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Abstract—Energy harvesting (EH) has recently emerged as In a wireless communication link, CSI is important, e.g.,
an effective way to solve the lifetime challenge of wireless for the receiver to decode the transmitted message, or fer ra
sensor networks, as it can continuously harvest energy from 4qantation at the transmitter. At the receiver side, CSItan

the environment. Unfortunately, it is challenging to guarantee . . . .
a satisfactory short-term performance in EH communication obtained by sending pilot symbols from the transmitter.réhe

systems because the harvested energy is Sporadicl In th|snm‘ exists a tradeoff between the training overhead and thmm@|
we consider the channel training optimization problem in EH performance. Specifically, spending too much energy or time

communication systems, i.e., how to obtain accurate chanhe on channel training will reduce the energy or time for data
state information to improve the communication performancE. In transmission. On the other hand training with too ||tt|@@y

contrast to conventional communication systems, the optiimation fi il d de th timati f T .
of the training power and training period in EH communication or ume will degrade the estmation performance. 10 maxi-

systems is a coupled problem, which makes such optimization Mize the throughput, the training period and training power
very challenging. We shall formulate the optimal training design should be carefully selected. Previous studies have shown

problem for EH communication systems, and propose two solu- that in conventional communication systems, training powe
tions that adaptively adjust the training period and power based optimization and training period optimization adgecoupled

on either the instantaneous energy profile or the average ergy . A .
harvesting rate. Numerical and simulation results will shav of which the power optimizationis more important. In([5],

that training optimization is important in EH communicatio n it was shown that for a point-to-point link without the peak
systems. In particular, it will be shown that for short block power constraint, the optimal training policy involves dimy

lengths, training optimization is critical. In contrast, for long  one pilot symbol with optimized training power. However, in
block lengths, the optimal training period is not too sensitve 10 £ communication systems, the training design is different
the value of the block length nor to the energy profile. Theredre, . .
a properly selected fixed training period value can be used. and is largely 'nﬂqenced by the low rate _and randomness
property of the available energy. The selection of the ingin
period and training power in EH systems are coupled and both
will depend on the EH profile in the communication block.
In traditional wireless sensor networks, the limited eyexry Therefore, the training design in EH communication systems
each node constrains the network lifetime. Energy hamgstiis more challenging and plays a more important role.
(EH) is a promising technology which has the potential to In this paper, we investigate the training optimizationkpro
provide a powerful solution to achieve perpetual lifetiméem in EH communication systems. We first characterize the
without requiring external power cables or periodic batteproperties of the training design in an EH communication
replacement [1]. Energy harvesting nodes can harvest gnesgstem. We then propose two different training policies to
from the environment, including solar energy, vibratioeyy, determine the training period and power. The first training
thermoelectric energy, RF energy, etc. With its highly selpolicy adaptively adjusts the training period based on the
reliance capability, EH will undoubtedly play an importantnergy profile in the whole transmission block, while the
role in future green communication networks. second one is designed in an adaptive way according to
However, employing energy harvesting nodes poses néve average EH rate of the block. Simulation results will
challenges related to the link and network design, as tekRow that training optimization is important to improve the
harvested energy is typically small and random. Thus atthoucommunication performance in EH systems, especially when
EH technology improves the long-term performance, the-chahe transmission block is not very long. For long block ldrsgt
lenging short-term performanceeeds to be guaranteed. Prethe optimal training period is not too sensitive to the vaddie
vious works on EH networks have developed communicatidime block length. Therefore, a fixed training period value ca
protocols to either maximize the throughput or minimize thiee used if properly selected.
transmission completion time, assuming perfect chaniagé st
information (CSI) at the transmitter and receiver, e.gl, [2
[3l, [4]. In [B], a directional water-filling (DWF) algoritin We consider a point-to-point communication link where
is proposed to solve the transmit power allocation problethe transmitter is an EH node, as shown in Figure 1. The
in EH systems, while in[4], a generalized DWF algorithm isransmitter can only use the energy it harvests, and we a&ssum
proposed to solve a general utility maximization problem. that all the harvested energy is used for communication.

