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Abstract—The increasing availability of healthcare data re-
quires accurate analysis of disease diagnosis, progression, and
realtime monitoring to provide improved treatments to the pa-
tients. In this context, Machine Learning (ML) models are used
to extract valuable features and insights from high-dimensional
and heterogeneous healthcare data to detect different diseases
and patient activities in a Smart Healthcare System (SHS).
However, recent researches show that ML models used in different
application domains are vulnerable to adversarial attacks. In this
paper, we introduce a new type of adversarial attacks to exploit
the ML classifiers used in a SHS. We consider an adversary
who has partial knowledge of data distribution, SHS model, and
ML algorithm to perform both targeted and untargeted attacks.
Employing these adversarial capabilities, we manipulate medical
device readings to alter patient status (disease-affected, normal
condition, activities, etc.) in the outcome of the SHS. Our attack
utilizes five different adversarial ML algorithms (HopSkipJump,
Fast Gradient Method, Crafting Decision Tree, Carlini & Wag-
ner, Zeroth Order Optimization) to perform different malicious
activities (e.g., data poisoning, misclassify outputs, etc.) on a SHS.
Moreover, based on the training and testing phase capabilities of
an adversary, we perform white box and black box attacks on
a SHS. We evaluate the performance of our work in different
SHS settings and medical devices. Our extensive evaluation shows
that our proposed adversarial attack can significantly degrade
the performance of a ML-based SHS in detecting diseases and
normal activities of the patients correctly, which eventually leads
to erroneous treatment.

Index Terms—Smart Healthcare System, Smart Medical De-
vices, Adversarial Machine Learning

I. INTRODUCTION

Each year the healthcare industry is generating data at a
staggering rate that is expected to reach 1,656 zettabytes by
2025 [1f]. This healthcare data have clinical, financial, and oper-
ational value if analyzed properly to extract important features.
In this context, Machine Learning (ML) can be an effective
tool for managing healthcare data. Recently, several ML-
based healthcare applications have been proposed to perform
different healthcare functionalities, such as disease detection,
early diagnosis, treatment plan, and antidote discovery [2],
[3l. The integration of ML to identify and analyze clinical
parameters has surely improved both the efficiency and quality
of healthcare. The nature of feature extraction from the dataset
of interest in ML can lead to patient-specific treatments and
support, which can eventually lead to a reduction in medical
costs and establish a better patient-doctor relationship. The
global market of ML solutions in the healthcare sector is
projected to reach $34 billion by 2025 [4].

ML plays a vital role in the healthcare industry, such as
the development of the new medical procedure, processing

patient data, and the treatment of chronic diseases. In parallel
to this progress, ML models exhibit unpredictable and overly
confident behavior outside of the training distribution, and
adversarial examples are a subset of this broader problem. The
discovery of adversarial examples has exposed vulnerabilities in
the state-of-the-art ML systems [5]]-[7]]. An adversarial example
is an input engineered to cause misclassification in the ML
algorithms. Indeed, adversarial ML has gained much popularity
in the healthcare domain because of the possible limitations
of the current ML models. For instance, an adversary may
add new adversarial data to a healthcare ML model to falsely
classify a hypothyroid patient [§]. Researchers also reported
several adversarial attacks against ML model in medical image
processing to alter the results by adding noises and misclassify
a benign mole as malignant with high confidence [9], [10].
However, the healthcare system is aggressively adapting ML
model to improve disease detection and patient treatment
without explicitly addressing these reported adversarial attacks.

In this paper, we present a new type of adversarial attacks
that detects the pitfalls of a ML-based application in a smart
healthcare system (SHS). In a SHS, multiple medical devices
can be connected with each other to share the patient’s vitals
and detect normal and disease-affected activities by correlating
various body functions. Our attack targets the underlying ML
model used in a SHS for threat detection, disease recognition,
and normal activity identification. In our attack, an adversary
utilizes state-of-the-art adversarial attacks (HopSkipJump, Fast
Gradient Method, Carlini & Wagner, Decision Tree, Zeroth
Order Optimization) against the ML-based SHS to perform
both white-box and black-box attacks [[11]. We show that the
proposed attack can successfully misclassify the patient’s state
and manipulate the outcome to a specific state by utilizing
only partial knowledge of the ML model. To evaluate our
attack, we consider a SHS correlating a patient’s vitals collected
from 8 different smart medical devices and detecting 11 benign
scenarios, including 6 normal and 5 disease-affected activities
using different ML models. Our evaluation shows that the
proposed attack can achieve 32.27% accuracy drop and 20.43%
success rate in untargeted and targeted attacks, respectively,
leading to misclassification of the normal user activities and
disease-affected scenarios in a SHS.

