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Abstract

For an undirected n-vertex planar graph G with non-negative edge-weights, we consider the
following type of query: given two vertices s and t in G, what is the weight of a min st-cut in G?
We show how to answer such queries in constant time with O(n log4 n) preprocessing time and
O(n log n) space. We use a Gomory-Hu tree to represent all the pairwise min cuts implicitly.
Previously, no subquadratic time algorithm was known for this problem. Since all-pairs min cut
and the minimum cycle basis are dual problems in planar graphs, we also obtain an implicit
representation of a minimum cycle basis in O(n log4 n) time and O(n log n) space. Additionally,
an explicit representation can be obtained in O(C) time and space where C is the size of the
basis.

These results require that shortest paths are unique. This can be guaranteed either by using
randomization without overhead, or deterministically with an additional log2 n factor in the
preprocessing times.

1 Introduction

A minimum cycle basis is a minimum-cost representation of all the cycles of a graph and the all-
pairs min cut problem asks to find all the minimum cuts in a graph. In planar graphs the problems
are intimately related (in fact, equivalent [6]) via planar duality. In this paper, we give the first
sub-quadratic algorithm for these problems; it runs in O(n log4 n) time. This result is randomized,
but can be made deterministic by paying an additional log2 n factor in the running time. In the
following, we consider connected, undirected graphs with non-negative edge weights.

All-pairs minimum cut

In the all-pairs min cut problem we need to find the minimum st-cut for every pair {s, t} of vertices
in a graph G. Gomory and Hu [5] showed that these minimum cuts can be represented by an
edge-weighted tree such that:

• the nodes of the tree correspond one-to-one with the vertices of G,

• for any distinct vertices s and t, the minimum-weight edge on the unique s-to-t path in the
tree has weight equal to the min st-cut in G, and
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• removing this minimum-weight edge from the tree creates a partition of the nodes into two
sets corresponding to a min st-cut in G.

We call such a tree a Gomory-Hu tree or GH tree – it is also referred to as cut-equivalent and
cut tree in the literature. Gomory and Hu showed how to find such a tree with n − 1 calls to a
minimum cut algorithm. Up to date, this is the best known method for general graphs and gives
an O(n2 log log n)-time algorithm for planar graphs using the best-known algorithm for min st-cuts
in undirected planar graphs [10]. There exists an algorithm for unweighted, general graphs that
beats the n− 1 times minimum cut time bound [3]; the corresponding time for unweighted planar
graphs is, however, O(n2poly log n) time.

Minimum cycle basis

A cycle basis of a graph is a maximum set of independent cycles. Viewing a cycle as an incidence
vector in {0, 1}E , a set of cycles is independent if their vectors are independent over GF (2). The
weight of a set of cycles is the sum of the weights of the cycles. The minimum-cycle basis (MCB)
problem is to find a cycle basis of minimum weight. This problem dates to the electrical circuit
theory of Kirchhoff [13] in 1847 and has been used in the analysis of algorithms by Knuth [16]. For
a complete survey, see 8. The best known algorithm in general graphs takes O(mω) time where ω
is the exponent for matrix multiplication [2].

The best MCB algorithms for planar graphs use basic facts of planar embeddings. Hartvigsen
and Mardon [6] prove that if G is planar, then there is a minimum cycle basis whose cycles are
simple and nested in the drawing in the embedding. (Nesting is defined formally in Section 1.3.)
As such, one can represent a minimum cycle basis of a planar embedded graph as an edge-weighted
tree, called the MCB tree, such that:

• the nodes of the tree correspond one-to-one with the faces of the planar embedded graph, and

• each edge in the tree corresponds to a cycle in the basis, namely the cycle that separates the
faces in the components resulting from removing this edge from the tree.

Hartvigsen and Mardon also gave an O(n2 log n)-time algorithm for the problem that was later
improved to O(n2) by Amaldi et al. [2].

Equivalence between MCB and GH trees

In planar graphs, the MCB and GH problems are related via planar duality. Corresponding to every
connected planar embedded graph G (the primal) there is another connected planar embedded
graph (the dual) denoted G∗. The faces of G are the vertices of G∗ and vice versa. There is a
one-to-one correspondence between the edges of G and the edges of G∗: for each edge e in G, there
is an edge e∗ in G∗ whose endpoints correspond to the faces of G incident to e. Dual edges inherit
the weight of the corresponding primal edge; namely, w(e∗) = w(e).

We define a simple cut to be a cut such that both sides of the cut are connected. This definition
allows us to show that cycles and cuts are equivalent through duality:

In a connected planar graph, a set of edges forms a cycle in the primal iff it forms a
simple cut in the dual. [20]

Just as cuts and cycles are intimately related via planar duality, so are the all-pairs minimum
cut and minimum cycle basis problems. In fact, Hartvigsen and Mardon showed that they are
equivalent in the following sense:
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Theorem 1 (Corollary 2.2 from 6). For a planar embedded graph G, a tree T represents a minimum
cycle basis of G if and only if T is a Gomory-Hu tree for G∗ (after mapping edges to their duals
and the node-face relationship to a node-vertex relationship via planar duality).

It follows that the O(n2) algorithm due to Amaldi et al. [2] to find an MCB tree is also an algorithm
to find a GH tree.

Techniques Herein, we focus on the frame of reference of the minimum cycle basis. In the
remainder of this section, we highlight the tools and techniques that we use in our algorithm and
analysis. Our algorithm, at a very high level, works by (iterative) finding a minimum-weight cycle
that separates two as-yet unseparated faces f and g. The order in which we separate pairs of faces
is guided by a bottom-up traversal of a hierarchical planar separator (Section 1.4). We find each
separating cycle by a modification of Reif’s algorithm (Section 1.2) which does so by way of shortest-
path computations. In order to achieve a sub-quadratic running time, we will precompute many
of the distances for these shortest-path computations using a method developed by Fakcharonphol
and Rao (Section 1.5). To guarantee that the cycles we find, using these precomputed distances,
will be nesting, we rely on shortest paths being unique (Section 1.3). We represent a partially built
solution with something we call a region tree (Section 1.6). After we have defined these structures
and tools, we will give a more detailed overview of our algorithm and analysis (Section 1.8) before
diving into the technical details in the remainder of the paper.

1.1 Planar graphs and simplifying assumptions

An embedded planar graph is a mapping of the vertices to distinct points and edges to non-crossing
curves in the plane. A face of the embedded planar graph is a maximal open connected set of points
that are not in the image of any embedded edge or vertex. Exactly one face, the infinite face is
unbounded. We identify a face with the embedded vertices and edges on its boundary.

For a simple cycle C in a planar embedded graph G, let int(C) denote the open bounded subset
of the plane defined by C. Likewise define ext(C) for corresponding unbounded subset. We refer
to the closure of these sets as int(C) and ext(C), respectively. We say that a pair of faces of G are
separated by C in G if one face is contained in int(C) and the other face is contained in ext(C). A
set of simple cycles of G is called nested if mapping of this set int() is also nesting. A simple cycle
C is said to cross another simple cycle C ′ if the cycles are not nested.

Unique shortest paths

Our algorithm relies on the fact that each new cycle we add to the basis nests with previously
added cycles. To guarantee this (Section 1.3), we will assume that in all the graphs we consider
(G and graphs obtained from G), there is a unique shortest path between any pair of vertices. By
adding a small, random perturbation to the weight of each edge, one can make the probability of
having non-unique shortest paths arbitrarily small. For example, if we take a random perturbation
from the set [1, . . . , n4] 1

n7 , then by the Isolation Lemma due to Mulmuley et al. [18] the probability
that all shortest paths are unique is at least 1− 1

n3 ×
(
n
2

)
≥ 1− 1

n .
In Section 7, we give a more robust, deterministic way to ensure the uniqueness of shortest

paths. We must impose the structural simplifications presented below before considering applying
this more robust method. The idea, based on the technique used by Hartvigsen and Mardon [6], is
to break ties consistently, thus imposing uniqueness on the shortest paths so the above two lemmas
hold. Unfortunately, in order to do so, we require a log2 n-increase in the running time of our
algorithm.
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3-regular with small, simple faces

The separators that we use will require that the boundaries of the faces be small and simple
(each vertex appears only once on the boundary of the face). Three-regularity (each vertex having
degree 3) greatly simplifies the analysis of our algorithm. We can modify the input graph to
satisfy both these properties simultaneously by triangulating the primal with infinite-weight edges
and then triangulating the dual with zero-weight edges using a zig-zag triangulation. In a zig-zag
triangulation [11], each face is triangulated using a simple path, adding at most two edges per face
adjacent to each vertex.

Triangulating the primal For each face f of the original graph, identify a face f ′ of the tri-
angulated graph that is enclosed by f in the inherited embedding. The minimum fg-separating
cycle in the original graph maps to an f ′g′-separating cycle of the same weight and so will not
use any infinite-weight edge: the set of cycles in a minimum cycle basis in the original graph are
mapped to the set of finite-weight cycles in a minimum-cycle basis of the finite-weight cycles of the
triangulated graph.

Triangulating the dual Before the zig-zag triangulation, each vertex in the dual has degree 3.
The zig-zag triangulation adds at most 6 edges (2 for every adjacent face) to each vertex. Therefore,
the faces in the primal have size at most 9 and are still simple. Clearly, the primal is 3-regular after
triangulating the dual. As in the triangulation of the primal, we can map between minimum cycle
bases and min cuts in the original graph and the degree-three graph. Each vertex v in the original
graph is mapped to a path Pv of zero-weight edges in the degree-three graph.

1.2 Reif’s algorithm for minimum separating cycles

Reif gave an algorithm for finding minimum cuts by way of finding minimum separating cycles in
the dual graph [19].

Let X be the shortest path between any vertex on the boundary of f and any vertex on the
boundary of g. Since X is a shortest path, there is a minimum fg-separating cycle, C, that crosses
X only once. Paths P and Q cross if there is a quadruple of faces adjacent to P and Q that cover
the set product {left of P , right of P}×{left of Q, right of Q}. Let GX be the graph obtained from
G by cutting along path X: duplicate every edge of X and every internal vertex of X and create a
new, simple face whose boundary is composed of edges of X and their duplicates.