I. INTRODUCTION

Il. SYSTEM MODEL
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Figure 1. The basic system model. Figure 2. The energy profile and feasible energy consumjpiidicies in the
2-D coordinate system of accumulated energy versus time.|&fhpart plots
energy profiles, for two general EH cases, and two specialscdlse non-EH
case and the constant-rate EH case. The right part plotsetigtbfe energy
The channel is characterized by block fading, and within @nsumption domain and policies for a given EH profile, of ehhthe bold
coherence block, the channel gainis constant withh ~ line is the EH profile, the area under it is the feasible domaimd a curve
9 ! . ) . . . connecting the bottom-left point and the top-right poirtide this domain is
CN (Ovoh)' The additive white Gaussian noise is denotegteasible energy consumption policy, two examples of whih shown.
asn with n ~ CN(0,0?). The communication within one
transmission block includes two stages: the training stagk
the data transmission stage. The partition of the two stages\s shown in (1), a certain EH profile determinegeasible
is in the unit of a time slofl’s. The fading block length is energy consumption domaiand only the policies inside this
denoted asl’, with N = - slots, while the training stage domain arefeasible energy consumption poligiesoth of
length isT;, with N, = %—; slots. During the training stage,which are plotted in the same coordinate system with the
the receiver obtains an estimate/ofdenoted a#, through the EH profile in the right part of Figure 2. Due to the energy
use of a pilot signal. The estimation error is denoted ath  neutrality constraint (1), we cannot use the energy amivin
h = h — h. Before the transmission stage, the receiver feetfsthe future, but can back up the current energy for future
back the value of: to the transmitter. The feedback channe#se. This causal energy constraint determines the diretio

is assumed to be perfect, while the case with unideal fegdbasoperty of all power allocation policies in EH systems, evhi

will be discussed in future work. will be discussed in more detail later.
Among all kinds of EH processes, there are two special
A. Energy Model cases: thenon-EH case and theonstant-rate EHcase, as

An important factor that determines the performance of OWn in the left part of Figure 2. Here we treat the con-
EH system is theEH profile, which models the variation of ventlor!al non-EH system, i.e., W|thou_t the EH function and
the harvested energy with time. Several different typestof EONIY with the average power constraint, as an extreme case
profiles are shown in the left part of Figure 2. For convengenc®f €nergy harvesting, in which all the energy arrives before
we plot all EH profiles inside a 2-D coordinate system df€ first slot. This is equivalent to relaxing all the causal
accumulated energy versus time. energy constraints. The feasible energy domain of non-EH

To demonstrate the property and impact of energy profilddes is the union of all the possible EH profiles with the
we adopt similar EH assumptions as in [2] [3]. Specificaljj@Me total energy in a given time duration, so it provides the
we assume that the energy profile in the considered transnii§StPerformance among all the EH profiles. Constant-rate EH
sion block is known before the communication starts. Th§fers to the node that can harvest energy at a constant rate.
assumption is applicable for predictable energy modelsh gyn this case, the profile can be considered as a deterministic
as solar energy [6]. process. In practical systems, when the EH profile does not

The utilization of the harvested energy is constrained ange frequently or the block length is small, a constate-r

the EH profile, and therefore thenergy neutrality constraint EH Profile is a good approximation of the energy profile in

exists in EH system<[7]. The energy neutrality means th_%"t‘Ch transmission block, with the mean of the EH process as

the energy consumed thus far cannot exceed the total enépa)rarvesting rate. .
he battery capacity is also an important factor for the EH

harvested. For simplicity, we assume that the EH node can Y : )
only use the energy harvested in the previous slots. If tHek performance besides the EH profile. In this paper we
consumed power is denoted &t), the initial energy in the assume that the energy buffer is of an infinite capacity, avhil
energy buffer as,, and the harvested energy in thth slot the case with a finite buffer capacity will be dealt with in
as Ey,, then the energy neutrality constraints can be expresdefire work.
as
ITs -1 I1l. I MPACT OF CHANNEL TRAINING IN EH SYSTEMS
/ P(t)dt < ZEk’ @) In this section, we first investigate the training policy for
0 k=0 Lo ) .
EH systems and compare it with non-EH systems. We will
wherel is the index of the time slot with= 1,2, ..., N. then develop power allocation for the data transmissiogesta
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By substituting (3) and adopting (9) in_[10], this rate