Contributions: In summary, our contributions are three-fold:

o We present an adversarial ML-based, data-driven attack to
identify flaws in the underlying ML model in a SHS. We
consider two different attacks: training phase attack (poison-
ing) and testing phase attack (evasion).



« We implemented four white-box attacks and one black-box
attack utilizing 5 different adversarial ML algorithms.

o We evaluated our proposed attack against a ML-based SHS
consisting of 8 different smart medical devices. Our extensive
evaluation illustrates that it can successfully downgrade the
accuracy of a ML model in a SHS.

Organization: We provide an overview of adversarial attacks in

healthcare systems in Section The detailed overview of SHS,

as well as the adversarial ML, is provided in Section In

Section [TV] we explain our threat model considering adversary

goals, capabilities, and methodology. We explore the feasibility

of our attack in the case of various SHS scenarios in Section [V]

We conclude the paper in Section [V

II. RELATED WORK

In this section, we discuss existing adversarial attacks to
SHSs and explain how our attack model is different from the
existing ones.

In recent years, several adversarial attacks on ML models
have been reported by the researchers where the adversaries
manipulate the input data distribution to cause incorrect classi-
fication in the output. Most of the adversarial attacks target the
input data distribution to alter the training data and misclassify
the output [8]], [12]]. Again, different ML models (e.g., Neural
networks, deep neural networks, etc.) are exposed to small
modifications of the input data during test time which can
be used by the adversaries to manipulate the data distribution
by enforcing poisoned test data [13[]. In ML-based healthcare
systems, adversaries mostly try to alter the data distribution in
multi-layer ML classifier to change the predicted disease [9].
Most of the attacks in healthcare domain target medical imaging
data to alter the predicted disease. Mirsky et al. showed how
an attacker could use a 3D conditional Generative Adversarial
Network (GAN) to add or remove evidence of medical condi-
tions from volumetric (3D) medical scans [14]. Taghanaki et
al. tested two state-of-the-art Deep Neural Network (DNN) for
chest X-ray images against ten different adversarial attacks and
showed that DNN in medical image classification is vulnerable
against adversarial attacks [15]. Kim et al. presented how a
subtle universal adversarial perturbations can be added to a
medical image to alter the predicted labels with high confi-
dence [|16]]. In a recent work, researchers proposed a novel
approach for generating adversarial examples to attack Convo-
lutional Neural Network (CNN) based segmentation models for
medical images [17]]. Another type of adversarial attacks can
be executed in Electronic Health Records (EHR) to change the
future treatment plan of a patient. Choi et al. used GAN to learn
the distribution of real-world multi-label discrete EHR and
generate adversarial patient records [[18]. Sun et al. presented
a framework that identifies the susceptible locations in a time
sequence medical records utilizing adversarial attacks on deep
predictive models [19]].

Difference with Existing Attacks: Our threat model is an
entirely new approach to attack a ML-based SHS. While most
of the works consider single medical device data or stored
healthcare data to apply adversarial attacks, in our work, we
consider a connected multi-device SHS utilizing ML models for
disease and normal activity identification. The main differences
between existing attacks and our approach can be noted as
follows: (1) Most of the prior works focus on manipulating
data distribution of a ML model in offline mode. Here, we
consider a realtime ML-based SHS and manipulate the input
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Fig. 1: An example of a smart connected healthcare system.

data distribution of different medical devices to perform the
adversarial attacks. (2) While the existing attacks focus on
generating multi-label discrete EHR [18]], we detect the min-
imum number of the compromised medical devices in a SHS
to initiate an attack. (3) Rather than depending on training
model and full knowledge of the data distribution of ML
algorithm, we consider the threshold of data injection for a
successful attack using partial knowledge of the data range [[12]].
(4) Different from identifying susceptible locations in offline
medical records, our attack finds the critical devices in realtime
SHS to perform adversarial attacks which has higher impact
on the patient’s status and overall treatment [19]. (5) Unlike
adversarial attacks on medical images [15]], [9f], [16], [17], we
consider a ML-based SHS as our attack target/platform.