The following result is originally due to Itai and Shiloach [9] but we state it as it was given by
Reif [19].

Theorem 2 (Proposition 3 from [19]). Let X be the shortest f -to-g path. For each vertex x ∈ X,
let Cx be the minimum weight cycle that crosses X exactly once and does so at x. Then minx∈X Cx

is a minimum fg-separating. Further, Cx is the shortest path between duplicates of x in GX .

This theorem is algorithmic: the shortest paths between duplicates of vertices on X in GX

can be found in O(n log n) time using Klein’s multiple-source shortest path algorithm [15] or by
using the linear-time shortest-path algorithm for planar graphs [7] and divide and conquer. In our
algorithm we will emulate the latter method: start with the midpoint, x, of X in terms of the
number of vertices, and recurse on the subgraphs obtained by cutting along Cx.
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1.3 Isometric cycles

A cycle C in a graph is said to be isometric if for any two vertices u, v ∈ C, there is a shortest path
in the graph between u and v which is a subpath of C. A set of cycles is said to be isometric if all
cycles in the set are isometric.

Lemma 1 (Proposition 4.4 from 6). Any minimum cycle basis of a graph is isometric.

The following lemma will allow us to find isometric cycles by composing shortest paths. Further,
these isometric cycles will be nesting and so can be represented with a tree which is precisely the
MCB tree.

Lemma 2. Let G be a graph in which shortest paths are unique. The intersection between an
isometric cycle and a shortest path in G is a (possibly empty) shortest path. The intersection between
two distinct isometric cycles C and C ′ in G is a (possibly empty) shortest path; in particular, if G
is a planar embedded graph, C and C ′ do not cross.

Proof. Let C be an isometric cycle and let P be a shortest path intersecting C. Let u and v be
the first and last vertices of P that are in C. Since C is isometric, there is a shortest path P ′ in C
between u and v. Since shortest paths are unique, P ′ is the subpath of P between u and v. Hence,
C ∩ P = P ′, giving the first part of the lemma.

Let C ′ and C be distinct isometric cycles. For any two distinct vertices u, v ∈ C ′∩C, let P be the
shortest u-to-v path. Since C and C ′ are isometric and shortest paths are unique, P ⊂ C ′ ∩C.

1.4 Planar separators

A decomposition of a graph G is a set of subgraphs P1, . . . , Pk such that the union of vertex sets
of these subgraphs is the vertex set of G and such that every edge of G is contained in a unique
subgraph. We call P1, . . . , Pk the pieces of the decomposition. The boundary vertices ∂Pi of a piece
Pi is the set of vertices u in that piece such that there exists an edge (u, v) in G with v /∈ Pi.
We recursively decompose the graph to get a recursive subdivision. A piece P is decomposed into
subpieces called the children of P ; the boundary vertices of a child are the boundary vertices
inherited from P as well as the boundary vertices introduced by the decomposition of P . We
use Miller’s Cycle Separator for this decomposition: the introduced boundary vertices form simple
cycles [17]. This decomposition requires that the sizes of the faces be bounded by a constant.

Fixing an embedding of G, a piece inherits its embedding from G’s embedding. A hole in a
piece is a bounded face containing boundary vertices. While it is not possible to guarantee that
holes are not introduced by the balanced recursive subdivision, it is possible to guarantee that each
piece has a constant number of holes [10,14]. Further, we will ensure that pieces are connected; we
give the details of ensuring connectivity in Section 6.

In summary, we use the following recursive decomposition:

Definition 1 (Balanced recursive subdivision). A decomposition of G such that a piece P is divided
into a constant number of subpieces, P1, P2, P3, . . . each of which is connected, has O(1) holes, and
contains at most 1

2 |P | vertices, at most 1
2 |∂P | boundary vertices inherited from P , and at most√

|P | additional boundary vertices.

We define the O(log n) levels of the recursive subdivision in the natural way: level 0 consists of
one piece (G) and level i-pieces are obtained by applying the Cycle Separator Theorem to each level
(i−1)-piece. We represent the recursive subdivision as a binary tree, called the subdivision tree (of
G), with level i-pieces corresponding to vertices at level i in the subdivision tree. Parent/child and
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ancestor/descendant relationships between pieces correspond to their relationships in the subdivi-
sion tree. For notation simplicity, we assume that the subdivision tree is binary; generalizing this
to a constant number of children is straightforward.

We prove the following in Section 6:

Theorem 3. Let P be the set of pieces in a recursive subdivision of G. Then
∑

P∈P |P | = O(n log n)
and

∑
P∈P |∂P |2 = O(n log n).

1.5 Precomputing distances

For a piece P , the internal dense distance graph of P or intDDG(P ) is the complete graph on the set
of boundary vertices of P , where the weight of each edge (u, v) is equal to the shortest path distance
between u and v in P . The union of internal dense distance graphs of all pieces in the recursive
subdivision of G is the internal dense distance graph (of G), or simply intDDG. Fakcharoenphol and
Rao showed how to compute intDDG in O(n log3 n) time [4]. (Using the multiple-source shortest
path algorithm due to Klein, this can be improved to O(n log2 n) [15]; however, this improvement
is not compatible with, deterministically imposing unique shortest paths or generalizing to external
distances, so we do not use it.)

Consider a piece P with h holes. The external dense distance graph of P or extDDG(P ) is the
union of h + 1 complete graphs: one for each hole and one for the external face. For two vertices
u, v on the boundary of a common hole or on the boundary of the external face, the weight of edge
(u, v) is the shortest path distance between u and v in the component of G \ E(P ) that contains
u and v. The external dense distance graph of G or extDDG is the union of all external dense
distance graphs of the pieces in the recursive subdivision of G. As a consequence of Theorem 3,
both intDDG and extDDG have size O(n log n).

Fakcharoenphol and Rao give an implementation of Dijkstra’s algorithm, FR-Dijkstra, that
finds a shortest path tree in a graph composed of dense distance graphs in O(b log2 b) time, where
b is the total number of boundary vertices, counted with multiplicity [4].

Theorem 4. The external dense distance graph of G can be computed in O(n log3 n) time.

Proof. Fakcharoenphol and Rao compute intDDG via a leaves-to-root traversal of the recursive
subdivision of G by applying FR-Dijkstra to obtain intDDG(P ) for a piece P from the internal
dense distance graphs of its two children. Consider the external distances for the external face of
P : these can be computed by FR-Dijkstra from the external dense distance graph of the parent of
P and the internal dense distance graph of the sibling(s) of P .

Consider a hole H of a child P ′ of P and let us compute extDDG(P ′) restricted H. Observe
that (the subgraph of G restricted to) H is the union of certain sibling pieces of P ′ and certain
holes of P . Given internal dense distance graphs of all children of P and external dense distance
graphs of all holes of P , it follows that extDDG(P ′) restricted to H can be obtained efficiently with
FR-Dijkstra.

Therefore, we can obtain extDDG with a root-to-leaves traversal of the recursive subdivision
given intDDG. The running time is the same as that for finding intDDG.

1.6 The region tree

We build the minimum cycle basis iteratively, adding cycles to a partially constructed basis that
separated two as-yet unseparated faces. We represent the partially constructed basis with a tree
that we call the region tree. Each node of a region tree either represents a region (defined below)
or a face of the graph. Adjacency represents enclosure. We take the region tree to be rooted at a
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root r which always corresponds to the special region that represents the entire plane. Initially the
tree is a star centered at a root r with each leaf corresponding to a face in the graph (including the
infinite face).
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Figure 1: A graph with faces a through g; four nesting cycles A through D (left). A region tree for
cycles A,B and C (center). A region tree for cycles A through D (right).

We update the tree to reflect the cycles that we add to the basis. This process is illustrated in
Figure 1. When a first cycle C is found, we create a new node xC for the tree, make xC a child
of the root, and make all the faces that C encloses children of xC . Node xC defines a region R:
the subgraph of G contained in the closed subset of the plane defined by the interior of C and not
enclosed in the interior of any children of C. We say that R is bounded by C, that C is a bounding
cycle of R, and that R contains the child regions and/or child faces defined by the tree. If two faces
f, g are unseparated, they are children of a common region node r; to add a cycle C that separates
f and g, xC will become a child of f and g’s common parent. As we will only add cycles which
nest with those we have already found, the updates to the region tree are well defined. The most
technically challenging part of the algorithm is in how to update the region tree (Section 4).

In the final tree, after all faces have been separated, each face is the only face-child of a region.
We call such a region tree a complete region tree. Mapping each face to its unique parent creates a
tree with one node for each face in the graph; this is the MCB-tree.

Region tree data structure We represent the region tree using the top tree data structure [1].
This will allow us to find the lowest common ancestor lca(x, y) of two vertices x and y, and
determine whether one vertex is a descendant of another in logarithmic time. Top trees also
support the operation jump(x, y, d), which for two vertices x and y, finds the vertex that is d edges
along the path from x to y in logarithmic time. Top trees can also find the weight of the simple
path between two given endpoints in logarithmic time.

1.7 Region subpieces

The region subpieces of a piece P are the subgraphs defined by the non-empty intersections between
P and regions defined by the region tree. We say that a region R and a region subpiece PR are
associated with each other. The boundary vertices ∂PR of PR are inherited from P : ∂PR = PR∩∂P .
These constructions are illustrated in Figure 2.

The order in which we separate faces is guided in a bottom-up fashion by the recursive subdi-
vision of G. Starting with a piece P at the deepest level of the recursive subdivision, we separate
all pairs of faces of G that have an edge in common with P , allowing us to maintain the following
invariant:

Invariant 1. For each region subpiece PR of P , at most one pair of faces needs to be separated.