! . . o expression can be finally transformed to
Figure 3. Comparison of the power allocation policies in titaéning stage

for non-EH and EH systems. The left and right figures reprtegennon-EH 1 N 1 1
and EH cases, respectively.
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In the training stage, we denote the average training power ol+toio] Pitolof 3150 P

in the jth time slot asP; (1 < j < NN;), then the variance of N OO ttetdt. _
the estimation error with an MMSE channel estimator’is [8] Different from non-EH systems that use a constant transmit
o202 power in the data transmission stage, in the EH system, we
0;% =T 2 hNt = (2) need to determine the power allocation between differem ti
0%+ 0 2.7:1 Py slots, as the power allocated to each slot needs to satisfy th
We see that only the sum of average training powers matte#§€ergy neutrality constraint (1). For give¥, h ando?, the
This means that as long as the total training power is the sarR@wer allocation problem is as follows:

the training performance is fully determined, independeint o Jpiam 1:

the training period or the power allocation inside this stag 1 =N ) 1 h|*P;
Thus, we will use the discrete-time expressionfbf= P; to Pfof}_’_‘_PN N imN,+1 1082 ( + 702+Pig%)
denote training powers. ! -1
Due to the causal energy constraint in EH systems, there s.t. TS‘ > Bi<Ee+)_n B
exists a big difference in the training design for non-EH l:%ﬂ
systems and EH systems. In the non-EH system without a Ts ]%:Hpi = Eic +ZkN;]\1,t Ey
1=1IN¢

peak power constraint, the optima, is always 1 [[5], as =N 41 . N—1
shown in the left part of Figure 3. An intuitive explanation L ’
is that we can always achieve a good training performane#ereE;. denotes the energy left from the training operation,
with enough training power (as long as it is less than ttand is known before the optimization.
total power available). Meanwhile, we shall make the tragni  In Problem 1, the first constraint is the energy neutrality
period as small as one time slot. Thus, what matters is thenstraint. In contrast to non-EH systems, even if the chan-
power allocated for channel training rather than the trajni nel stays unchanged, the power still needs to be adaptively
period. However, this is not the case for the EH systerallocated from slot to slot due to the causal EH constraints.
Due to the stochastic EH profile, the energy arrival in thEhe second constraint means that at the end of the block,
first time slot may be very small, as shown in the right pathe node needs to use up all the available energy, as we do
of Figure 3. Hence, fixing the training period as 1 slot wilnot consider the energy sharing between blocks to render our
generally provide an inaccurate channel estimation. Tted toproblem tractable, while the case with block-to-block eyer
training power is largely determined by the training periogsharing will be discussed in future work.
which makes it more important than the power allocation, and We make the following two comments on Problem 1. First,
increases the difficulty of the training design. similar to the training power, the data transmission pover i

In EH systems, we select such a training power allocatigxpressed in a discrete-time form, as it is optimal for the
policy that, for a givenV;, all the harvested energy far< power inside one slot to be constant due to the concavity of
j < N; —1is exhausted, while there may be some energy ldéfte objective function. Second, as the training power ald th
at slot IV;, of which the value is optimized. This isptimal data transmission power are the same from the perspective of
because it is not possible to find a smaller training perighergy consumption, we use the same notafioand only
N/ < N; to achieve the same training performance. distinguish between them by the time index.

o ) ) ~ The throughput expression with estimation errors satisfies

B. Data Transmission Stage in EH Systems with Estimatigit condition of the directional water-filling (DWF) algtivin
Errors [4], and thus the optimal power allocation follows DWF. Such

Considering the channel estimation error and the trainimgDWF algorithm has a special property that the solution is
overhead, the average achievable throughput in each tiwbe sinly determined by constraints, irrespective of the patarse



Algorithm 1 DWF algorithm for Problem 1 with differen¥;  problem 2:

ONT n n N
1) Initialization: Set integeréy = 0 angﬁ = 1.. , max S exp (%) E, (é)
. i . . j=kp_1 . Lo ENGINE =N 41
2) lteration: Iteratek,, = arg kr}cngr}v e with n ot <N, < N.N, €N
adding 1 each time, untit,, = N, so finally an index l 1
setKy = {k,} is constructed. Ts ) Pi<)h obkl=12.,N-1
3) Results forN;=0: The optimal power in théth slot is ~
el B Ts S Pi= Y0 Ey.
pn = —4———+— fori € [k,—1 + 1,k,], and a power =

kp—kn_
setPy = {pn} }s obtained forN;=0.