III. BACKGROUND

In this section, we discuss different components of SHS and
different design assumptions that we have considered in our
attack. In addition, we discuss the impact of adversarial ML in
the context of a SHS.

A. Connected Smart Healthcare System Overview

A SHS can consist of single or a group of smart medical
devices (e.g., wearables, wireless devices, implantable devices,
etc.) to collect data from a patient’s body to provide improved
treatments and realtime monitoring [20]. SHS considers differ-
ent medical (patient’s vitals) and non-medical parameters (e.g.,
physical status, location of the patient, etc.) to understand the
overall condition of the patient and provides realtime monitor-
ing. Smart medical devices take the vital signs as an analog
signal, convert them to a digital signal and send information
as a network packet to a Personal Digital Assistant (PDA) via
wireless technology (Bluetooth, Zigbee, etc.), which can consist
of a smartphone, a laptop, or a smartwatch. PDA works as
a user interface and forwards data to a database (e.g., cloud
server, local server, etc.). The database sends data to a Central
Data Processing Unit (CDPU), which uses a ML model to select
and extract features from the dataset. CDPU runs the ML model
to detect patient disease status, normal activity of a patient, and
threats in a SHS. Next, it takes automated actions (e.g., pushing
a new dose of medicine, change of medication, etc.) to provide
improved treatment for the patient and sends analyzed data to
the authorized entity (hospital or doctor). Finally, the doctor
sends a notification to the patient with updated treatment plans
for his health status. Figure [T] shows an example of SHS with
several smart medical devices (e.g., EEG, ECG, pulse oximeter,
etc.) connected to a patient’s body to collect data for different
vital signs (e.g., blood oxygen, neural activities, heart rate, etc.).
B. Adversarial ML in a SHS

To understand how adversarial ML works in a SHS, we
assume a ML model M is trained over input pair (X,y) from



the data distribution 1 with a randomized training procedure
of randomness r (e.g., random weight initialization, dropout,
etc.). Here, inputs (X,y) are smart medical devices data that
are collected and preprocessed before running into the model.
The model parameters 6 is represented as follows: 6 <
train(M, X,y,r). In a white-box attack on this ML model,
an adversary has complete knowledge about the model (M)
used for classification, and the algorithm used in training. He
has access to the training data distribution (x) and is able to
identify the feature space where the model is vulnerable. In a
black-box attack, an adversary does not have knowledge about
the model but uses information about the settings or past inputs
to analyze the vulnerability of the ML model.

IV. THREAT MODEL

In this section, we discuss the adversarial goals and attackers
capabilities considered in our proposed attack. We also describe
our attack assumptions focusing on a use case scenario and
explain the attack methodology in a ML-based SHS.

A. Adversarial Goals

An adversary attempts to provide an input to a ML-based
SHS to alternate the decision of the ML classifiers and manip-
ulate the automated decisions of the SHS. We categorize the
goals of an adversary in the following three categories based
on the impact on the classifier output integrity:

o Untargeted Attack (UA): An adversary tries to alter the
output of the ML classifiers of a SHS from the actual output.
For example, a high blood pressure patient will be predicted
to a different disease resulting in a malicious treatment plan.

o Targeted Attack (TA): An adversary attempts to alter the
input data of the ML classifier to change the output to a
specific class. For instance, a high blood pressure patient’s
data is manipulated in such a way that it is predicted as a
specific condition of abnormal oxygen levels.

o Targeted Device Attack: The adversary tries to find the
minimum number of devices needed to be compromised to
launch an attack in a ML-based SHS. For instance, to change
the status of a stressed patient to a heart attack, it may only
need to compromise the oxygen saturation device.