7



f g

Figure 2: The dotted edges are the edges belonging to the boundaries of a piece P and P ’s children
P1 and P2. f is a face of P1 and g is a face of P2. The solid black edges are the bounding cycle of
a region R. The three shaded regions are three child regions of R. The thick grey edges are the
edges of region subpiece PR. (The remaining edges of the graph are the thin, grey edges.) The
intersection of a minimum separating cycle for f and g with P uses only edges of PR.

Proof. Suppose we have added (nesting) separating cycles to the region tree that separate all pairs
of faces sharing an edge with a descendant piece of P . Suppose two faces f1 and f2 of G both
sharing edges with P have not yet been separated. Let P1 and P2 be the two child pieces of P in
the recursive subdivision. Since all pairs of faces sharing edges with P1 and all pairs of elementary
faces sharing edges with P2 have already been separated, w.l.o.g. fi only shares edges with Pi.

Since f1 and f2 have not been separated, they must belong to a common region R in the region
tree. For a contradiction, if there is a third face f that is unseparated from f1 or f2, f w.l.o.g. shares
edges with P1. However, all pairs of faces sharing edges with P1 have already been separated.

1.8 Overview of the algorithm and analysis

Our algorithm for computing an MCB tree is:

Find a balanced recursive decomposition of the input graph.

Compute the internal and external dense distance graphs.

Initialize the region tree that represents an empty set of cycles.

Considering each piece P of the recursive decomposition, according to a bottom-up
order, determine the region subpieces of P .

For each region subpiece PR that contains a pair of unseparated faces:

• Find the minimum fg-separating cycle C.

• Add C to the collection of cycles and update the region tree accordingly.

We present the remaining details for the balanced, recursive decomposition (Definition 1),
namely, ensuring that the pieces remain connected and the proof of Theorem 3, in Section 6.
We have already discussed computing the dense distance graphs (Section 1.5) and initializing the
region tree (Section 1.6).

In Section 3, we show, given a piece P and the current set of regions represented by the region
tree, what the region subpieces for P are and which edges of the graph are in each of the region
subpieces. Formally, we will prove:

Theorem 5. The region subpieces of a piece P can be identified in O((|P | + |B|2) log2 n) time,
where B is the set of boundary vertices of the children of the piece.
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Summing over all region subpieces, appealing to Theorem 3, the time spent by the algorithm
identifying the region subpieces is O(n log3 n).

We have already seen that by considering the pieces in bottom-up order, each region subpiece
has at most one pair (f, g) of unseparated faces (Invariant 1). In Section 2, we show how to find a
minimum fg-separating cycle C by emulating Reif’s algorithm. To do so, we must implicitly cut
open the graph along the shortest f -to-g path and modify the dense distances to reflect the change
in the graph’s shortest path metric. We will prove:

Theorem 6. The minimum fg-separating cycle for a region subpiece PR can be found in time
O((|∂PR|2 + |PR|) log3 |PR|).

Therefore, the time spent by the algorithm finding minimum separating cycles is O(n log4 n).

We show how to update the region tree to reflect our addition of cycle C to the basis. For each
region R in the region tree we store a compact representation G[R] where vertices with degree 2 are
removed by merging the adjacent edges creating super edges. For each super edge we store the first
and the last edge on the corresponding path. We show how to maintain compact representations
of regions in Section 4. Formally, we will prove:

Theorem 7. We can update the region tree to reflect that region R is split into regions R1 and
R2 by the addition of C in time O(min{|F1|, |F2|} log3 n + (|PR| + |∂PR|2) log n) where Fi are the
children of Ri in the region tree after the update.

Using the lemma below, the total time spent by the algorithm in updating the region tree is
O(n log4 n). Combining with the above running times, this gives an overall running time of
O(n log4 n).

Lemma 3. Consider a set of objects S, a weight function w : S → Z+ and a merging operation
that replaces distinct objects o and o′ by a new object whose weight is at most w(o) +w(o′) in time
at most t ·min{w(o), w(o′)} for some t. Then repeatedly merging objects until one object remains
takes O(t w(S) logw(S)) time.

Proof. We may suppose w.l.o.g. that initially all objects have weight 1. The run-time for a sequence
of merges that results in an object of weight w satisfies the recurrence

T (w) ≤ c max
1≤w′≤bw/2c

{T (w′) + T (w − w′) + tw′}

for some constant c. It is easy to see that the right-hand side is maximized when w′ = bw/2c,
giving T (w(S)) = O(t w(S) logw(S)), as desired.

Results

Recall that these running times are stated with the uniqueness-of-shortest-paths assumption (guar-
anteed by suitable randomization) and that we will show how to achieve this uniqueness deter-
ministically while incurring an additional O(log2 n) factor in the running times. Our algorithm
computes the complete region tree in O(n log4 n) time. As argued in Section 1.6, this can be used
to obtain the MCB tree; by planar duality, the same algorithm can be used to find the GH tree.
Therefore, we get:

Theorem 8. The minimum cycle basis or Gomory-Hu tree of an undirected and unweighted planar
graph can be computed in O(n log4 n) time and O(n log n) space.
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In order to find a minimum st-cut using the GH tree, we need to find the minimum weight edge
on the s-to-t path in the tree. With an additional O(n log n) preprocessing time, one can answer
such queries in O(1) time using a tree-product data structure [12], giving:

Theorem 9. With O(n log4 n) time and O(n log n) space for preprocessing, the weight of a min
st-cut between for any two given vertices s and t of an n-vertex planar, undirected graph with
non-negative edge weights can be reported in constant time.

In Section 5, we will show how to explicitly find the cycles given the complete region tree, giving
the following results:

Theorem 10. Without an increase in preprocessing time or space, the min st-cut oracle of Theo-
rem 9 can be extended to report cuts in time proportional to their size.

Theorem 11. The minimum cycle basis of an undirected planar graph with non-negative edge
weights can be computed in O(n log4 n + C) time and O(n log n + C) space, where C is the total
size of the cycles in the basis.

2 Separating a pair of faces

In this section we prove Theorem 5, we show how to find the minimum fg-separating cycle for the
unique pair of unseparated faces f, g in a region subpiece PR. We emulate the minimum-separating
cycle algorithm due to Reif [19] (Section 1.2). Recall that Reif’s algorithm finds the minimum
fg-separating cycle by first cutting the graph G open along the shortest f -to-g path X, creating
GX , and then computing shortest paths Cx between a vertex x ∈ X and its copy in GX . Cx is a
cycle that crosses X exactly once; the min fg-separating cycle is the minimum over all such cycles.

We cannot afford to work in G or GX and wish to find shortest paths by using the precomputed
distances in the dense distance graphs using the adaptation of Dijkstra’s algorithm to these dense
distance graphs developed by Fakcharonphol and Rao, FR-Dijkstra. In order to make use of FR-
Dijkstra and the precomputed distances, we must deal with the following peculiarities:

• extDDG corresponds to distances in G, not GX . We compute modified dense distance graphs
to account for this in Section 2.1.

• For a vertex x ∈ X∩PR, Cx may not be contained by PR. We call such cycles internal cycles.
We show how to find these cycles in Section 2.2.

• X is not contained entirely in PR. For a vertex x ∈ X \PR, we will compute Cx by composing
distances in extDDG and intDDG between restricted pairs of boundary vertices of PR. We
call such cycles external cycles. We show how to find these cycles in Section 2.3.

Internal and external cycles are illustrated in Figure 3. The minimum length cycle over all internal
and external cycles is the minimum fg-separating cycle in G.

2.1 Modifying the external dense distance graph

We use extDDG to compute extDDGX , the dense distance graph that corresponds to distances
between boundary vertices of PR when the graph is cut open along X. However, we do not
compute extDDGX explicitly; rather, we determine its values as needed. Recall the extDDG is
really a set of dense distances graphs, one for each hole of P and one for the outer boundary of P .
We do the following for each dense distance graph in the set.

10
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X

Figure 3: An external and internal cycle separating faces f and g in a region subpiece, whose
boundary is dashed.

Let B be the set of boundary vertices of PR corresponding to a hole or outer boundary of P .
Cutting G open along X duplicates vertices of B that are in X, creating B′. extDDGX can be
represented as a table of distances between every pair of vertices of B′:

extDDGX(x, y) =


∞ if x is a copy of y
∞ if x and y are separated in GX outside PR

extDDG(x, y) otherwise

We describe how to determine if x and y are separated in GX outside PR. The portions of X
that appear outside PR form a parenthesis of (a subset of) the boundary vertices, illustrated in
Figure 4. By walking along X we can label the start and endpoints of these parentheses. By walking
along the boundary of the subpiece we can label a group of boundary vertices that are not separated
by X by pushing the vertices onto a stack with a label corresponding to the start of a parenthesis
and popping them off when the end of the parenthesis is reached, labelling the boundary vertices
with the corresponding parenthesis. Two boundary vertices are not separated if they have the
same parenthesis label. Hence, whenever we are asked for a distance in extDDGX(x, y) we return
∞ if x and y are not in the same parenthesis and return extDDG(x, y) otherwise. Computing
the parentheses for all the external dense distance graphs (corresponding to the holes and outer
boundary of P ) takes O(|∂PR|) time.

Figure 4: Modifying the external dense distance graph. (Left) X is given by the solid line and the
boundary of the subpiece is given by the dotted line. The parts of X outside the subpiece form a
parenthesis. (Right) In GX , the only finite distances from a in extDDGX correspond to the thick
lines. The shaded area represents the new face created by cutting along X.

2.2 Finding internal cycles

Consider D = X ∩ PR according to the order of the vertices along X. For each vertex x ∈ D,
we compute the shortest x-to-x′ paths in GX where x′ is the copy of x in GX . We do this using
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(standard) Dijsktra’s algorithm on the cut-open graph induced by the vertices in PR (i.e. GX [PR])
and the modified dense distance graph: extDDGX . Each cycle can then be found in O((|PR| +
|∂PR|2) log |PR|) time. Let xm be the midpoint vertex of D according to the order inherited from
X. Cxm splits PR and extDDGX into two parts (not necessarily balanced). Recursively finding
the cycles through the midpoint in each graph part results in log |D| levels for a total of O((|PR|+
|∂PR|2) log |PR| log |D|) = O((|PR|+ |∂PR|2) log2 |PR|) time to find all the internal cycles. In order
to properly bound the running time, one must avoid reproducing long paths in the subproblems:
in a subproblem resulting from divide and conquer, we remove degree-two vertices by merging the
adjacent edges (in the same way as Reif does [19]).

