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ABSTRACT

In chronobiology a periodic components variation analysis
for the signals expressing the biological rhythms is needed.
Therefore precise estimation of the periodic components is
required. The classical approaches, based on FFT methods,
are inefficient considering the particularities of the data (non-
stationary, short length and noisy). In this paper we propose
a new method using inverse problem and Bayesian approach
with sparsity enforcing prior. The considered prior law is the
Student-t distribution, viewed as a marginal distribution of an
Infinite Gaussian Scale Mixture (IGSM) defined via the in-
verse variances. For modelling the non stationarity of the ob-
served signal and the noise we use a Gaussian model with
unknown variances. To infer those variances as well as the
variances of the periodic components we use conjugate pri-
ors. From the joint posterior law the unknowns are estimated
via Posterior Mean (PM) using the Variational Bayesian Ap-
proximation (VBA). Finally, we validate the proposed method
on synthetic data and present some preliminary results for real
chronobiological data.

Index Terms— Periodic components estimation, In-
verse Problem, Variational Bayesian Approximation (VBA),
Kullback-Leibler divergence (KL), Infinite Gaussian Scale
Mixture (IGSM), Posterior Mean (PM).

1. INTRODUCTION

Chronobiology examines periodic phenomena in living or-
ganisms. Those cycles are known as biological rhythms. One
particular cycle of main interest is the circadian rhythm [1],
The mammalian circadian timing system consists of a mas-
ter pacemaker in the suprachiasmatic nucleus of hypothala-
mus and subsidiary molecular clock in most peripheral cell
types, being synchronized by the day-night cycle, generating
circadian (∼ 24h) oscillations. The development of in vivo
bioluminescence recording technologies enables to monitor

the circadian biomarkers in peripheral tissues during a certain
number of consecutive days, providing time series data [2].
In cancer treatment experiments, such signals presents some
particularities: as the cancer tumor grows every day until the
death of mice used in the experiments, the result is a non-
stationary signal, with an increasing trend and a very short
length. The objective of an accurate description of the pe-
riodic components variation during the evolution of cancer
tumor phase can be formulated as the need for a method that
can give an accurate estimation of the periodic components
from a limited number of data.

2. CLASSICAL FT BASED METHODS

Spectral analysis of time series is a well known subject for
a very long time. The most common methods are Fourier
Transform (FT) based methods, which are widely used in
many applications due to several obvious advantages: well
known, well understood and fast, via FFT. The periodical
phenomena was studied with different approaches in different
particular conditions, [3], [4], [5], [6], [7], using in general the
FFT based methods. Nevertheless, the particularities of the
biomedical signals considered in chronobiology experiments
show that the classical methods have certain limitations. In
particular, for short time series relative to the searched pe-
riodic components the precision given by the FFT methods
is insufficient to determine the underlying periodic compo-
nents (in the experiment considered in this article, a 96 hours
recorded signal relative to a 24 hours periodic component,
linked with the circadian clock). An important point with bi-
ological signals is that biologist use more often period than
frequency. In FFT based methods the results are presented on
an axis which is uniform in frequency. In particular, for a four
day (96h) recorded signal, beside the 24h corresponding peri-
odic components, the nearest amplitudes in the periodic com-
ponents vector correspond to the 32h and 19h. More general,
if the prior knowledge sets the principal period around a value



P , in order to obtain a period vector that contains the period
P and also the periods P − 1 and P + 1, via FFT approach
the signal must be observed for (P − 1)(P + 1) periods, i.e.
(P − 1)P (P + 1), which is beyond the real experiments.

3. INVERSE PROBLEM APPROACH AND GENERAL
BAYESIAN INFERENCE

The first step of the proposed method consists in formulating
the problem as an inverse problem:

g(tn) =

M∑

m=1

f(pm)e2πj
1
pm

tn + εn, n ∈ {1, ..., N} (1)

where g(tn) represents the observed value at time tn, pm rep-
resents the mth period, f(pm) its amplitude and εn accounts
for errors and uncertainties. With the notation g(tn) = gn and
f(pm) = fm , defining the vectors f = [f1, f2, . . . , fM ]T ,
g = [g1, g2, . . . , gN ]T and ε = [ε1, ε2, . . . , εN ]T we obtain
the following model:

g =Hf + ε (2)

In this paper we adopt a Bayesian approach, which consists
in infering f via:

p(f |g,θ1,θ2) ∝ p(g|f ,θ1) p(f |θ2). (3)

A necessary extension for real world application is the case
where the hyperparameters θ = (θ1,θ2) involved are not
known and have to be estimated from the joint posterior law:

p(f ,θ1,θ2|g) ∝ p(g|f ,θ1) p(f |θ2) p(θ1)p(θ2) (4)

In this way we obtain an unsupervised method. The main
steps are then the assignment of p(g|f ,θ1), p(f |θ2), p(θ1),
p(θ2) and then the computation of the posterior p(f ,θ1,θ2|g)
to infer on f and the hyperparameters θ.