B. Adversarial Capabilities

To understand the attack scope of our work, we assume

a patient (P) admits to a hospital having breathing problems

(abnormal oxygen level) (Figure [2). For emergency monitoring,

a SHS consisting of an ECG device, a sphygmomanometer, a

pulse oximeter, and an EEG is placed on P for cardiac, blood

pressure, oxygen level, and neurological activity monitoring,
respectively. This SHS uses a ML-based classifier to predict
the disease and perform realtime monitoring of the patient.

We assume that the devices are working correctly, and no

compromised device is in the system. Here, we introduce a

new adversarial attack that can exploit a SHS and change the

patient’s disease status to provide the wrong treatment. To
perform the adversarial attack on the ML model, we consider
following capabilities for the adversary:

« Data Distribution: As different smart medical devices gener-
ate different ranges of data, an adversary may know partial
data distribution of the devices. Based on this, it may
manipulate a data value within a certain threshold to change
patient disease status or normal activity pattern.

o SHS Architecture: An adversary may know the complete or
partial architecture of the SHS including number of devices,
device correlation, etc. to perform an attack.

o Output Label: An adversary may know the output labels (e.g.,
disease states and normal activity pattern) of the ML model
to initiate an attack.

o ML Model: Different ML models (e.g., Decision Tree, Ran-
dom Forest, etc.) are used for disease and user activity de-
tection. An adversary may have the knowledge of underlying
ML model used to classify the patient status.
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Fig. 2: An example of adversarial attack in a SHS.
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C. Attack Methodology

A ML-based SHS can be considered as a data processing
pipeline where the vital signs collected from the patients are an-
alyzed to diagnose the disease and provide necessary treatment.
A primary sequence of operations of the SHS is illustrated
in Figure 2] A device data collector module collects data
representing patient’s vital signs and statuses from different
smart medical devices and forwards them to the data pre-
processing module. A data preprocessing module samples the
data according to the corresponding sampling frequencies and
saves them as an array. For example, a heart rate monitoring
device monitors the heart rate of a patient in a minute, whereas
the ECG device monitors the cardio-vascular state of a patient
in every 10 seconds. The sampled data are used to train the
ML model of the SHS for disease detection and realtime
monitoring. The training data are labeled with different diseases
and benign states (e.g., high blood pressure, low sugar, etc.)
to understand the data pattern for different scenarios. In the
testing phase, physiological data collected from the patients
are analyzed based on the previously trained ML model to
detect different diseases or benign states of the patient. Here,
our attack methodology can be defined in the context of the
data processing pipeline. An adversary attempts to manipulate
either the collection or the processing of data to corrupt the
ML model, hence altering the original output. We divide the
attack into the following two categories in a SHS:

Poisoning Attack: This type of attack takes place during the
training time of ML in a SHS (Figure [2). In this attack, an ad-
versary carefully manipulates the training data to compromise
the whole learning process. As explained in Section an
adversary may know the data distribution of the ML model and
can change the value of the input data to a certain threshold.
Here, the adversary can use data injection, modification, and
logic corruption methods to manipulate the training data. In
data injection, an adversary does not have any access to the
training data and algorithm but can augment a new data to
the training set. In data modification, an adversary poisons the
training data directly by modifying the data before it is used for
training the target model. In logic corruption, an adversary has



TABLE I: Devices and parameters considered for monitoring health condition [20]—[23]].

Device Monitoring Type Model

Feature Parameter Value Database

Heart Rate and Blood Pressure | QuadioArm

60-100 beats per minute, Systolic (120
mm Hg) and Diastolic (80 mm Hg)

Fetal ECG Synthetic Database, Data.Gov

Blood Glucose MiniMed™ 670G Insulin Pump System

70-130 mg/dl

UCI ML Database of Diabetes

Blood Oxygen iHealth Air Wireless Pulse Oximeter Oxygen Saturation Level > 94% Pattern Analysis of Oxygen Saturation Variability
Respiratory and Sweating Rate | QuardioCore 12-20 Breaths per minute, 0.5,/min/em? | BIDMC PPG and Respiration Dataset