2.3 Finding external cycles

In the lemma below, we show that every external cycle is composed of a single edge ab in the
unmodified extDDG and a shortest path πab between boundary vertices of PR in G that does not
cross X. Given extDDGX and intDDGX , a shortest path tree in extDDGX ∪ intDDGX rooted at a
vertex of ∂PR can be found in O(|∂PR| log2 |PR|) time using the FR-Dijkstra algorithm. Therefore
all shortest paths, πab, can be found in O(|∂PR|2 log2 |PR|) time.

We can find intDDGX in O((|∂PR|2 + |PR|) log3 |PR|) time by cutting open X and using the re-
cursive internal dense distance graph algorithm of Fakcharoenphol and Rao. We compute intDDGX

from scratch because X has been cut open and because PR is no longer a subgraph of G due to the
compact representation we present in Section 3.3.

In order to compute all the external cycles, one enumerates over all pairs a, b of vertices, summing
the weight of πab and the weight of edge (a, b) in extDDG. Since there are O(|∂PR|) boundary ver-
tices, there areO(|∂PR|2) pairs to consider. The minimum-weight external cycle then corresponds to
the pair with minimum weight. By the above, this cycle can be found in O((|∂PR|2+|PR|) log2 |PR|)
time.

It remains to prove the required structure of the external cycles.

Lemma 4. The shortest external cycle is composed of a single edge ab in the unmodified extDDG
and a shortest path πab between boundary vertices of PR in G that does not cross X.

Proof. Let C be the shortest external cycle that separates faces f and g – as illustrated in Figure 5.
By Theorem 2, C is a cycle that crosses X exactly once, say at vertex x. Further, C is a shortest
path P between duplicates of x in the graph GX . Since C must separate f and g, C must enter
PR. Starting at x and walking along C in either direction from X, let a and b be the first boundary
vertices that C reaches. Let πab be the a-to-b subpath of C that does not cross X. Since C is a
shortest path in GX , πab is the shortest path between boundary vertices as given in the theorem.

Let πx be the a-to-b subpath of C that does cross X. By definition of a and b, πx contains no
vertices of PR except a and b. Further, πx must be the shortest such path, as otherwise, C would
not be the shortest fg-separating cycle. Note that every path from a to b that does not contain
other vertices from PR has to cross X at least once. Therefore, πx must correspond to the edge ab
in extDDG.

3 Finding region subpieces

In Section 1.8, we defined the region subpieces of a piece as the intersection between a region and
a piece (Figure 2). In this section, we show how to identify the region subpieces and the edges
that are in them so that we may use the min-separating cycle algorithm presented in the previous
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Figure 5: The shortest external cycle C that separates faces f and g. The figure illustrates the
proof of Lemma 4.

section. We start by identifying the set of regions RP whose corresponding region subpieces of piece
P each contain a pair of unseparated faces (Section 3.1). For each region R ∈ RP we initialize the
corresponding region subpiece PR as an empty graph. For each edge e of P we determine to what
region subpieces e belongs using lowest common-ancestor and ancestor-descendent queries in the
region tree (Section 3.2). We show how to do all this in O(|P | log2 n) time (Section 3.3), proving
Theorem 5.

3.1 Identifying region subpieces

Since each edge is on the boundary of two faces, we start by marking all the faces of G that share
edges with P in O(|P |) time. Since a pair of unseparated faces in P are siblings in the region
tree, we can easily determine the regions that contain unseparated faces. So, in O(|P |) time we
can identify RP , the set of regions with unseparated faces in P . The intersection of a bounding
cycle of a region in RP and P are subpaths between pairs of boundary vertices of P . We call these
paths cycle paths. We will need the following bound on the size of RP in our analysis, illustrated
in Figure 6.

P1 P2

Figure 6: A piece P is given by the boundaries (dotted) by its two child pieces P1 and P2. RP is
a nesting set (solid cycles), each containing a pair of unseparated faces (grey). Since these faces
must be separated by the child pieces, each bounding cycle (except for one outer cycle) in RP must
cross the dotted lines, resulting in a bound on |RP |.

Lemma 5. |RP | = O(|∂P1 ∪ ∂P2|).
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Proof. Let B be the set of boundary vertices in P1 and P2. Let F1 be the set of faces containing
edges of P1 and not edges of P2 and let F2 be the set of faces containing edges of P2 and not edges
of P1.

Any region R ∈ RP must contain at least one face of each F1 and F2. So, if C is the cycle
bounding R, either int(C) contains B or C crosses B, i.e., crosses the bounding faces of P1 or P2.

If int(C) contains B then we claim that no other cycle bounding a region inRP has this property.
To see this, suppose for the sake of contradiction that there is another such cycle C ′ bounding a
region R′ ∈ RP . The cycles have to nest, i.e., either int(C) ⊂ int(C ′) or int(C ′) ⊂ int(C). Assume
w.l.o.g. the former. Then all faces of F1 are contained in the interior of a face of R′. But this
contradicts the assumption that R′ contains at least one face from F1.

We may therefore restrict our attention to regions R ⊆ RP whose bounding cycle C crosses B.
Consider two vertices u and v in B we and let Ru,v

P be the set of regions with cycle-paths from
u to v. By Lemma 2 we know that if two isometric cycles share two vertices, then they share a
path between these vertices as well. Hence, all cycles bounding regions in Ru,v

P share a path π from
u to v. As a result at most two of the regions in Ru,v

P can contain a face adjacent to π.
By Lemma 2 no bounding cycles of regions in RP cross, so each cycle going through non-

consecutive boundary vertices splits the set of boundary vertices into two parts – inside and outside.
By a “chocolate-breaking” argument there cannot be more than |B|−1 such pairs of non-consecutive
vertices used by cycles. Moreover, there are no more than |B| consecutive pairs possible. As argued
above each of these pairs cannot be used by more than two regions that contain a vertex inside P ,
so there are no more than 4|B|+ 1 = O(|∂P1 ∪ ∂P2|) regions in RP .

3.2 Identifying edges of region subpieces

Region subpieces are composed of two types of edges: internal edges and boundary edges. Let R be
a region and let C be the bounding cycle of R. An edge e is an internal edge of a region subpiece R
if the faces on either side of e are enclosed by C. An edge e is a boundary edge of R if e is an edge
of C. Every edge is an internal edge for exactly one region subpiece and we can identify this region
(Lemma 6). We can also determine if an edge is a boundary edge for some region (Lemma 7).
While an edge can be a boundary edge for several region subpieces, we can bound the potential
blow-up in running time due to this (Section 3.3).

Lemma 6. Let e be an edge of G and let f1 and f2 be the faces adjacent to e. Then e is an internal
edge of a region R iff R is the lowest common ancestor of f1 and f2 in the region tree.

Proof. There must exist some region R for which e is an internal edge. Let C be its bounding cycle.
Then both f1 and f2 are contained in int(C) and it follows that R must be a common ancestor of
f1 and f2. If R′ is another common ancestor and R is an ancestor of R′, then R′ is contained in a
face of R, so e cannot belong to R, a contradicting the choice of R.

Iterating over each edge e of P , we can identify the region R for which e is an internal edge
and, if R ∈ RP , the corresponding region subpiece PR. The total time required is O(|P | log n).

Lemma 7. Let e be an edge of G and let f1 and f2 be the faces adjacent to e. Let R′ be the lowest
common ancestor of f1 and f2 in the region tree. Then e is a boundary edge of a region R iff R is
a descendant of R′ and exactly one of f1, f2 is a descendant of R.

Proof. Assume first that e ∈ C, where C is the cycle bounding R. Then w.l.o.g. f1 ∈ int(C) and
f2 ∈ ext(C). Then f1 is a descendant of R and, since f2 is not, R must be a descendant of R′.

Now assume that R is a descendant of R′ and that, say, f1 is a descendant of R. Then f2 is not
a descendant of R since otherwise, R′ could not be an ancestor of R. This implies that e ∈ C.
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Let R be a region in RP and let C be the bounding cycle of R. Let P1 and P2 be the children
of P and let B be the union of boundary vertices of P1 and P2. Consider the following algorithm
to find starting points of cycle paths.

Cycle path starting points identification algorithm Pick a boundary vertex u ∈ B. For
every edge e adjacent to u (there are at most three such edges), check to see if e is a boundary
edge of R. If there is no such edge, then there is no cycle path through u. Otherwise, mark
e as a starting point of a cycle path for R. Repeat this process for every vertex in B.

Using Lemma 7 and the top tree, this process takes O(|B| log n) time for each region R since a
constant number of tree queries for every vertex in B. By Lemma 5, repeating this for all regions
in RP takes O(|B|2 log n) time.

After identifying starting points for cycle-path we can find all edges belonging to them using
linear search, i.e., the next edge on the cycle C is found by looking at the endpoint of the previous
edge and checking which of the two remaining edges belongs to C. If the cycles are edge-disjoint
over all regions R ∈ RP , then the cycle paths will also be edge-disjoint. In such a case the time
to find all the region subpieces using linear search is O((|B|2 + |P |) log n). However, the cycles are
not necessarily edge disjoint. We overcome this complication in the next section.

3.3 Efficiently identifying boundaries of region subpieces

Since cycles will share edges, the total length of cycle paths over all cycles can be as large as
O(|P |3/2). However, we can maintain the efficiency of the cycle path identification algorithm by
using a compact representation of each cycle path. The compact representation consists of edges
of P and cycle edges that represent paths in P shared by multiple cycle paths.