This problem has two difficulties: 1) the optimization
4) Update for N, # 0: Resetk| = N, recalculate P ) b o

ko1 and P; are coupled; 2) the optimization variahM, exists in
k| = arg klgg}v %6,] , then the index set foN, the summation limit in the objective function, and only take
H 0

discrete values. Due to the intractability of this problemg

. e /
is Ky, = {K}u{all k, € Ko thatk, > k1 }. propose a sub-optimal solution in the next subsection.

5) Results forN; # 0: The power fori € [ko + 1, k]

/
k1—1 .

1B . I .
is p| = ——o— " while the other powers are un-B:- A Sub-optimal Solution

1 0 . cppr .
changed, then the power set foF, is Py, = {p|} U Due to the difficulties of Problem 2, we adopt a DWF
{all p,, € Py thatp,, > p}}. approximation and a rate approximation to derive a sub-

optimal solution. Both of these simplifications have good
approximation properties, which will be verified by the siau
in the objective function. So in our problem the solution 40N results. In addition, for the special case of the cartstate

independent of, ando?, i.e., the estimation performance ande: Poth approximations become equivalent to the original
the value of the estimated channel gain do not have any impBEgPIEM. As commented in Section I, the constant-rate EH
on the power allocation. This special property can large[)ode! is @ good approximation for the energy profile in each
simplify the power allocation, as there is no need to congfet transmission blqck in different EH systems, so our subroali
reallocate the data transmission power for different \aloke solution will be in Qe”e_fa' clpse to optimal.

N,. We only need to execute the power allocation over the 1) DWF Approximation:First, based on the property of
whole block once fofV, = 0, and update a few points for otherAlgorithm 1 as discussed in Section IIl.B, we make an

values ofN;,. Accordingly, we develop an efficient algorithm@PProximation to decouple the training power allocatiod an
to solve Problem 1 for differeny,, as shown in Algorithm 1. the training period selection. From Algorithm 1, the power
From Algorithm 1, we can see that for a give¥, the allocation in the whole transmission block only changes in a

power allocation result consists of several intervals, gred SmMall number of slots for different values of;. We make

power is a constant value inside each of these intervals. TH& @PProximation that the power allocation is fixed for all
endpoint indices of all intervals form @ndex sety,, while values of Ny, i.e., we ignore the possible changes of power

the powers in these intervals form gower allocation set allocation in some slots for differerV;. This simplification
Py, Furthermore, according to Steps 4 and 5 of Algorithifill decouple N, and P, so that we can perform the DWF
1, for differentN,, the majority ¢ € [k, N]) of the transmit POWeEr allocation just once, and then optimixe over a fixed
power allocation is unvaried, while only small proportion POWer allocation result. In this way, we can get a sub-opitima
(i € [ko + 1,K,]) changes with\N;. This property brings the solution with low c_:omputatpnal complexity. o
possibility of decoupling the training power allocatiordahe ~ 2) Rate ApproximationWith the DWF approximation, the
selection of training period, which will be used in the nexproblem is still intractable, as the variabl€; only takes

section for the optimal training design. integer values and appears in the summation of the objec-
tive function. To further simplify the problem, we make
IV. OPTIMAL TRAINING DESIGN the following rate approximation: first, for a given value

of Ny, we calculate the estimation error assuming a con-

As seen from the last section, in EH communication SYSiant trainina power to equal the average EH r&ig, i.e
tems, the coupling of the training period selection and the, 9p 2,2 second. we det,er.m.i’ne

