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Abstract— Warfarin, an anticoagulant medication, is formu-
lated to prevent and address conditions associated with abnor-
mal blood clotting, making it one of the most prescribed drugs
globally. However, determining the suitable dosage remains
challenging due to individual response variations, and pre-
scribing an incorrect dosage may lead to severe consequences.
Contextual bandit and reinforcement learning have shown
promise in addressing this issue. Given the wide availability
of observational data and safety concerns of decision-making
in healthcare, we focused on using exclusively observational
data from historical policies as demonstrations to derive new
policies; we utilized offline policy learning and evaluation in a
contextual bandit setting to establish the optimal personalized
dosage strategy. Our learned policies surpassed these baseline
approaches without genotype inputs, even when given a subopti-
mal demonstration, showcasing promising application potential.

I. INTRODUCTION

Warfarin, introduced in the 1950s, is designed to prevent
and manage conditions related to abnormal blood clotting,
such as deep vein thrombosis, pulmonary embolism, and
stroke [1]. It is estimated to be prescribed over 11 million
times in the United States in 2021 [2]. Despite its extensive
use, determining the appropriate dosage poses a challenge
due to variations in individual responses. Factors like age,
weight, genetics, and liver and kidney function, among
others, play pivotal roles in the drug’s metabolism, making
identification of the optimal dosage challenging [3].

Choosing an incorrect warfarin dosage can have dangerous
consequences, leading to life-threatening excessive bleeding.
Consequently, there is a growing interest in developing poli-
cies for determining the optimal dose. In practice, clinicians
typically initiate treatment with an initial dosage, then closely
monitor the patient’s responses and make dosing adjustments.
This iterative process continues until the optimal therapeutic
dosage is identified, typically taking weeks [4].

Ideally, identifying the correct dose without requiring an
extensive exploration procedure would save critical time.
Numerous efforts have been proposed to predict the optimal
initial dosage. For instance, the Warfarin Clinical Dosing
Algorithm (WCDA) [5], a linear model, considers variables
like weight, age, and medications. Similarly, the Warfarin
Pharmacogenetic Dosing Algorithm (WPDA) is another lin-
ear model that introduces additional genotype inputs [5].
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These simplistic linear models, however, often fall short
of capturing the intricate relationships between variables,
resulting in only marginally satisfactory success rates for
predicting the correct therapeutic dose. Furthermore, the
WPDA algorithms necessitate genotype inputs for more
accurate predictions, posing challenges in their application
to a broader population where genotype information may
be unavailable. This underscores the need to develop more
advanced approaches to assist clinicians in decision-making
when determining the appropriate dosage.

Recent advancements in contextual bandit and reinforce-
ment learning have demonstrated promising results in en-
hancing decision-making across various applications [6],
[7], and several pilot studies have attempted to use on-
line approaches for optimizing warfarin dosing, achieving
promising results [8], [9]. However, a critical limiting factor
of online approaches is their dependence on generating
new data through active exploration. In other words, online
learning approaches typically require generating data from
the policy being improved in the learning process, rendering
them less applicable in domains like healthcare, where safety
and ethics are critical, and building simulations can be
challenging.

Alternatively, there is a growing interest in healthcare
for offline reinforcement learning and bandits [10]. Unlike
online approaches, offline methods leverage historical obser-
vational data only, typically collected by another policy, and
attempt to derive a new policy from it. Offline approaches
lend themselves to healthcare applications where historical
observational data is widely available. The offline learning
nature frees us from building a simulation environment
for exploration, which is challenging and complicated to
extend to more complex decision-making problems, such as
sepsis management. Furthermore, recent theoretical work has
demonstrated that learning a policy merely from observa-
tional data that outperforms the demonstration is possible
[11].

In this study, we frame the Warfarin dosing problem within
offline contextual bandit, aiming to maximize expected re-
wards by identifying a high-quality dosage policy. We utilize
historical observational data from baseline policies, employ-
ing offline learning algorithms to derive improved policies.
Given the limited research on Off-policy evaluation (OPE)
methods, we assess results using three representative OPE
estimators. Our learned policy outperforms demonstration
policies, even when the baseline policy is suboptimal (e.g.,
random dosage policy). This highlights the effectiveness of
our approach to Warfarin dosing.
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Our contributions are three folds:
• To the best of our knowledge, this work is the first to

propose a machine-learning dosing model in an offline
fashion.