View each edge of G as two oppositely directed darts and view the cycle bounding a region as
a clockwise cycle of darts. The following is a corollary of Lemma 2.

Corollary 1. If two isometric cycles C and C ′ of G share a dart, then either int(C) ⊆ int(C ′) or
int(C ′) ⊆ int(C).

Let F be the forest representing the ancestor/descendant relationship between the bounding
cycles of regions in RP . By Lemma 5, there are O(

√
r) bounding cycles and, since we can make

descendent queries in the region tree in O(log n) time per query, we can find F in O(r log n) time.
Let d be the maximum depth of a node in F (roots have depth 0). For i = 0, . . . , d, let Ci be the
set of cycles corresponding to nodes at depth i in F . By Corollary 1 and Lemma 1:

Corollary 2. For any i ∈ {0, . . . , d}, every pair of cycles in Ci are pairwise dart-disjoint.

Bottom-up algorithm

We find cycle paths for cycles in Cd, then Cd−1, and so on. The cycles in Cd are dart disjoint, so
any edge appears in at most two cycles of Cd. We find the corresponding cycle paths using the
cycle path identification algorithm in near-linear time. While Corollory 2 ensures that the cycles
in Cd are mutually dart-disjoint, they can share darts with cycles in Cd−1. In order to efficiently
walk along subpaths of cycle paths Q that we have already discovered, we use a balanced binary
search tree (BBST) to represent Q. We augment the BBST to store in each node the length of the
subpath it represents. Now, given two nodes in Q, the length of the corresponding subpath of Q
can be determined in logarithmic time.

To find the cycle paths of a cycle C ∈ Cd−1 that bounds a region R, we emulate the cycle path
identification algorithm: start walking along a cycle path Q of C, starting from a vertex of B, and
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linear

binary

Figure 7: Finding a cycle path (highlighted straight line) for a cycle C ∈ Cd−1 between boundary
vertices of P1 and P2 (grey dashed lines) is found by alternating linear (solid) and binary (dotted)
searches. Binary searches corrrespond to cycle paths of region subpieces (shaded) bounded by
cycles in Cd.

stop if you reach an edge e = uv that has already been visited (linear search). In this case, e must
be an edge of a cycle path Q′ of a cycle C ′ ∈ Cd. By Lemma 2, the intersection of Q and Q′ is a
single subpath and so we can use the BBST to find the last vertex w common to Q and Q′ (binary
search). We add to PR an edge uw of length equal to the length of the u-to-w subpath of Q to
compactly represent this subpath. If w ∈ B, we stop our walk along Q. Otherwise we continue
walking (and adding edges to the corresponding region subpiece) in a linear fashion, alternating
between linear and binary searches until a boundary vertex is reached. See Figure 7.

We have shown how to obtain region subpieces for cycles in Cd and in Cd−1. In order to repeat
the above idea to find cycle paths for cycles in Cd−2, we need to build BBSTs for cycle paths of
cycles in Cd−1. Let Q be one such cycle path. Q can be decomposed into subpaths Q1Q

′
1 · · ·QkQ

′
k,

where Q1, . . . , Qk are paths obtained with linear searches and Q′1, . . . , Q
′
k are paths obtained with

binary searches (possibly Q1 and/or Q′k are empty). To obtain a binary search tree T for Q, we
start with T the BBST for Q1. We extract a BBST for Q′1 from the BBST we used to find Q′1 and
merge it into T . We continue merging with BBSTs representing the remaining subpaths.

Once BBSTs have been obtained for cycle paths arising from Cd−1, we repeat the process for
cycles in Cd−2, . . . , C0.

Running time

We now show that the bottom-up algorithm runs in O((|B|2 + |P |) log2 n) time over all region
subpieces, proving Theorem 5. We have already described how to identify boundary vertices that
are starting points of cycle paths within this time bound. It only remains to bound the time
required for linear and binary searches and BBST construction.

A subpath identified by a linear search consists only of edges that have not yet been discov-
ered. Since each step of a linear search takes O(log n) time, the total time for linear searches is
O(|P | log n).

The number of cycle paths corresponding to a cycle C is bounded by the number of boundary
vertices, O(|B|). We consider three types of cycle paths. Those where

1. all edges are shared by a single child of C in F ,

2. no edges are shared by a child, and

3. some but not all edges are shared by a single child.
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Cycle paths of the first type are identified in a single binary search which, by Lemma 5, sums up
to a total of O(|B|2) binary searches over all cycles C ∈ F . Cycle paths of the second type do not
require binary search. For a cycle path Q in the third group, Q can only share one subpath with
each child (in F) cycle by Lemma 2; hence, there can be at most two binary searches per child.
Summing over all such cycles, the total number of binary searches is O(|B|) by Lemma 5.

In total there are O(|B|2) binary searches. Each BBST has O(|P |) nodes. In traversing the
binary search tree, an edge is checked for membership in a given cycle path using Lemma 7 in
O(log n) time. Each binary search therefore takes O(log |P | log n) = O(log2 n) time so the total
time spent performing binary searches is O(|B|2 log2 n).

It remains to bound the time needed to construct all BBSTs. We merge BBSTs T1 and T2 in
O(min{|T1|, |T2|} log(|T1| + |T2|})) = O(min{|T1|, |T2|} log n) time by inserting elements from the
smaller tree into the larger.

When forming a BBST for a cycle path of a cycle C, it may be necessary to delete parts of cycle
paths of children of C. By Lemma 2, these parts intersect int(C) and will not be needed for the
remainder of the algorithm. The total number of deletions is O(|P |) and they take O(|P | log |P |)
time to execute. So, ignoring deletions, notice that paths represented by BBSTs are pairwise dart
disjoint (due to Corollary 2). Applying Lemma 3 with k = log n and W = r then gives Theorem 5.

4 Adding a separating cycle to the region tree

Above, we showed how to find a compact representation of a minimum cycle C separating a pair
of faces in a region R. This cycle should be added to the basis we are constructing and in this
section, we show how to update the region tree T accordingly. As in the previous section, let PR

be the region subpiece P ∩R of piece P associated with region R.
When C is added to the partial basis, R is split into two regions, R1 and R2. Equivalently,

in T , R will be replaced by two nodes R` and Rr. The children F of R will be partitioned into
children F` of R` and Fr of Rr. Define R` to be the region as defined by the children of R that are
contained to the left of C (and symmetrically define Rr). We describe an algorithm that finds F`

and detects whether F` is contained by int(C) or ext(C). Finding Fr is symmetric. The algorithms
take O(|F`| log3 n+ (|PR|+ |∂PR|2) log n) and O(|Fr| log3 n+ (|PR|+ |∂PR|2) log n) time and so we
can identify the smaller side of the partition in O(min{|F`|, |Fr|} log3 n + (|PR| + |∂PR|2) log n)
time, as required for Theorem 7.

Given the smaller side of the partition, we use cut-and-link operations to update T inO(min{|F`|, |Fr|} log n)
additional time, thus proving Theorem 7. See Figure 1 for an illustration. Assume, w.l.o.g., that
F` is the smaller set. If F` is contained by int(C) then update T by: cutting the edges between R
and each element in F`, linking each element in F` to R`, making R the parent of R`, identifying
R with Rr. If F` is contained by ext(C) then update T by: cutting the edges between R and each
element in F`, linking each element in F` to a new node u, making u the parent of R; identifying
R with R` and u with Rr.

4.1 Partitioning the faces

R is represented compactly: vertices in G[R] of degree 2 are removed by merging the adjacent edges
creating super edges. Each super edge is associated with the first and last edge on the corresponding
path. In addition to partitioning the faces, we must find the compact representation for the two
new regions, R` and Rr.

The algorithm for finding F` starts with an empty set and consists of three steps:
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Figure 8: If C (bold cycle) is a counterclockwise cycle, then R` is contained by int(C). The children
of R (boundary given by thin cycle) adjacent and to the right of C are grey. In this example, the
edges to the left of C (and not on C) will never reach a boundary edge of R: therefore the left of
C forms int(C). Vertices of L are given by dark circles.

Left root vertices Identify the set L of vertices v on C having an edge emanating to the left of
C; also identify, for each v ∈ L, the two edges on C incident to v (in G, not the compact
representation). (Details will be given in Section 4.2.)

Search Start a search in R from each vertex of L. During this search, avoid edges of C and edges
that emanate to the right of C. For each super edge ê of R visited, find the first (or last)
edge e on the path represented by ê.

Add For each searched edge and for each pair of faces f1, f2 adjacent to this edge, find the two
children of R in T having f1 and f2 as descendants, respectively. Add those nodes that are
also descendants of F to F`.

This algorithm correctly builds F1: The algorithm visits all super edges ê that are strictly inside
R and on the left side of C. Let A1 and A2 be the children of R that are added corresponding to
edge e. Ai is a region or a face of G: let Ci be the bounding cycle. Since fi is a descendent of Ai,
fi is contained by int(Ci). Since e is in C1 and C2: so must ê. A1 and A2 are therefore the child
regions of R on either side of ê.

The algorithm can easily determine if F1 is contained by int(C) or ext(C), by noting whether
a searched edge ever belongs to the cycle bounding R. Given a searched edge e and adjacent edges
f1, we can determine whether e is in the bounding cycle of R (Lemma 7). The search can only the
boundary of R if F` is contained by ext(C). (See Figure 8.)

Analysis

The above-described algorithm can be implemented in O(|F`| log3 n + (|PR| + |∂PR|2) log n) time.
Finding the left-root vertices is the trickiest part; while |L| = O(|F`|), |L| could be much smaller
than the number of vertices in C, even in the compact representation. We give details in Section 4.2.
Assuming that left-root vertices can be found quickly, we analyze the remaining steps.

Lemma 8. The number of super edges in G[R] that are searched inside C is O(|F`|).

