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Abstract— Enabling the synthesis of arbitrarily novel view-
point images within a patient’s stomach from pre-captured
monocular gastroscopic images is a promising topic in stomach
diagnosis. Typical methods to achieve this objective integrate
traditional 3D reconstruction techniques, including structure-
from-motion (SfM) and Poisson surface reconstruction. These
methods produce explicit 3D representations, such as point
clouds and meshes, thereby enabling the rendering of the
images from novel viewpoints. However, the existence of low-
texture and non-Lambertian regions within the stomach often
results in noisy and incomplete reconstructions of point clouds
and meshes, hindering the attainment of high-quality image
rendering. In this paper, we apply the emerging technique of
neural radiance fields (NeRF) to monocular gastroscopic data
for synthesizing photo-realistic images for novel viewpoints.
To address the performance degradation due to view sparsity
in local regions of monocular gastroscopy, we incorporate
geometry priors from a pre-reconstructed point cloud into the
training of NeRF, which introduces a novel geometry-based loss
to both pre-captured observed views and generated unobserved
views. Compared to other recent NeRF methods, our approach
showcases high-fidelity image renderings from novel viewpoints
within the stomach both qualitatively and quantitatively.

I. INTRODUCTION

Gastroscopy plays a crucial role in minimally invasive
diagnostic applications. It captures rich 2D RGB information
within the patient’s gastric cavity, which offers the practition-
ers valuable assistance in clinical diagnosis and intervention
for various pathological conditions. However, a notable lim-
itation in gastroscopic examinations lies in the constrained
viewpoints and viewing angles that the practitioners have
inside the stomach, which are determined by the trajec-
tory of the gastric endoscope. This typically impedes the
practitioners from obtaining adjustable and comprehensive
observations within the gastric cavity.

A typical solution to enable generating free-viewpoint
observations, i.e., novel view synthesis, within the stomach
involves reconstructing a 3D model of the stomach based
on the captured gastroscopic images. Structure-from-motion
(SfM) [1]–[3] is a general technique used to recover camera
poses and generate a 3D point cloud of the captured scene
from image collections, which has been applied in several
studies to reconstruct the 3D model of a target organ from
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an endoscope video [4]–[9]. The method in [9] successfully
reconstructed camera poses and the 3D model of an entire
stomach from a standard monocular gastroscopic video by
investigating the combined effect of chromo-endoscopy and
color channel selection on SfM. For the enhanced visual-
ization of the reconstructed 3D model, the authors further
utilized Poisson surface reconstruction [10] to generate tex-
tured meshes from the 3D point cloud acquired through
SfM. Although novel view synthesis can be achieved from
their reconstructed textured 3D meshes, the reconstructed
3D model often exhibits noise and incompleteness due to
the existence of low-texture and non-Lambertian regions
in gastroscopic images, which consequently leads to low-
quality image synthesis.

Recently, neural radiance fields (NeRF) [11], [12] have
shown significant progress in the tasks of novel view syn-
thesis and 3D reconstruction from the images with known
camera poses. In contrast to traditional 3D reconstruction
methods producing explicit and discrete 3D representations
such as point clouds and meshes, NeRF learns an implicit
and continuous representation of the scene appearance and
geometry, which is encoded in the parameters of multi-
layer perceptrons (MLPs). The MLP network takes a 3D
point position and a 2D camera viewing direction as inputs,
predicting the corresponding RGB color and density infor-
mation. The observation of the 3D scene from an arbitrary
viewpoint can finally be obtained through the integration
of color and density information along cast camera rays
using volume rendering [13]. The emerging NeRF technique
has been applied to diverse medical domains, such as 3D
reconstruction of deformable tissues from single-viewpoint
stereo endoscopy [14], [15] or monocular endoscopy [16],
computed tomography [17], [18], and magnetic resonance
imaging [19], [20]. However, this technique is still not fully
explored and evaluated in the context of novel view synthesis
based on monocular gastroscopy.