• Our novel policy is capable of either matching or sur-
passing the effectiveness of existing clinical baselines,
and it achieves this without requiring genotype data,
thus enhancing its scalability for practical implementa-
tion.

• We have explored the validity and reliability of the OPE
methods within clinical settings, offering practical em-
pirical evidence to guide the application and selection
of these estimators.

II. METHODS

A. Dataset

We utilize a publicly accessible patient dataset curated
by the Pharmacogenomics Knowledge Base (PharmGKB)
[12]. This dataset comprises information from 5700 patients
who underwent warfarin treatment across the globe. Each
patient’s profile in this dataset includes various features
such as demographics (e.g., gender, race), background details
(e.g., height, weight, medical history), and phenotypic and
genotypic information. Additionally, the dataset includes the
actual patient-specific optimal warfarin doses determined
through the physician-guided dose adjustment process over
several weeks. We categorized the therapeutic doses into low
(less than 21 mg/week), medium (21-49 mg/week), and high
(more than 49 mg/week) following conventions [5].

B. Problem Formulation

We formulate the problem of optimal warfarin dosing
under the contextual bandit framework. The Dataset D
consists of N patients, and for each patient, we observe
its feature vector X ∈ Rd. This represents the available
knowledge about the patient, also known as the context in
bandit literature, and it is used to help determine actions A
chosen by the policy f , which has access to K actions/arms
where the action represents the warfarin dosage to provide
to the patient. As defined in the previous section, we have
K = 3 arms corresponding to low, medium, and high
warfarin doses. If the algorithm identifies the correct dosage
for the patient, the reward R is 1. Otherwise, a reward of 0
is received. The objective is to optimize the policy such that
the action selected by the policy has a maximum expected
reward E[R]. To demonstrate better how offline contextual
bandit works, we present the high-level idea of the workflow
in Figure 1.

C. Offline Policy Learning

We implemented two offline policy learning (OPL) algo-
rithms, the Offset Tree and the doubly robust estimator [13],
[14], to learn the optimal policy. The offset tree algorithm
simplifies the original problem, a censored label classifica-
tion problem, to binary importance-weighted classification,
which can be implemented using any binary classifier, such

Fig. 1: Workflow of offline learning and evaluation, an
essential distinct between contextual bandit and supervised
learning is that the ground truth optimal action is not revealed
to learning and evaluation algorithms, making it close to
real-world decision-making problems where the outcome
associated with the optimal action may be counterfactual and
unavailable in observational data.

as logistic regression. Conversely, the doubly robust (DR) es-
timators require two estimates: one for the reward, providing
an estimate of the reward each arm will give, and another for
the probability, offering an estimate of the probability that
the policy collecting the data assigned to each arm chosen
for each observation, which is used to weight the observed
rewards. As long as one of the estimates is well-specified,
the DR estimator is unbiased and, hence, doubly robust.

D. Offline Policy Evaluation

Although the true counterfactual outcome of every pos-
sible action is known under our specific reward formula-
tion, making it possible to evaluate the performance of the
proposed policy directly, it is worthwhile to investigate it
through the lens of OPE. In a more general scenario, the
counterfactual outcome is typically unobservable, and OPE
becomes the only tool to quantify policy quality. Given that
limited work has been done to assess these OPE methods
empirically [15], the Warfarin problem provides an excellent
opportunity to help us understand how well OPE works
by comparing the estimates with the oracle ground truth.
Therefore, we perform OPE to estimate the expected reward
of the proposed policy and compare these estimates with the
ground truth expected reward.

At a high level, Off-policy evaluation (OPE) offers a
statistical framework for estimating the value function of
a specific target policy, typically utilizing information from
another policy that generated the data. We implemented three
policy evaluation methods:

• Rejection Sampling [16]: Reject sampling is an un-
biased estimator that estimates the performance of a
policy by collecting some data on which actions are cho-
sen at random, a reject sampling scheme is performed
later on the policy to be evaluated, namely, if the action



agrees with the observation from random action, it is
kept and it is rejected otherwise.

• Doubly Robust [14]: Doubly Robust in evaluation
works the same way as described in the learning section.

• Normalized Capped Importance Sampling [17] Nor-
malized Capped Importance Sampling estimates re-
wards of arm choices of a policy from data collected
from the demonstration policy, making corrections by
weighting rewards according to the difference between
the estimations of the evaluation policy and demonstra-
tion policy over the actions that were chosen.

III. EXPERIMENTS AND DISCUSSION

We pre-processed the dataset, which involved normalizing
continuous variables and imputing missing values as neces-
sary. For instance, missing weights were imputed by using
the average value across the dataset. The dataset was then
divided into an 80 percent training set and a 20 percent test
set.