Proof. Since G is degree three and all faces and isometric cycles in G are simple, the compact
representation of R is also degree three. Since there are no degree-two vertices, G[R] is 3-regular.
Therefore |E(G[R])| = 3

2 |V (G[R])|. Since, by Euler’s formula, |V (G[R])| − |E(G[R])|+ |F`| = 1 we
get, |E(G[R])| = 3(|F`| − 1).
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Search step As we can identify if an edge belongs to C (Lemma 7) in O(log n) time, we can avoid
edges of C during the search. Since G[R] is degree three, we will never encounter edges emanating
from the right of C. The search can be done by DFS or BFS in linear time, starting with vertices
of L. Given a super edge ê found by this search, we find the first or last edge e (of G) on the path
the super edge represents in O(1) time, since e is associated with ê. The search takes O(|F`| log n).

Add step Checking if F` is contained by int(C) or ext(C)) takes O(log n) time per searched
edge (Lemma 7) given the adjacent faces f1 and f2 (which can be identified using the original
graph). Finding the children of R that are ancestors of f1 and f2 also takes O(log n) time using
the operations jump(R, f1, 1) and jump(R, f2, 1) in the top tree for T . The total time spent adding
is O(|F`| log n).

4.2 Finding left-root vertices

We show how to find the set L of left-root vertices along C in O(|F`| log3 n+ |C| log n) time where
|C| is the number of super edges in the compact representation of C. Recall from Section 2 that C
has O(|PR|+ |∂PR|2) super edges and they are of three different types: edges in extDDG, edges in
intDDG(PR), and edges and cycle paths in PR. We will show how to use binary search to prune
certain super edges of C that do not contain vertices of L. We first assume that each super edge
is on the boundary of a child region (as opposed to a child face) of R that is to the left of C. We
relax this assumption in Section 4.2.

The following lemma is the key to using binary search along C:

Lemma 9. Let P be the shortest u1-to-u2 path in G that is also a subpath of C. For i = 1, 2, let
ei be the edge of P that is incident to ui and let ri be the child-region of R that is left of C and
bounded by ei. Then r1 = r2 if and only if no interior vertex of P belongs to L.

Proof. The reverse direction is trivial.
By our assumption, r1 and r2 are regions, not faces. Their bounding cycles must therefore be

isometric. If r1 = r2, then by Lemma 2, P is a subpath of the boundary of r1: no interior vertex
of P could belong to L in this case. This proves the forward direction.

Shortest path covering

In order to use Lemma 9, we cover the left-root vertices of C with two shortest paths P and Q.
Let r be a vertex that is the endpoint of a super edge of C. Since C is isometric, there is a unique
edge e such that C is the union of e and two shortest paths P ′ and Q′ between r and the endpoints
of e. Note that e could be in the interior of a super edge of C. The paths P and Q that we use to
cover L are prefixes of P ′ and Q′.

To find e, we first find ê, the super edge that contains e. Since P and Q are shortest paths and
shortest paths are unique, the weight of each path is at most half the weight of the cycle. To find ê,
simply walk along the super edges of C and stopping when more than half the weight is traversed:
ê is the last super edge on this walk.

Given ê, we continue this walk according to the type of super edge that ê is. If ê corresponds to
a cycle path, then, by definition, all the interior vertices of ê have degree two in R and so cannot
contain a left-root vertex; there is no need to continue the walk. P and Q are simply the paths
along C from r to ê’s endpoints. This takes O(|C|) time.

If ê is an edge of intDDG(PR) or extDDG, we continue the walk. We describe the process for
intDDG(PR) as extDDG is similar: we continue the walk started above through the subdivision
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tree of PR that is used to find intDDG(PR). ê is given by a path of edges in the internal dense
distance graph of PR’s children in the subdivision tree. We may assume that we have a top tree
representation of the shortest path tree containing this path and so we can find the child super edge
êc that contains e; using binary search this takes O(log2 n) time. Recursing through the subdivision
tree finds a cycle path or edge that contains e for a total of O(log3 n) time.

When we are done, P and Q are paths of super edges from extDDG or intDDG(PR). P and Q
each have O(|C|+ log n) super edges and they are found in O(|C|+ log3 n) time.

Building L

Using Lemma 9, we will decompose P into maximal subpaths P1, . . . , Pk such that no interior vertex
of a subpath belongs to L. Each subpath Pi will be associated with the child region of R to the
left of C that is bounded (partly) by Pi. We repeat this process for Q and find L in O(k) time by
testing the endpoints of the subpaths.

Let ê be one of theO(|C|+log n) super edges of P . ê is either an edge of extDDG or intDDG(PR).
Suppose ê is in intDDG(PR). We can apply Lemma 9 to the first and last edges on the path that ê
represents, and stop if there are no vertices of L in the interior of the path. Otherwise, with the top
tree representation of the shortest path tree containing the shortest path representing ê, we find
the midpoint of this path and recurse. If ê is in extDDG, the process is similar. Adjacent subpaths
may still need to be merged after the above process, but this can be done in time proportional to
their number.

How long does it take to build L? Let ê be a super edge representing subpath Pê of P and let
m be the number of interior vertices of Pê belonging to L. Then there are m leaves in the recursion
tree for the search applied to ê. We claim that the height of the recursion tree is O(log2 n). Let
S be some root-to-leaf path in the recursion tree. If ê is in intDDG(PR), S is split into O(log n)
subpaths, one for each level of the subdivision tree; in each level, the corresponding subpath is
halved O(log n) times before reaching a single edge. If ê is in extDDG, the search may go root-
wards in the subdivision tree but once we traverse down, we are in intDDG and will thus not go
up again. The depth of the recursion tree is still O(log2 n).

At each node in the recursion tree, we apply two top tree operations to check the condition in
Lemma 9 and one top tree operation to find the midpoint of a path for a total of O(log n) time.
The total time spent finding the m vertices of L in Q is O(m log3 n) time. If m = 0, we still need
O(log n) time to check the condition in Lemma 9. Summing over all super edges of P , the time
required to identify L is O(|C| log n+ |L| log3 n) = O(|C| log n+ |F`| log3 n), as desired.

Handling faces

We have assumed that every child of R incident to and left of C is a region, not a face. Lemma 9 is
only true for this case: boundaries of faces need not be isometric, and so the intersection between a
face and shortest path may have multiple components. However, notice that after the triangulation
of the primal followed by the triangulation of the dual, every face f of G is bounded by a simple
cycle of the form e1P1e2P2e3P3 where e1, e2, and e3 are edges and P1, P2, and P3 are tiny-weight
shortest paths (see Section 1.1). Call the six endpoints of edges e1, e2, e3 the corners of f . We
associate each edge of f with the path containing it among the six paths e1, e2, e3, P1, P2, and P3.

We present a stronger version of Lemma 9 which implies the correctness of the left-root vertex
finding algorithm even when children of R are faces, not regions:

Lemma 10. Let P be the shortest u1-to-u2 path in G that is also a subpath of C. For i = 1, 2, let
ei be the edge on P incident to ui and let ri be the child of R to the left of C and containing ei.
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1. If neither r1 nor r2 are faces, then r1 = r2 if and only if no interior vertex of P belongs to L.

2. If exactly one of r1, r2 is a face, then some interior vertex of P belongs to L.

3. If both r1 and r2 are faces and r1 6= r2, then some interior vertex of P belongs to L.

4. If both r1 and r2 are faces, r1 = r2, and e1 and e2 are associated with different subpaths of
r1, then some interior vertex of P is a corner of r1 or belongs to L.

5. If both r1 and r2 are faces, r1 = r2, and e1 and e2 are associated with the same subpath of r1,
then no interior vertex of P belongs to L.

Proof. Part 1 is Lemma 9 and parts 2 and 3 are trivial. For part 4, we may assume that P is fully
contained in the boundary of r1 since otherwise, some interior vertex of P belongs to L. Since e1
and e2 are associated with different subpaths of r1, it follows that some interior vertex of P is a
corner of r1. For part 5, we may assume that e1 6= e2. Then e1 and e2 are on the same (tiny weight)
shortest path in r1 so P must be contained in the boundary of r1. It follows that no interior vertex
of P belongs to L.

Using Lemma 10 instead of Lemma 9, our L-finding algorithm will also identify corners of faces
incident to P . Since each face has only 6 corners but contributes at least two vertices to L, this
will not increase the asymptotic running time.

4.3 Obtaining new regions

While we have found the required partition of the children of R and updated the region tree
accordingly, it remains to find compact representations of the new regions R` and Rr. Recall that
we only explicitly find one side of the partition, w.l.o.g., F`.

To find R`, start with an initially empty graph. In the search step, we explicitly find all the
super edges of R` that are not on the boundary of C. Remove these edges from R and add them to
R1. The remaining super edges are simply subpaths of C between consecutive vertices of L. These
edges can be added to R` without removing them from R.

The super edges left in R are exactly those in Rr. However, there may be remaining degree-two
vertices that should be removed by merging adjacent super edges. All such vertices, by construction,
must be in L, and so can be removed quickly.

That super edges are associated with the first and last edges on their respective paths is easy
to maintain given the above construction. The entire time required to build the new compact
representation is O(|F`|).

5 Reporting min cuts

By Theorem 9, we can report the weight of any minimum st-cut in constant time. We extend this
to report a minimum separating cycle for a given pair of faces in G∗ in time proportional to the
number of edges in the cycle. By duality of the min cuts and min separating cycles, this will prove
Theorem 10.

In this section, we do not assume that the graph is 3-regular. The edges added to achieve
3-regularity may increase the number of edges in a cycle. However, we can still compute T , the
region tree of G∗, with the degree-3 assumption. We will rely only on the relationship between
faces in G∗, which did not change in the construction for the degree-3 assumption. Since cycles
in the min cycle basis are boundaries of regions represented by T , the region tree also reflects the
ancestor/descendant relationships between cycles in the min cycle basis.
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Recall that we view a cycle C as a clockwise cycle of darts (Section 3.3). It follows from Lemma 7
that the set of darts in C that are not also in a cycle C ′ that is an ancestor of C forms a path
(possibly equal to C). Further, the set of darts in C that are not also in any strict ancestor of
C also form a path, denoted P (C). Using the next lemma, we can succinctly represent any cycle
using these paths. See Figure 9 for an illustration.