In this paper, we explore the application of NeRF to
monocular gastroscopic data to achieve high-quality results
in novel view synthesis. We observe that directly applying
a state-of-the-art NeRF method [12] trained with standard
color-based losses to monocular gastroscopic data results
in broken geometry and blurry image rendering. One main
reason for the performance degradation is attributed to the
view sparsity in local regions present in gastroscopic data,
which results in the insufficiency of the color-based loss
to address the shape-radiance ambiguity during the training
of NeRF. To enhance the training results on monocular
gastroscopic data, we incorporate the color-based loss with
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Fig. 1. The overall process flow. Using a real monocular gastroscopic image sequence, we first apply structure-from-motion (SfM) to obtain camera poses
and a reconstructed point cloud. Then, we train neural radiance fields (NeRF) of the stomach, where we propose a novel geometry-based loss exploiting
the point cloud from SfM. In the application phase, RGB images and depth maps of novel views can be synthesized through volume rendering of NeRF.
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Fig. 2. The overview of our proposed NeRF method. As a standard
NeRF method, we train a network FΘ to estimate the color c and the
density σ given the 3D point coordinate x and the viewing direction d
as inputs. The key of our method is twofold: 1) We generate unobserved
views by interpolating consecutive observed views to address view sparsity
and 2) we apply a geometry-based loss for both observed and unobserved
views to effectively constrain the learned geometry by using the point cloud
reconstructed by SfM. The technical details are in the methodology section.

an additional geometry-based loss, which exploits the su-
pervision using a point cloud pre-reconstructed by SfM,
sharing a similar idea with DS-NeRF [21]. Notably, our
proposed geometry-based supervision differs from the one in
DS-NeRF mainly in two aspects: 1) In addition to utilizing
the sparse depth maps obtained from a point cloud for
supervision, we also incorporate a depth smoothness loss
based on the shape priors of the stomach. 2) DS-NeRF
imposes depth supervision solely to pre-captured observed
views, whereas our method imposes depth supervision to
both pre-captured observed views and unobserved views
randomly interpolated from observed views, which better
regularizes the learned geometry of NeRF. Our experimental
results showcase the effectiveness of our geometry-based su-
pervision in enhancing both rendering quality and recovered
geometry compared to existing methods.

II. METHODOLOGY

The overall flow of our method is illustrated in Fig. 1.
Given a real monocular gastroscopic image sequence, our
method initially follows the SfM steps proposed in [9] to
reconstruct the camera poses and the 3D point cloud of the
stomach. Then, NeRF is trained using the image sequence,
the camera poses, and the point cloud. In the application
phase, we render RGB images and depth maps for novel
camera poses using the learned NeRF of the stomach.

Figure 2 illustrates the overview of our proposed NeRF

method. We train a network FΘ which takes the 3D point
coordinate x and the viewing direction d as inputs and
outputs the color c and the density σ at this 3D coordinate
x. The key of our method is summarized as follows: 1) We
generate unobserved views by interpolating consecutive ob-
served views to address view sparsity and 2) we apply a
geometry-based loss for both observed and unobserved views
to effectively constrain the learned geometry by using the
point cloud pre-reconstructed by SfM. The technical details
are explained in the following subsections.

A. Unobserved View Generation

After obtaining the camera poses of all observed views
through SfM, we generate k unobserved views between each
consecutive observed view pair. We parameterize the camera
pose P by P = (t, q), where t ∈ R3 is the 3D position and
q is the unit quaternion representing rotation. Given a pair of
consecutive observed views with camera poses Pb and Pb+1,
we interpolate the 3D position and the rotation separately to
generate a new camera pose Pk = (tk, qk) of an unobserved
view as

tk = (1− αk)tb + αktb+1,

qk = qb(q
−1
b qb+1)

αk ,
(1)

where αk is randomly sampled from 0 to 1, which determines
the ratio between the distances from the generated camera
pose Pk to Pb and Pk to Pb+1. To maximize the utilization
of additional geometric constraints brought by unobserved
views, we regenerate new unobserved views and replace the
previously used unobserved views with them every 2,000
training iterations in our experiments.

B. Ray Sampling and Volume Rendering

In each iteration of NeRF training, we sample two types of
camera rays, denoted as the color ray and the depth ray. The
color ray passes through the camera origin and a pixel on
the image plane, with its ground-truth color value being the
color of the corresponding pixel of the real image. The depth
ray passes through the camera origin and a reconstructed 3D
point visible from the camera, with its reference depth value
being the transformed depth of the corresponding 3D point
in the camera coordinate. Since the ground-truth color is
only available for the observed views, we sample the set of
color rays Rob

c only on the observed views. The set of depth



rays are separately sampled on both the observed views and
unobserved views, denoted as Rob

d and Rnv
d respectively.

Given a camera ray r(t) = o+ td from the camera origin
o with the viewing direction d, we compute the color of this
camera ray using volume rendering as described in [11]:

Ĉ(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (2)

where T (t) = exp(−
∫ t

tn
σ(r(s))ds, tn and tf are the near

and far bounds of the traveled distance t. The density σ and
color c are predicted by the MLP network FΘ : (r(t),d) →
(σ, c). Similarly, the depth of this camera ray can be rendered
as

D̂(r) =

∫ tf

tn

T (t)σ(r(t))tdt. (3)

For the computing of training loss, we render both the color
and depth for camera rays in Rob

c and only render the depth
for camera rays in Rob

d ∪Rnv
d .