4. A HIERARCHICAL MODEL FOR SPARSITY
ENFORCING PRIOR MODEL

We propose to use a non-stationary Gaussian model where vεi
are considered to be unknowns. For having the possibility to
estimate them we assign Inverse Gamma distributions:

gi =

M∑

j=1

Hijfj + εi,

p(εi|vεi) = N (εi|0, vεi), i ∈ {1, 2, . . . , N}
p(vεi |αεi0, βεi0) = IG(vεi |αεi0, βεi0), i ∈ {1, 2, . . . , N}

(5)

which results to:
{
p(ε|vε) = N (ε|0,V ε)

p(vε|αε0,βε0) =
∏N
i=1 IG(vεi |αεi0, βεi0)

(6)

where we introduced the vector vε and the corresponding di-
agonal matrix V ε:

vε =
[
vε1 . . . vεi . . . vεN

]T
; V ε = diag[vε] (7)

The likelihood p(g|f ,vε) is obtained using the considered
linear model (2) and the assigned distribution for the error
vector ε:

p(g|f ,vε) = N (g|Hf ,V ε) (8)

The proposed prior distribution is a Student-t distribution, in
order to enforce the sparsity [8] and use the prior knowledge
of reduced number of clocks in the periodic component vec-
tor. While a direct assignment of a Student-t distribution for
the prior law p(f) leads to a non-quadratic criterion when
estimating f , the Student-t distribution corresponding to the
prior law can be expressed as an Infinite Gaussian Mixture
[9], modelling the inverse variance as a Gamma distribution
or the variance as an Inverse Gamma distribution. For the
variance of f we assume a general model:

vf =
[
vf1 . . . vfj . . . vfM

]T
; V f = diag[vf ] (9)

This gives us the possibility to propose the following prior for
the hierarchical model:

{
p(f |vf ) = N (f |0,V f )

p(vf |αf0,βf0) =
∏M
j=1 IG(vfj |αfj0, βfj0)

(10)

where we used the notations:

αε0 =
[
αε10 . . . αεN0

]T
, βε0 =

[
βε10 . . . βεN0

]T

αf0 =
[
αf10 . . . αfM0

]T
, βf0 =

[
βf10 . . . βfM0

]T
(11)

The error variance prior proposed, the likelihood (8) and the
prior (10) represents the proposed IGSM Hierarchical Model,
which can be summarized as follows:

p(g|f ,vε) ∝ |V ε|−
1
2 exp

{
− 1

2
‖V − 1

2
ε (g −Hf) ‖2

}
p(f |vf ) ∝ |V f |−

1
2 exp

{
− 1

2
‖(V f )

− 1
2 f‖2

}
p(vε|αε0,βε0) ∝

∏N
i=1 v

−(αεi0+1)
εi exp

{
−
∑N
i=1 βεi0v

−1
εi

}
p(vf |αf0,βf0) ∝

∏M
j=1 v

−(αfj0
+1)

fj
exp

{
−
∑M
j=1 βfj0v

−1
fj

}
(12)

From this hierarchical model the posterior distribution can be
obtained via the proportionality relation considered in (4):

p(f ,vε,vf |g) ∝ p(g|f ,vε) p(f |vf )
p(vε|αε0,βε0) p(vf |αf0,βf0)

(13)



5. BAYESIAN COMPUTATION AND PROPOSED
ALGORITHM

For estimation of the unknowns, we consider the Poste-
rior Mean (PM). This estimator is used because it minimize
the Mean Square Error (MSE). One way to compute the
PM in this case is to first approximate the posterior law
p(f ,vε,vf |g) with a separable law q(f ,vε,vf |g):

p(f ,vε,vf |g) ≈ q(f ,vε,vf |g) = q1(f) q2(vε) q3(vf ),
(14)

in such a way that the approximate q(f , z, vε, vf ) is ob-
tained by minimizing of the Kullback Leibler divergence
KL (q : p) =