Lemma 11. Let C = C0, C1, C2, . . . be the ancestral path to the root of T for C. C can be written
as the concatenation of the path P (C), prefixes of P (C1), P (C2), . . . , P (Ck−1), a subpath of P (Ck)
and suffixes of P (Ck−1), . . . , P (C2), P (C1) and in that order.

P(C)
P(C1)

P(C2)

C

d2(C1)d1(C1)

Figure 9: A succinct representation of a cycle in the min cycle basis.

Proof. Let Ck be the root-most cycle that shares a dart d with C: d is in P (Ck). By Lemma 7, the
intersection of C with Ck is a single path: it must be a subpath P ′ of P (Ck). Let Q = C \ P ′. By
the definition of P (Ck−1), the start of Q must be the start of P (Ck−1) and the end of Q must be
the end of P (Ck−1). The remainder of the proof follows with a simple induction.

Let d1(C) be the last dart of C before P (C) and let d2(C) be the first dart of C after P (C).
Suppose additionally that we know, for every dart d, the cycle C(d) for which d ∈ P (C).

5.1 Finding a min-separating cycle

If we are given d1(C), d2(C), and P (C) for every cycle (node) in T and C(d) for every dart d, we
can find a minimum fg-separating cycle C in O(|C|) time by the following procedure. First we
can find the node in T corresponding to C in O(1) time using the oracle (Theorem 9). To find C,
walk along C, starting with P (C), until you reach the end. Let C1 = C(d2(C)) and walk along
P (C1) starting with d2(C). Suppose we are at dart d along C. Let Ci = C(d). Walk along P (Ci)
until either you reach its end or you hit dart d1(Ci−1). In the first case, continue the process with
d2(Ci). In the second case, continue the process with the first dart of P (Ci−1). By Lemma 11, this
process will eventually reach the start of P (C).

5.2 Preprocessing step

It remains to show how to precompute d1(C), d2(C), P (C) for every cycle in T and C(d) for every
dart. We find these using the top tree representation of T with O(n log n) preprocessing time.

Let f` and fr be the faces to the left and right of a dart d. Then it follows easily from Lemma 7
and the clockwise orientation C(d) that C(d) is the bounding cycle of region jump(lca(f`, fr), fr, 1)
and can be found in O(log n) time.
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We can easily construct P (C) from the set of darts with C(d) = C. The ordering can be found
just using the endpoints of these darts so that we can walk along P (C) as required in the previous
section.

To find d1(C) and d2(C), we work from leaf to root in T as in the bottom-up algorithm of
Section 3.3. We will show how to find d2(C). Finding d1(C) is symmetric. For cycle C we
can easily find the last dart d` of P (C). Consider the darts do leaving the endpoint of P (C) in
counterclockwise order, in the embedding, starting with the reverse of d`, we test if do is on the
boundary of C using Lemma 7 in O(log n) time. As we test darts we remove them from further
consideration as they will be in the interior of all ancestor cycles. In total, this takes O(n log n)
time.

6 A detailed presentation of planar separators

In this Section, we show how to find separators satisfying Definition 1, that is, we show how to
ensure that Miller’s cycle separator theorem applied to a connected piece yields connected subpieces.
We also give the proof of Theorem 3 which bounds the size of the pieces and the sum of the squares
of their boundaries in a recursive decomposition. Although this result has been required of previous
results, specific details, to our knowledge, is not anywhere else in the literature. We have included
a formal proof of Theorem 3 for completeness.

6.1 Ensuring Connected Pieces

Now, we show how to ensure that Miller’s cycle separator theorem applied to a connected piece
yields connected subpieces. To find a cycle separator C of the desired size, faces need to be
of constant size which we ensure by triangulating the piece temporarily. Having found C, the
triangulating edges are removed and the remaining edges of C induce a separation of the piece into
child pieces. The problem with this approach is that C may cross a hole multiple times by using
the added triangulating edges, giving a child piece consisting of multiple connected components.

To avoid this problem we triangulate the piece in such a way that C uses at most two tri-
angulating edges from each hole. We triangulate each hole with a star centered at a new vertex
embedded inside the hole. (This introduces a high-degree vertex, contradicting our constant-degree
assumption, but as we only use the triangulating edges to find the separator, we still have child
pieces that have constant degree.) The same is done for the external face of the piece if that face
is not a triangle.

Formally, let P be a connected piece with holes and let P ′ be the triangulation of P as described
above. Let C be the simple cycle separator. Since C is simple it can use at most two triangulating
edges per hole and both of these edges (if any) are consecutive along C. Let R1 and R2 be the two
closed regions of the plane bounded by C. The child pieces are P1 = P ∩ R1 and P2 = P ∩ R2.
Note that the child pieces share the edges of C that are in P . The endpoints of these shared edges
are separator vertices and so the size of the decomposition is still bounded by Lemmas 12 and 13
and Theorem 3.

Since P is connected, the boundary of each hole is a (not necessarily simple) cycle. We argue
that since a separating cycle C uses at most two triangulating edges from each hole, both incident
to the star center, the child pieces as defined are connected. Consider, w.l.o.g., child piece P1.
Suppose C uses triangulating edges (v1, c) and (c, v2), where c denotes the star center, for a hole
(or the external face) of P with (connected) boundary H. Let H1 = H ∩R1. Since C uses no other
triangulating edges from this hole, H1 connects v1 and v2 and is in P1. The connectivity of P1 then
follows from the connectivity of P .
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To find a recursive subdivision consisting of connected pieces using the approach in [10] (which
is based on the approach in [4]), the vertex-weighted variant of Miller’s cycle separator theorem is
applied and we need to handle the following three cases when applying the theorem to P ′:

1. P1 and P2 should each contain at most a constant fraction of the vertices of P ,

2. P1 and P2 should each contain at most a constant fraction of the boundary vertices of P ,

3. P1 and P2 should each contain at most a constant fraction of the holes of P .

The first resp. second case can be handled by distributing vertex weights evenly on the vertices
resp. boundary vertices of P and assigning weight 0 to newly introduced ’hole’ vertices. For the
third case, we distribute vertex weights evenly on the newly introduced ’hole’ vertices and assign
weight zero to all vertices of P . Alternating between these cases will achieve all three properties
within a few separations. (see [10] and [4] for details.)

Note that the top-level piece G is trivially connected. The above combined with results from [10]
and from [4] then imply that we can find a recursive subdivision in O(n log n) time where all pieces
are connected.

6.2 Bounds on sizes of pieces and boundaries

The running time of our algorithm depends on the total size of all the pieces as well as on the sum
of squares of piece boundary sizes. This is also the case for the algorithm of Fakcharoenphol and
Rao. They make the simplifying assumption that a piece of size r has O(

√
r) boundary vertices.

Although their construction ensures that piece sizes and boundary sizes go down geometrically
along any root-to-leaf path in the recursive subdivision tree, the two quantities need not go down
by the same rate since some applications of Miller’s separator theorem may give more unbalanced
splits than others. Thus in their construction, a piece of size r may have more than O(

√
r) boundary

vertices. Theorem 3 bounds the total size of pieces as well as the sum of squares of boundary sizes.
We observe that only the new boundary vertices are replicated among the child pieces and we

get: ∑
i |Pi| ≤ |P |+ k

√
|P | (1)∑

i |∂Pi| ≤ |∂P |+ k
√
|P |, (2)

where k is some constant that depends on the constant in Miller’s Cycle Separator Theorem.

Lemma 12. Let Pi be the set of pieces in level i of a recursive subdivision of G. Then
∑

P∈Pi
|P | =

O(n).

Proof. Let cmin be the constant such that pieces of size at most cmin are not subdivided further in
a recursive subdivision. We may assume that no piece has size less than 1

2cmin. Let L(r) denote the
total number of vertices (counted with multiplicity) in the leaf-pieces of the recursive subdivision
of an r-vertex piece P . We will show that L(r) ≤ c1r− c2

√
r for suitable constants c1 and c2. The

lemma will follow since the number of vertices (counting multiplicity) in any level of the recursive
subdivision is dominated by the number of vertices in the leaves; this is bounded by L(n) which is
O(n).

We prove that L(r) ≤ c1r − c2
√
r by induction. In the base cases, in which a piece of size r is

a leaf of the recursive subdivision (so r ∈ [12cmin, cmin]), L(r) = r. This is bounded by c1r − c2
√
r

so long as cmin ≤ c1(12cmin)− c2
√
cmin. Setting cmin ≥

(
c2/(

1
2c1 − 1)

)2
guarantees this.
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Now consider a piece P of size r > cmin. Assume inductively that the claim holds for all values
smaller than r. Let ri be the size of the ith child of P ; P has N = O(1) children. By the inductive
hypothesis we get:

L(r) =
∑
i

L(ri) ≤
∑
i

(c1ri − c2
√
ri) = c1

∑
i

ri − c2
∑
i

√
ri (3)

We lower bound
∑

i

√
ri by observing that

∑
i

√
ri can only be as small as allowed by r ≤

∑
i ri,

ri ∈ [0, r2 ] (see Definition 1). The minimum value occurs when two of the ri’s are equal to r
2 and

all others are zero, giving: ∑
i

√
ri ≥ 2

√
r

2
=
√

2r (4)

Combining Equations (1), (3), and (4), we get that

L(r) ≤ c1(r +N
√
r)− c2

√
2r = c1r − c2(

√
2− c1

c2
N)
√
r

This completes the induction for c2 sufficiently larger than c1N .

Lemma 13. Let Pi be the set of pieces in level i of a recursive subdivision of G. Then
∑

P∈Pi
|∂P |2 =

O(n).

