-house, consisting of labels
for organs, modality, orientation and stations. The annotations
were reviewed with a trained radiologist and a clinician.
The training was performed on NVIDIA DGX A100 Tensor
Core GPU. We conducted four experiments using different
configurations: (1) PubMedCLIP (PMC), (2) PMC fine-tuned
over a multi-modal anatomy dataset (PMC-M), (3) PMC-M
with additional stations (PMC-MS), and (4) PMC-MS with
image and text augmentations (PMC-MSA). The details are
provided in Table II.

B. Evaluation

All experiments are assessed through zero-shot classifica-
tion, analyzing the top accuracy. Further, we visualize the per-
formance of models PMC, PMC-M, and PMC-MSA, through
a One-vs-the-Rest (OvR) AUC-ROC curve using Scikit-Learn.

IV. RESULTS AND ANALYSIS

The results for all experiments are given in Table III.
Our proposed approach gives an overall average enhancement
of 47.6% for organ detection, and 27% for station detec-
tion in comparison to the baseline model. After fine-tuning
the baseline model over multi-modal anatomy dataset, the
organ prediction performance is improved in PMC-M, but
gave a poor performance for station prediction due to its
reliance on the ROCO dataset for station information. In PMC-
MS, providing detailed station information improved station
prediction, but organ prediction accuracy dropped, primarily
attributed to confusion between station and organ (no strong
correlation observed). Further, in PMC-MSA, this confusion
is reduced by data augmentation and text prompt diversity,
enhancing both organ and station prediction performance. Fig.
2 shows the OvR AUC-ROC curve for Set #2 for different
organs across the models. Our proposed model performs well
for all organs, but due to data imbalance, it gives comparatively
low performance for humerus. Furthermore, a comparison
among PMC, PMC-MS, and PMC-MSA is performed and
the result is shown in Fig. 3. Given two sets of prompts–
one with correct organ-station correlation and the other with
a contradiction, our approach outperforms the baseline model.
Notably, for the correct and the false prompts–our approach
predicts 90.7% and 9.3% scores, respectively, compared to the
baseline scores of 53.1% and 46.9%.

V. CONCLUSION

Our research demonstrates the effectiveness of utilizing
station data to establish correlations between organs, resulting
in a notable improvement in accuracy. Along with it, the inte-
gration of image and text prompt augmentations significantly
improves model performance. The integration of CLIP, cou-
pled with strategic data augmentations, has notably enhanced

TABLE III
ZERO-SHOT ACCURACY COMPARISON AMONG ALL EXPERIMENTS. SET
#1–IN-HOUSE MR AND CT TEST DATASET AND SET #2–OPEN SOURCE

CT DATASET

Label
Type Dataset PMC

[Baseline] PMC-M PMC-
MS

PMC-MSA
[proposed
approach]

Set #1
(MR) 54% 62% 57% 91.62%

Organ
labels

Set #1
(CT) 33% 70.8% 63% 81.25%

Set #2
(CT) 24% 58.5% 47% 81%

Station
labels

Set #1
(MR+CT) 52% 49% 65% 75%

Set #2
(CT) 45% 41% 60% 76%



Fig. 2. AUC-ROC curves for test dataset (visible human project) across different models: (a) result for PMC (baseline), (b) result for PMC-M (fine-tuning
over mutli-modal anatomy dataset), and (c) result for PMC-MSA (model with text and image data augmentations). The AUC values are for proposed approach.
We receive good AUC values for all organs except humerus (AUC = 0.62), probably due to imbalance towards other limbs as compared to humerus

Fig. 3. Examples of performance for different models: (a) result for PMC
(baseline), (b) result for PMC-MS, and (c) result for PMC-MSA (proposed
approach). Showcasing our approach outperforming the baseline

accuracy and reliability in multi-modal organ-related studies,
making a step forward in the realm of medical imaging.

We have made efforts to address the data imbalance in
the ROCO dataset. Still, there is room for improvement,
particularly when assessing the limbs’ performance compared
to other organs. As a future step, we could learn class-specific
text tokens to eliminate manual text augmentations to further
improve the model accuracy.
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