Blood Alcohol Scram Continuous Alcohol Monitoring (Cam) | 0.08 g/dI StatCrunch Dataset

Blood Hemoglobin Germaine AimStrip Hb Hemoglobin Meter 12.3-17.5 g/dl Hemoglobin Data in DHS Survey

Neural Activity Emotiv Insight

Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha
(8-12 Hz), Beta (16-24 Hz) & EEG data

EEG Data

Sleep and Human Motion Fitbit Versa Smart Watch

REM and NREM sleep cycle

The CAP Sleep Database

the ability to tamper the ML model. Using these capabilities,

an adversary can affect the overall learning process of the ML

model of the the SHS to misdiagnosed the test data which could

lead to mistreatment of a patient.

Evasion Attack: In evasion attack, adversary tries to deceive
the SHS by enforcing adversarial samples during the testing
phase. An adversary does not have any influence over the
training data but can access the ML model to obtain suffi-
cient information. As a result, it attacks the ML model and
manipulates the model to misclassify the patient status in a
SHS. Generally, evasion attacks are classified in two categories:
white-box attack and black-box attack.

(1) White-Box Attacks: In a white-box attack, an adversary

has complete knowledge about the ML model used in a SHS

(e.g., type of neural network along with the number of layers).

The adversary knows the algorithm used in the training phase

and can access the training data distribution. Moreover, it

knows the parameters of fully trained architecture. We perform

HopSkipJump, Fast gradient method, Carlini & Wagner, and

Decision tree-based attack in the ML model of a SHS.

o HopSkipJump Attack: HopSkipJump is an efficient query
algorithm and a powerful decision-based generator of ad-
versarial examples which utilizes distance-vector as a hyper-
parameter [24]]. In our attack, we obtained optimal solution
by using Chebyshev distance, which calculates the largest
magnitude among each element of a vector to determine the
distance between adversarial and the original samples.

o Fast Gradient Method (FGM) Attack: The fast gradient
method uses the gradient of the underlying model to find
adversarial examples [5]. The original input is manipulated
by adding or subtracting a small error in the direction of
the gradient with the intent to change the behavior of the
learning model. In our model, we considered an attacker’s
capability (threshold) as adding a small error in the direction
of gradient to temper classification of the model.

o Carlini & Wagner (C&W) Attack: This is the state-of-the-
art white-box attack in which targeted adversarial attacks are
considered as an optimization problem to take advantage of
the internal configuration of ML model [25]]. In our model,
we found Euclidean distance to be optimal for computing the
difference between adversarial and original examples.

o Crafting Decision Tree Attack: Here, an adversary exploits
the underlying tree structure of the decision tree classifier
model [26]. For a given sample and a tree, an adversary
searches for leaves with different classes in the neighborhood
of the leaf corresponding to the decision tree’s original
prediction for the sample.We performed this attack for enu-
merating the minimum number of devices that need to be
compromised for initiating an attack.

(2) Black-Box Attack: In a black-box attack, an adversary does

not know the ML model in the SHS and uses the information

about settings or past inputs to analyze the vulnerability of the

model. We perform the Zeroth Order Optimization attack in a

SHS as a black-box attack.

e Zeroth Order Optimization (ZOO) Attack: ZOO attack is
based on a coordinate descent method using only the zeroth-
order oracle (without gradient information), which can ef-
fectively attack the black-box ML model. This is called a
state-of-the-art black-box attack [27].

V. EXPLORING VARIOUS ATTACK SCENARIOS

To demonstrate the feasibility of our proposed attack, we per-
formed the poisoning and evasion attacks successfully against
a ML-based SHS. We consider several research questions to
evaluate our proposed adversarial attack.