Proof. We may assume that, by adding dummy boundary vertices that do not contribute to chil-
dren,

|∂P | ≥ c
√
|P | for every piece P , (5)

where c is a constant that we will pick below. We will show that for any piece P with children
P1, . . . , PN : ∑

j

|∂Pj |2 ≤ |∂P |2. (6)

The lemma follows from this because, by summing over all pieces in a level we get,∑
P∈Pi

|∂P |2 ≤
∑

P∈Pi−1

|∂P |2 ≤ · · · ≤
∑
P∈P0

|∂P |2 = |∂G|2

Since G has only dummy boundary vertices, |∂G|2 = c(
√
|G|)2 = c|G|, which is O(n), as desired.

We now prove Equation (6). In the next equation, the first and second inequalities follow from
Definition 1 and Equation (5), respectively:

|∂Pj | ≤
1

2
|∂P |+

√
|P | ≤

(
1

2
+

1

c

)
|∂P | (7)

∑
j

|∂Pj |2 ≤
(

1

2
+

1

c

)
|∂P |

∑
j

|∂Pj | by Equation (7)

≤
(

1

2
+

1

c

)
|∂P |

(
|∂P |+N

√
|P |
)

by Equation (1)

≤
(

1

2
+

1

c

)
|∂P |

(
|∂P |+N

|∂P |
c

)
by Equation (5)

=

(
1

2
+

1

c

)(
1 +

N

c

)
|∂P |2

≤ |∂P |2 for constant c sufficiently large.

This completes the proof.
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Since the depth of the recursive subdivision is O(log n), Lemmas 12 and 13 imply Theorem 3.

7 Lexicographic-shortest paths

In this section we show how to impose uniqueness of shortest paths by breaking ties in a consistent
manner, deterministically. This will prove:

Theorem 12. The algorithms of Theorems 9 through 11 can be made deterministic with only an
additional O(log2 n) factor in the preprocessing time.

Let w : E → R be the weight function on the edges of G. Index the vertices of G from 1 to n. For a
subgraph H, define I(H) as the smallest index of vertices in H. Hartvigsen and Mardon [6] showed
that there is another weight function w̃ on the edges of G such that for any pair of vertices in G, (i)
there is a unique shortest path between them w.r.t. w̃ and (ii) this path is also a shortest path w.r.t.
w. Furthermore, for two paths P and P ′ between the same pair of vertices in G, w̃(P ) < w̃(P ′)
exactly when one of the following three conditions is satisfied:

1. w(P ) < w(P ′).

2. w(P ) = w(P ′) and |P | < |P ′|.

3. w(P ) = w(P ′), |P | = |P ′| and I(P \ P ′) < I(P ′ \ P ).

A shortest path w.r.t. w̃ is called a lex-shortest path and a shortest path tree w.r.t. w̃ is called a
lex-shortest path tree. The properties of w̃ allow us to use w̃ instead of w in our algorithm. In the
following, we show how to do so efficiently.

We first use a small trick from Hartvigsen and Mardon [6]: for function w, we add a sufficiently
small ε > 0 to the weight of every edge. This allows us to disregard the second condition above.
When comparing weights of paths, we may treat ε symbolically so we do not need to worry about
precision issues. The tricky part is efficiently testing the third condition.

We need to make modifications to every part of our algorithm in which the weights of two
shortest paths are compared. All such comparisons occur when we (1) use Fakcharonphol and
Rao’s variant of Dijkstra’s algorithm, FR-Dijkstra [4] and (2) find a shortest path covering of an
isometric cycle C in Section 4.2.

7.1 FR-Dijkstra

Let us first adapt FR-Dijkstra to compute lex-shortest paths. The type of shortest path weight
comparisons in FR-Dijkstra are of the form D(u) + d(u, v) < D(u′) + d(u′, v), where u, v, u′, and
v′ are vertices, D(u) and D(u′) are the distances from the root of the partially built tree to u and
u′, respectively, and d(u, v) and d(u′, v) are the lengths or weights of edges (u, v) and (u′, v). Note
that an edge can be an edge of G (in which case d(u, v) = w(u, v)) or be a cycle edge (Section 3.3)
or an edge of an external or internal dense distance graph (in which case d(u, v) is the length of
the path the edge represents).

For simplicity, assume first that all edges considered by FR-Dijkstra belong to G; we test
whether D(u) +d(u, v) < D(u′) +d(u′, v) as follows. Let T be the partially built shortest path tree
rooted at a vertex r and let Q and Q′ be the r-to-u and u′ paths in T , respectively. If the first two
lex-shortest conditions are inconclusive, we need to check if I(Q \Q′) < I(Q′ \Q).

Let a be the least-common ancestor of u and u′ in T . Then Q \Q′ is the a-to-u subpath of Q,
excluding a. It follows from this that, by representing T as a top tree, we can find the smallest

26



index in the two sets in logarithmic time. Using top trees, we can also similarly handle a cycle
edge e, by keeping the smallest index of e’s interior vertices. These indices can be found during the
construction of region subpieces in Section 3.1 without an increase in running time.

7.2 Internal dense distances

We also need to handle edges from internal and external dense distance graphs. Let us first
consider the problem of computing lex-shortest path trees in intDDG. As before, we compute
shortest path trees for pieces bottom-up. Let P be a piece with children P1 and P2 and assume
that we have computed lex-shortest path trees in both of them. Assume also that every edge in
intDDG(P1)∪ intDDG(P2) is associated with the smallest index of interior vertices on the path in
G that the edge represents. This information can be computed bottom-up during the construction
of intDDG without increasing running time.

Let T be a partially-built shortest-path tree in P . With the above definitions, consider the
problem of testing whether D(u) + d(u, v) < D(u′) + d(u′, v). Let (a, ua) and (a, u′a) be the first
edges on Q[a, u] and Q′[a, u′], respectively, with a defined as earlier. Define QG and Q′G as the
paths in G represented by Q and Q′, respectively. Let i1 = I(QG[ua, u]), i′1 = I(Q′G[u′a, u

′]),
i2 = I(QG[a, ua] \ Q′G[a, u′a]), and i′2 = I(Q′G[a, u′a] \ QG[a, ua]). By definition of a, QG[ua, u]
and Q′G[u′a, u

′] are vertex-disjoint. We need to compute these indices and check if min{i1, i2} <
min{i′1, i′2}.

Each edge of T belongs to intDDG(P1)∪ intDDG(P2) and is thus associated with the smallest
index of interior vertices on the path in G represented by the edge. Top tree operations on T as
above then allow us to find i1 and i′1 in logarithmic time.

To find i2 and i′2, we consider two cases: (a, ua) and (a, u′a) belong to the internal dense distance
graph for the same child of P or they belong to different graphs. In the first case, assume that,
say, (a, ua), (a, u′a) ∈ intDDG(P1). Then we can decompose these two edges into shortest paths in
the same shortest path tree in intDDG(P1) and we can recursively find i2 and i′2. In the second
case, assume that, say, (a, ua) ∈ intDDG(P1) and (a, u′a) ∈ intDDG(P2). Since the lex-shortest
paths representing these edges in intDDG(P1) and intDDG(P2) are edge-disjoint and since T is a
partially built lex-shortest path tree in P , QG[a, ua] and Q′G[a, u′a] share no vertices except a. Thus,
i2 is the smallest index of vertices in V (QG[a, ua]) \ {a} and we can obtain this index in constant
time from the index of ua and the index associated with edge (a, ua) which is the smallest index of
interior vertices on QG[a, ua]. Similarly, we can find i′2 in constant time.

Since the subdivision tree has O(log n) height, the recursion depth of the above algorithm is
O(log n), implying that we can determine whether D(u) + d(u, v) < D(u′) + d(u′, v) in O(log2 n)
time. Hence, lex-shortest path trees in intDDG can be computed in a total of O(n log4 n) time.

7.3 External dense distances

Computing lex-shortest path trees in extDDG within the same time bound is very similar so we
only highlight the differences. Having computed lex-shortest path trees in intDDG bottom-up, we
compute lex-shortest path trees in extDDG top-down. For a piece P , we obtain lex-shortest path
trees from lex-shortest path trees in its sibling and parent pieces. We can then use an algorithm
similar to the one above to find lex-shortest path trees in P . At each recursive step, we either go
up one level in extDDG or go to intDDG. It follows that the recursive depth is still O(log n) so
lex-shortest path trees in extDDG can be found in O(n log4 n) time.
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7.4 FR-Dijkstra in Reif’s algorithm

We also use FR-Dijkstra in Section 2 to emulate Reif’s minimum separating cycle algorithm. First,
we computed a shortest path X between two faces of the region subpiece using FR-Dijkstra. With
an algorithm similar to the one above, we can instead compute a lex-shortest path between the two
faces with an O(log2 n) time overhead. Next, we cut open the region subpiece along this path. The
handling of external distances in the cut-open graph does not change, but the internal distances
are recomputed. We recompute these as in Section 7.2.

7.5 Shortest path coverings

In Section 4.2, we gave an algorithm to find the unique edge e = (u, v) on isometric cycle C such
that the two shortest paths from a fixed vertex r on C to u and to v cover all vertices of C and
all edges except e. We showed how to do this in O(|C|+ log3 n) time, where |C| is the size of the
compact representation of C obtained in Section 2. We need to modify the algorithm to do so with
respect to lex-shortest paths.

Recall that to find e, a linear search of the super edges of C from r was first applied to find the
super edge ê of C such that the shortest path in G representing ê contains e. As above, we may
assume that every super edge of C is associated with the smallest index of interior vertices on the
path it represents. Hence, by keeping track of the smallest interior vertex index for super edges
visited so far in the linear search as well as the smallest interior vertex index for edges yet to be
visited, we can find ê in O(|C|) time w.r.t. lex-shortest paths.

Having found ê, we need to apply binary search on a path representing ê in a lex-shortest path
tree. We do this by first finding the midpoint of this path as in Section 4.2. If the two halves
have the same weight and the same number of edges, we can use a top tree operation on each
half to determine which half has the smallest index. It follows that all binary searches to find e
take O(log3 n) time. The total time to find e is thus O(|C| + log3 n), which matches the time in
Section 4.2.
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