C. Training Loss

Given sampled sets of camera rays Rob
c , Rob

d and Rnv
d ,

and their rendered results, the training loss of our method is
computed as follows.
Color-based loss. The color-based loss is computed from
camera rays in Rob

c and is formulated as:

Lob
color =

∑
r∈Rob

c

∥Ĉ(r)− C(r)∥22, (4)

where Ĉ(r) is the rendered color of the camera ray in Rob
c

and C(r) is the corresponding ground-truth color of a real
training image.
Geometry-based loss for observed views. For each camera
ray r in Rob

d , we first compute the difference between the
rendered depth D̂(r) and its reference depth value Dpc(r)
obtained from the reconstructed 3D point as

ld(r) = ∥D̂(r)−Dpc(r)∥22. (5)

We further introduce the smoothness loss to enforce local
smoothness in the rendered depth of camera rays either in
Rob

c or Rob
d , considering that the internal structure of the

stomach is typically smooth and continuous:

ls(r) = |∂uD̂(r)|+ |∂vD̂(r)|, (6)

where ∂u represents the derivative operation in the horizontal
direction on the image plane and ∂v represents the derivative
operation in the vertical direction on the image plane. We
also combine the KL divergence loss lKL(r) introduced
in [21] to constrain the ray distribution to be unimodal.
Please refer to [21] for further details on lKL(r). Our final
geometry-based loss for the observed views is formulated as:

Lob
depth =

∑
r∈Rob

d

λd∥D̂(r)−Dpc(r)∥22 + λKLlKL(r)

+
∑

r∈Rob
c ∪Rob

d

λsls(r),
(7)

where λd, λKL and λs are hyperparameters.
Geometry-based loss for unobserved views. Applying
geometry-based loss solely on the observed views may some-
times be ineffective in constraining the learned 3D geometry
of NeRF due to the sparse depth supervision signals obtained
from the reconstructed 3D point cloud. Thus, we propose to
integrate additional geometry-based supervision on generated
unobserved views to further regularize the learned geometry,
which is formulated as

Lnv
depth =

∑
r∈Rob

d

λd∥D̂(r)−Dpc(r)∥22

+ λKLlKL(r) + λsIs(r).

(8)

The final training loss of our method is concluded as

Ltotal = Lob
color + Lob

depth + Lnv
depth. (9)

III. EXPERIMENTAL RESULTS

A. Datasets and Implementation Details

We evaluated our method using two monocular gastro-
scopic videos within two different subjects, identified as Seq.
A and Seq. B, obtained in our previous study [9]. The data
acquisition protocol in [9] and the experimental protocol in
this study were approved by the ethics committees of the
related institutions. The informed consent was obtained from
all participating subjects. Seq. A and B consist of a total of
833 images and 424 images, respectively.

We implemented our method based on Zip-NeRF [12] by
incorporating our proposed geometry-based loss for observed
and unobserved views. During the training, we generated k =
2 unobserved views between each consecutive observed view
pair. We sampled 8,192 camera rays for Rob

c and 4,096 depth
rays for Rob

d and Rnv
d separately. The hyperparameters in

training loss were experimentally set as λd = 10, λKL =
0.1, and λs = 10. The number of training iterations was set
to 25,000 and the other hyperparameters were set the same
as Zip-NeRF. All experiments were performed on a single
Nvidia RTX-3090 GPU.

B. Rendering Results for A Novel Camera Trajectory

We first trained NeRF using all images in each sequence.
Given the learned NeRF of the stomach, we can render RGB
images and depth maps within the stomach from viewpoints
entirely different from those in the real gastroscopy image
sequence, as illustrated in Fig. 3. We observe that even
when the novel viewpoint is at a considerable distance from
the camera poses of the real gastroscopy image sequence,
our method can obtain clear RGB images and plausible
depth maps. This capability enables the practitioners to freely
adjust the viewing trajectory to obtain the best observations
inside the stomach.

C. Comparison of Rendered RGB Images

For numerical and visual comparisons using ground-truth
images, we conducted another experiment by recomposing
the original image sequence into training images and testing
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Fig. 3. Rendering results for a novel camera trajectory. The camera
trajectory in red color represents a real gastroscope trajectory, which was
used for training NeRF. The camera trajectory in blue color represents a
novel trajectory for the view synthesis application.

images. Specifically, we first reduce the frame rate to one-
fourth to evaluate the effectiveness of our method for view
sparsity. Then, we selected every second frame for the
testing and used the remaining frames for the training. As a
consequence, for Seq. A, two sets of 104 images were used
for the training and the testing, respectively. Similarly, for
Seq. B, two sets of 53 images were used for the training and
the testing, respectively.