∫
q ln q

p via alternate optimization. Thanks
to the choice of the exponential families for the priors and
the conjugate priors for the hyperparameters, we obtain pro-
portionality relations between all distributions q1(f), q2(vε),
q3(vf ) and certain exponential expressions. The argument
of the exponential proportional to q1(f) can be written as a
quadratic criterion

J(f) = ‖
(
Ṽ −1ε

)1/2
(g −Hf) ‖2+‖

(
Ṽ −1f

) 1
2

f‖2, (15)

leading to the conclusion that q1(f) is a Normal distribution.
The mean is given by the solution that minimize the criterion
J(f), then the covariance matrix can be found by identifica-
tion. It is then easy to show that q1(f) = N

(
f |f̂PM , Σ̂

)
,

with:



f̂PM =

(
HT Ṽ −1ε H + Ṽ −1f

)−1
HT Ṽ −1ε g

Σ̂ =
(
HT Ṽ −1ε H + Ṽ −1f

)−1 , (16)

that q2i(vεi) are Inverse Gamma distributions, q2i(vεi) =
IG (vεi |αεi , βεi) with





αεi = αεi0 +
1
2

βεi = βεi0 +
1
2

[
HiΣ̂H

T
i +

(
gi −Hif̂PM

)2] (17)

where Hi is the line i of the matrix H and finally, that
q3j(vfj ) = IG

(
vfj |αfj , βfj

)
with:





αfj = αfj0 +
1
2

βfj = βfj0 +
1
2

(
f̂j

2

PM + Σ̂jj

) (18)

Knowing that q2i(vεi) and q3j(vfj ) are Inverse Gamma dis-
tributions and using

〈
x−1

〉
IG(x|α,β) =

α
β , then we obtain the

following forms for Ṽ −1ε and Ṽ −1f involved in the expression

of the two parameters of the Normal distribution q1(f):

Ṽ −1ε =




αε1
βε1

. . . 0 . . . 0

...
. . .

...
. . .

...
0 . . .

αεi
βεi

. . . 0

...
. . .

...
. . .

...
0 . . . 0 . . .

αεN
βεN




; Ṽ −1f =




αf1
βf1

. . . 0 . . . 0

...
. . .

...
. . .

...
0 . . .

αfj
βfj

. . . 0

...
. . .

...
. . .

...
0 . . . 0 . . .

αfM
βfM




(19)
Finally, these steps lead to an iterative algorithm described as
it follows: (a) Initialization; (b) Use equation (16) to com-
pute f̂PM , Σ̃; (c) Use equation (17) to compute α̃ε, β̃ε; (d)
Use equation (18) to compute α̃f , β̃f . The following scheme
summarizes the proposed algorithm:

f̂PM =
(
HT V̂ −1ε H + V̂ −1f

)−1
HT V̂ −1ε g

Σ̂ =
(
HT V̂ −1ε H + V̂ −1f

)−1

αεi = αεi0 + 1
2

βεi = βεi0 + 1
2

[
HiΣ̂H

T
i +

(
gi −Hif̂PM

)2]

αfj = αfj0 + 1
2

βfj = βfj0 + 1
2

(
f̂j

2

PM + Σ̂jj

)

V̂
−
1

ε
=

di
ag
[ α

ε
i

β
ε
i

]

V̂
−
1

f
=

di
ag
[ α

f
i

β
f
i

]

For initializing the algorithm one of the possible choice is
assigning values for the following parameters:

{
α
(0)
fj
, β

(0)
fj

}
,

j ∈ {1, 2, . . . ,M} representing V̂ −1f
(0)

and
{
α
(0)
εi , β

(0)
εi

}
,

i ∈ {1, 2, . . . , N} representing V̂ −1ε
(0)

This choice for the
initialization procedure is sufficient, in the sense that the con-
sidered parameters from above represent all the necessary in-
formations for starting the first iteration of the algorithm and
computing all other parameters of the algorithm correspond-

ing to step zero, i.e. f̂
(0)

PM and Σ̂
(0)

. For the parameters α(0)
εi

, β(0)
εi and α(0)

fj
, β(0)

fj
, we consider the following initialization:

α(0)
εj = αεj0 , β(0)

εj = βεj0 , α
(0)
fj

= αfj0 , β
(0)
fj

= βfj0
(20)

A natural choice in this case is Non Informative Prior Law
(NIPL). The Inverse Gamma Distribution is weak for param-
eters α → 0 and β → 0, so one possible choice is αεj0 =
βεj0 = 0.001 and αfj0 = βfj0 = 0.001. In particular, such
an approach, is consistent with a non-supervised algorithm

6. SIMULATIONS

For validating the proposed method, first we work with some
simulated data. In the real case the theoretical f is unknown,



so the only possible comparison is between the available g
(representing the real data) and the estimated ĝPM (obtained
via the reconstruction done with the estimated f̂PM ). After
validating the method, we present the results corresponding
to real data, i.e. signals from chronobiology experiments.