We implemented three baseline policies. The first policy
is a random dosage policy where every patient is assigned
a random dosage of warfarin. The other two policies are
WCDA and WPDA algorithms. The rewards associated with
the actions selected by these policies were computed. For
each baseline policy, the data tuples consisting of ⟨X,A,R⟩
were used in the training of offline learning algorithms
to derive new policies. Subsequently, we calculated the
expected rewards of these learned new policies on the test
set and compared them with the expected rewards of baseline
policies that were used as demonstration, the OPL algorithm
and OPE methods are implemented using contextual bandit
library in python [18].

To account for the randomness introduced by the train-
test split, we performed the splitting process 30 times with
different random seeds and reported the results of these 30
experiments. The offline learning results are presented in
Figure 2; we compared the oracle reward on the left-out test
set of two OPL methods against the baseline demonstration
which they are learned from. Our newly learned policies
outperformed their respective demonstrations by a large
margin, notably when presented with the random policy
data, a suboptimal policy, OPL algorithms still managed to
learned a policy that matches other baselines. Furthermore,
both offset tree and doubly robust performance are similar
regardless what observational data they learned from, we
speculate that this may be the most ideal results we could
achieve given the available features collected. Importantly,
the OPL algorithms showcased superior performance without
requiring genotype inputs, making them more practical for
deployment.

Another task of interest in this work is to examine the
empirical performance of OPE methods on newly proposed
policies. We implemented a logistic regression to acquire the
distribution over actions generated by the new policy, which
is used to compute reward estimates in doubly robust OPE
and NCIS OPE, and Table I, II,, III detail our experimental
results on OPEs. We presented mean rewards estimation

Fig. 2: The expected reward of thirty experiments on test
sets is presented in a boxplot. In each subfigure, offset tree
and doubly robust estimator learn from a corresponding old
policy.



TABLE I: OPE estimation of rewards and oracle rewards of
new policies learned from random policy demonstration

OPE OT learned policy DR learned policy

Reject Sampling 0.622 (0.545, 0.660) 0.625 (0.578, 0.660)
DR 0.619 (0.552, 0.661) 0.625 (0.577, 0.660)

NCIS 0.331 (0.308, 0.376) 0.331 (0.308, 0.376)

oracle 0.624 (0.598, 0.650) 0.631 (0.612, 0.662)

TABLE II: OPE estimation of rewards and oracle rewards of
new policy learned from WCDA policy demonstration

OPE OT learned policy DR learned policy

Reject Sampling 0.650 (0.623, 0.676) 0.639 (0.618, 0.656)
DR 0.651 (0.600, 0.890) 0.633 (0.610, 0.653)

NCIS 0.601 (0.581, 0.625) 0.601 (0.581, 0.625)

oracle 0.627 (0.601, 0.656) 0.623 (0.606 ,0.639)

TABLE III: OPE estimation of rewards and oracle rewards
of new policy learned from WPDA policy demonstration

OPE OT learned policy DR learned policy

Reject Sampling 0.652 (0.633, 0.677) 0.639 (0.620, 0.663)
DR 0.737 (0.444, 1.000) 0.631 (0.611, 0.656)

NCIS 0.562 (0.545, 0.581) 0.562 (0.545, 0.581)

oracle 0.626 (0.602, 0.659) 0.629 (0.609, 0.648)

from the 30 experiments with lower and upper bounds and
the actual oracle rewards. It is worth noting that the NCIS
appears to deviate the most from the ground truth, while
reject sampling is empirically the best choice. A potential
reason for more significant errors in NCIS estimation may
stem from the inaccurate importance weights we calculated
using logistic regression; reject sampling typically works
well when the sample size is large enough. Additionally,
doubly robust methods work best with continuous actions,
and the same dependency on importance weight computation
makes it less practical for real-world applications.

In conclusion, we demonstrated the feasibility of deriving
an improved policy that outperforms its demonstrations using
historical observational data. We empirically evaluated three
representative OPE methods in a bandit setting. A primary
limitation of this study is that the feature space of collected
observational data may not be sufficiently representative,
potentially hindering the OPL from achieving optimal perfor-
mance due to unobserved confounding factors. Additionally,
the empirical OPE evaluation results may not generalize
to other use cases, especially considering the variability in
the properties of these estimators in reinforcement learning
settings. We intend to address these issues in future research.
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