We compared our method with two most related NeRF
methods: Zip-NeRF [12] and DS-NeRF [21]. Zip-NeRF is
our baseline, which only uses color-based loss for training.
DS-NeRF is based on the original NeRF [11] and leverages
the reconstructed point clouds to constrain the learned geom-
etry similarly, but without considering unobserved views and
smoothness loss. Table I presents quantitative comparisons
of the rendered RGB image quality, where we evaluate the
average peak-to-signal raito (PSNR) and structural similarity
index measure (SSIM) for all the testing images. Across both
sequences, our method attains consistently superior results in
synthesizing high-quality RGB images for novel viewpoints
not included in the training. The improvement from the
baseline Zip-NeRF shows the positive impact of the proposed
geometry-based loss for monocular gastroscopic data. Fig-
ure 4 provides qualitative comparisons of the rendered RGB
images for two testing views. Our method produces more
photorealistically synthesized images for novel viewpoints
compared to the other methods, including more image details
such as sharp edges between foreground and background.

D. Comparison of Rendered Depth Mpas

We further compare the learned geometry across different
methods by comparing the rendered depth maps. Since
the ground-truth depth maps are not available, only the
qualitative evaluation of the learned geometry is provided as
shown in Fig. 5. For better visualization, both the rendered
depth maps and their corresponding 3D point clouds are

TABLE I
THE QUANTITATIVE EVALUATION OF RENDERED RGB IMAGES. THE

BEST RESULTS ARE HIGHLIGHTED USING BOLD FORMATTING.

Seq. A Seq. B
PSNR↑ SSIM↑ PSNR↑ SSIM↑

DS-NeRF [21] 22.49 0.838 20.35 0.694
Zip-NeRF [12] 25.07 0.856 22.78 0.751
Ours 26.73 0.870 23.37 0.767

Zip-NeRF Ours Ground-TruthDS-NeRF

Fig. 4. The qualitative comparisons of rendered RGB images. The top
and the second rows show the results for two different viewpoints in the
testing images.

Zip-NeRF

Reference RGB

Far

Near

DS-NeRF Ours

Fig. 5. The qualitative comparisons of rendered depth maps. For
each method, we present both the rendered depth map (first row) and the
corresponding point cloud (second row) for better visualization.

presented. We can see that the rendered depth map of DS-
NeRF exhibits significant local variations. The depth map
produced by Zip-NeRF exhibits significant errors, which
shows that it is challenging for a general NeRF method solely
based on a color-based loss to accurately learn geometry
from monocular gastroscopic images. Our method produces
the visually best results, by incorporating geometry-based
supervision on both the observed and unobserved views.

E. Ablation Study

We conducted an ablation study on the loss terms uti-
lized in our method. The results are reported in Table II.
Both the geometry-based losses applied to observed views
and unobserved views improve the image quality of novel
view synthesis, which indicates that the enhanced learned
geometry consequently contributes to better image rendering
results.



TABLE II
ABLATION STUDY. THE BEST RESULTS ARE HIGHLIGHTED USING BOLD

FORMATTING.

Lob
color

Lob
depth

Lnv
depth

Seq.A Seq.B
PSNR SSIM PSNR SSIM

✓ 25.07 0.856 22.78 0.751
✓ ✓ 25.47 0.861 23.17 0.762
✓ ✓ ✓ 26.73 0.870 23.37 0.767

IV. CONCLUSION

In this paper, we have employed the technique of NeRF
for the task of synthesizing free-viewpoint images within
the stomach. To enhance the performance of NeRF for
high-quality novel view synthesis on monocular gastroscopic
data, we have augmented the original color-based training
loss with our proposed geometry-based loss. This augmen-
tation enables effective utilization of the point cloud pre-
reconstructed from the input images to constrain the implicit
geometry of NeRF. Additionally, we have proposed to apply
the geometry-based supervision to randomly generated un-
observed views during the training phase, which further reg-
ularizes the learned geometry and contributes to performance
enhancements in novel view synthesis. The experimental
results have demonstrated that our method is capable of both
high-quality novel view synthesis and geometry recovery
based on monocular gastroscopy data. One limitation of our
method lies in its dependence on the precise estimation of
camera poses from SfM, which is not guaranteed in the
context of challenging gastroscopic data. In the future, we
plan to incorporate the refinement of camera poses into the
training of NeRF to alleviate the reliance on accurately pre-
estimated camera poses. To view the video results, please
visit our project page in the following link (http://www.
ok.sc.e.titech.ac.jp/res/Stomach3D/).
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