6.1. Synthetic data

An important step for validating the method is to consider sig-
nals with known corresponding periodic components, which
gives the possibility to compare f and the estimated f̂PM .
We consider the following protocol: (a) Consider a sparse
amplitude periodic components vector f , Figure 1,(a). For
the simulations used in this article, we analysed a periodic
components for the interval associated with the circadian do-
main and the possible harmonics, i.e. the interval [8, 32], with
one hour precision; (b) Compute the corresponding signal g0
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Fig. 1. Periodic Components f and the corresponding theo-
retical signal g0 =Hf

(4 days length), Figure 1, (b). The matrix operatorH used is a
real matrix obtained in the same manner as the Fourier Trans-
form Matrix using the considered periods and is defined as a
sum of a sine and cosine; (c) Generate a noisy signal g (input
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for the proposed algorithm) by adding some noise (SNR 5dB),
Figure 2, (a) and its corresponding spectrum obtained via Fast
Fourier Transform, Figure 2, (b). (d) Use the noisy signal
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L2 regularization

g to estimate the periodic components via the zero padding

method Figure 3, (a) and via L2 regularization method Fig-
ure 3, (b). (e) Compare the periodic components vector (f )
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with the estimated f̂PM one via proposed method, Figure 4,
(a). The proposed method also indicates the variances; the
covariance matrix is presented in Figure 4, (b). (f) Compare
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the original signal g0 and the reconstructed one ĝPM , Fig-
ure 5, (a) and the noisy signal g with the reconstructed one
ĝPM . As a conclusion of these simulations, we can see that
neither FFT based methods (with or without zero padding)
nor Least Squares (LS) or even the quadratic regularization
methods can give satisfactory results. The proposed method
seems to be appropriate for this application.

6.2. Real data

For this section we consider a real signal expressing the pho-
ton absorption. The experiment was realized over mice,
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Fig. 6. (IP:Student-t) Method vs. FFT: Real data

investigating the tumor clock gene expression in freely



moving mice along the course of tumor growth using RT-
Biolumicorder units (Lesa-technology SA, Switzerland). The
hepatocarcinoma cells with bioluminescent clock gene Per2
(Hepa1-6Per2::luc) were inoculated subcutaneously in mice.
The tumor photon emission was recorded with a photomulti-
plier tube in mice. The question addressed by the biologists
is the stability of the periodic components so for every four
days of the signal we apply the proposed method and we
compare the results with the FFT spectrum. From a 10 days
length signal we present three consecutive windows (4 days
length, 1 day shift) in Figure 6. On the left column are
presented the windows, in the center the corresponding peri-
odic components estimated via FFT and on the right column
the periodic components estimated by the proposed method.
Figure 7 shows another three consecutive windows and the
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Fig. 7. (IP:Student-t) Method vs. FFT: Real data

corresponding periodic component vector estimation for FFT
and the proposed method.

7. DISCUSSIONS AND CONCLUSIONS

We have presented a new method that can estimate the pe-
riodic components of short signals. In the synthetic data
subsection 6.1 we have showed the drawbacks of the FFT
method: for the known sparse periodic component vector, all
the picks are wrongly estimated, making the analysis of the
stability of the period impossible for such short signals. The
zero padding method and the L2 regularization method are
also providing inaccurate estimations. The proposed method
is accurately estimating the periodic component vector. For
the example presented in Figure 4,(a) the reconstruction error,

is ‖f̂PM−f‖
2

‖f‖2
= 0.00874. The residual error for the recon-

structed signal ĝPM and ĝ, Figure 5,(b) is consistent with the
signal to noise ratio of 5 dB. The proposed method is pro-
viding also the covariance matrix for f , i.e. the variances for
the estimated amplitudes. For the real data, Figure 7 shows
how the proposed method is able to detect the variability of
the period in the signal, by precisely estimating the positions

of the non-zero periodic components for each window. The
results obtained via the FFT method can not detect this vari-
ability. Our model makes no assumptions concerning the
exact number of non-zero picks. This allows the biologist
to visualize all the periodic phenomena from the recorded
signals, Figure 6.
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