RQ1 What is the impact of proposed attack after performing
poisoning attack in a SHS? (Sec

RQ2 What is the impact of our attack after performing untar-
geted attack to find most significant devices? (Sec [V-C)

RQ3 What is the impact of proposed white-box and black-box
attacks on underlying ML model? (Sec [V-D
RQ4 What is the performance of ML model in a SHS after
performing threshold-based attacks? (Sec

TABLE II: Device-activity correlation in SHS [20], [28]], [29]
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A. Environment Setup and Methodology

We consider a SHS consisting of eight different devices
detecting five different disease states and six different regular
activities. We collected data from eight different smart medical
devices available on various public healthcare databases that
gave us ten vital signs: the heart rate (ECG), blood pressure
(BP), blood glucose (GL), oxygen (OX) saturation, blood
hemoglobin (HG), breathing rate (BR), alcohol level (AL),
neural activity (NA), human motion (HM) and sleep monitoring
(SM) (Table ). These vital signs are represented by fifteen
different features and the correlation among these features is
presented in figure[3] We considered the ranges of different vital
signs of humans (e.g., heart rate, blood pressure, etc.) as the
normal state. Our considered SHS uses different ML algorithms
to detect five different disease scenarios (high blood pressure,
high cholesterol, excessive sweating (SW), abnormal oxygen
level, abnormal blood sugar) and six regular user activities
(sleeping, walking, exercise, stress, heart attack, and stroke
situation) based on the collected device data. The device-
activity correlation is shown in Table
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Fig. 3: Correlation matrix of selected features used in SHS.

As the underlying ML model of the SHS, we considered four
different ML algorithms (Random Forest (RF), Decision Tree
(DT), Artificial Neural Network (ANN), Logistic Regression
(LR)) because of multi-class classification and hierarchical
patterns in our dataset. We collected 17,000 data instances
for healthy and disease-infected people and divided our data
into two sections, where 70% of the collected dataset was
used to train the ML model, and 30% of the collected data
was used for testing [30]. We executed the attack in this
SHS by simulating evasion and poisoning attacks based on the
attack methodology described in Section [[V] For a poisoning
attack, we considered that an adversary poisoned the training
data while he/she had the access to the ML model. Here,
an adversary manipulates the output status of the patient to
alter the detected disease or normal user activity could be
manipulated into a disease state. To perform the evasion attack,
we considered that an adversary adjusted malicious samples
during the testing phase. For evasion attacks, we also conducted
white-box and black-box attacks by performing gradient-based,
decision boundary-based, and coordinate-based attacks to the
ML algorithms of the SHS. We built a simulation environment
for SHS in MATLAB using digital signal processing toolbox
and adversarial robustness toolbox [31f] (Python library) for
simulating different white-box and black-box attacks. We used
Keras and Scikit-Learn library for training and testing the
dataset in Google Colab platform.

TABLE III: Performance of data poisoning attacks.

Before Attack Accuracy Drop
Underlying Algorithms | Accuracy 10% poisoning | 20% poisoni 30% Poi g
RF 95.37 1.65 2.03 2.15
DT 90.16 431 15.88 27.31
ANN 91.42 10.28 13.14 27.32
LR 88.11 9.28 18.93 28.21

In the evaluation, we used accuracy drop of the SHS’s ML
model from the actual accuracy as our performance metric.
While accuracy refers to the effectiveness of the ML model
in detecting different patient’s states, adversarial samples lead
to a decrease in the accuracy of the ML model. For targeted
attacks, we considered attacker success rate as we performed
the targeted attack in a specific portion of the total dataset.

B. Evaluation with manipulated training data

In a SHS, an adversary can have access to the CDPU in
the training phase and inject bad data into the underlying ML
model’s training pool. In that case, the adversary can learn
the training model and inject bad data (poisoning attack) to
manipulate the decision of the SHS. In our poisoning attack, we
have altered the vital status of 10%, 20%, and 30% training data
for compromising SHSs” model performance. Table [III] presents
the performance of the poisoning attack in a SHS. We used RF,
DT, ANN, LR as our underlying ML algorithms for training

the SHS. The SHS achieves highest accuracy of 95.37% in
detecting different patient’s states using RF. After poisoning
the training dataset, the accuracy of the SHS dropped 2.15%
for 30% data poisoning. We can also observe that our approach
achieved highest accuracy drop of 18.93% and 28.21% for 20%
and 30% data poisoning, respectively, if the underlying ML
model is LR. In the case of ANN with 10% data poisoning,
the highest accuracy drop is 10.28%.

C. Significant device identification in different attacks

A SHS uses the correlation between different medical devices
to identify the different vital status of a patient. We used
this correlation to perform crafting decision tree untargeted
attacks to identify the most significant devices in a SHS
(Table IV). We considered the untargeted attack as it uses the
whole training sample to generate adversarial examples. We
can observe that for an untargeted attack to change the disease
state from stroke to abnormal oxygen level, and hemoglobin
devices are compromised. Similarly, glucose device is affected
while changing disease state from high cholesterol to stroke.
In summary, to perform an untargeted attack on underlying
the ML model (DT) glucose, heart rate, and oxygen saturation
devices are the most affected devices.

TABLE IV: Crafting DT for untargeted attack.

Affected Device
Glucose

Attack Current State Device Count
High Cholesterol Stroke
High Blood Pressure Stroke Glucose

Abnormal Oxygen Level|Stroke Glucose, Heart rate
Stroke Abnormal Oxygen Level|Glucose, Hemoglobin
Sleeping Drunk Alcohol

Stress Heart Attack Blood Oxygen

Final State

Untargeted
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Fig. 4: Impact of device reduction in adversarial attacks.
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Figure [a] illustrates the impact of device reduction in the
performance of untargeted attack. We can observe reducing
number of devices drops the success rate of the proposed
attack significantly. For removing one device (glucose) and
two devices (glucose, blood oxygen), we achieved the highest
success rate of 14.59% and 12.24% using C&W attack. For
removing three (glucose, oxygen, heart rate) devices, Hop-
SkipJump can achieve the highest success rate of 8.23%. For
an untargeted attack (Figure [4b), HopSkipJump and FGM
achieved the highest and lowest accuracy drop respectively
for removing 1, 2, and 3 devices from the SHS. In summary,
performance of adversarial attacks decrease with the reduction
of devices in SHS.

D. Evaluation with Different Attack Algorithms

To evaluate the performance of the proposed adversarial
attack, we performed white box and black box attacks in a SHS
using different adversarial algorithms. From Table [V] we can
observe the highest accuracy drop (32.27%) and success rate
(15.68%) can be achieved using HopSkipJump for untargeted
attack and targeted attack respectively. On the contrary, FGM
achieved the lowest accuracy drop and success rate while the



underlying model was LR. For the black-box, we performed
both untargeted and targeted ZOO attacks and obtained 12.29%
accuracy drop and 8.22% success rate respectively, where the
underlying model was RF.

TABLE V: Performance of white-box and black-box attacks.

Adversary | Attack Underlying | Actual Accuracy | Success
Capability | Algorithms ML model | Accuracy | Drop (UA) | Rate (TA)
HopSkipJump | DT 90.16 32.27 15.68
White-box | C&W ANN 85.14 24.14 20.43
FGM LR 88.11 3.02 0.26
Black-box | ZOO RF 90.21 12.29 8.22
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Fig. 5: Threshold based attacks on a SHS.
E. Evaluation with Considering Different Thresholds

We performed threshold-based attack as described in Sec-
tion [[V] From Figure [5a] we can observe that for an targeted
attack HopSkipJump and FGM failed to achieve any success
rate for 10% threshold-based attack. ZOO attack achieved
highest success rate for all three threshold-based attacks in
a SHS. During an untargeted attack (Figure [5b), ZOO attack
algorithms had same accuracy drop of 8.28% for both 10%
and 20% thresholds. FGM had the lowest accuracy drop for
all three attack. In summary, HopSkipJump achieved highest
accuracy drop for threshold-based attacks.

VI. CONCLUSION

The healthcare industry is generating a vast amount of data
for patients and ML is being used to analyze these data for
different applications such as early disease diagnose, improved
treatment plan, realtime patient monitoring, etc. However,
the ML models used in different medical applications have
weaknesses in terms of unpredictability and outside of the
training distribution data. To address these shortcomings, in
this paper, we presented a new adversarial ML-based attack to
identify the pitfalls in the underlying ML model of a SHS. We
evaluated our attack considering different adversarial settings
and medical setup in a SHS. Our extensive evaluation shows
that it can achieve very promising results for untargeted and
targeted attacks to misclassify the normal user activities and
disease affected scenarios in SHSs.
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