training power allocation brings the main difficulty in the’h — 02407 S0t P = o®Fo}N Py’
training design, and the training period selection is eisigc the achievable throughpuit assuming all the slots including
critical. In this section, we will investigate the optimedining the training period are used for data transmission with the
design in EH systems and propose two training policies. transmit power equal to the DWF result in the respective slot
ie, R = SN, M;, where M; = exp (Ki) E, g_‘KL) is the
average throughput for thigh slot considéring the estimation
With the average throughput in (4) as the objective aretror; finally, we include the throughput loss due to thentirag
considering energy neutrality constraints, the optimaihing period, i.e.,R = ZfV:NtH M; = NNe SN = NN,
problem in EH communication systems is formulated as To summarize, Step 1 is to consider the effect of the estomati

oo, ~ ooy

A. Problem Formulation




error, Step 2 is adopting the DWF approximation while ignor- By applying (5) to the constant-rate EH case, the optimal
ing the time taken by training, and Step 3 is to take the tim¥,; for the constant-rate EH is the solution of

consumed by training back into consideration. While gyeatl ) (ﬂ _ 1)
simplifying the problem, this rate approximation presertlee 5 ,Con [1 + (ﬁ _ 1) i ] _ AN =0, (7)
essential tradeoff in the original training design problés., Ny opPpGEon] 14 G

the tradeoff between the resource consumed by training an Con o2 Py N, Con 1 1
the estimation performance. WhereGoon — P +a? P’ MO = exp (ztmm) Bi (7o)
3) Solution to the Simplified ProblemBased on previous and K €on — m;’;f;%.
. . . 3 t . .
two steps, the training design problem can be formulated as:Note that (7) is the exact optimal solution for a constant-
Problem 3: N rate EH system. Meanwhile, it also provides an approximate
max NN 57 exp (ﬁ) E (ﬁ) solution for a general EH communication system. Thus, we
., : .
st. 1<N,<N,N, €N, propose a second sub-optimal sol_u'uon to Problem 2 as fellow
o3 PN, Pry ) First, we equate the total energy in a given transmissiookblo
whereK'si = Sy o207, 5, » @nd allP; are determined o 4 general EH system with that of a constant-rate EH system,
through Step 1~3 ofAIgonthm 1. The solution for Problem &om which we can get an equivaledity, the average EH
is a sub-optimal solution for Pr?blem 2. rate. Then, the approximate solution is derived by solvire t
~ For simplicity, we denote: = <. Whenz is assumed con- training optimization problem for a constant-rate EH syste
tinuous, the objective function is concave, the proof ofahhi ith rate P;;. This provides a sub-optimal value of,. Once
is omitted due to space limitation. Through the derivativhw \ye get this value ofV,, the directional water-filling algorithm

respect tar we can get an implicit solution, i.e., the solutiontan be applied for power allocation in the data transmission
of Problem 3 is the solution of the following equation (th&tage to further improve the performance.

discretization part is omitted due to space limitation)

v ~ V. SIMULATION RESULTS
Z M, {1 + <£ _ 1> o’ } _ (E B 1) -0 In this section, we provide simulation results to show the
p Ny 0 PG 1+ G " importance of training optimization in EH communication
- (5) systems. We will compare the throughput performances of
whereG; = ;h+fi1;%' the optimal policy, two sub-optimal policies, and seversatdi
When N approaches infinity, we can get an asymptotittaining policies. The result of the optimal policy, i.ehet
solution of V;, and its ratio overV in closed form as solution of Problem 2, is obtained by exhaustive search. The
N IN N, 9 - suz-(()%timal sglutio_ns :ncllljd_e (5% afl_shsufl_)-ogtimgl_solutik;n_
=, = = an as sub-optimal solution 2. The fixed training pokcie
L+ vI+4NWw N 1+ VI+ANW include: fixing a t?aining period valuév,, fixing the trgirr])ing
where W = ; 2%1 MA ., and MA = period ratio&t, and the conventional fixing 1-slot policy, i.e.,
pIHI U(;:z;’;f (1*"0}2”;}1, ) N; = 1. These training policies will also be compared with
exp (ag;) E; agz " ' two performance upper bounds. One upper bound assumes
)

From the expréjgg,m of solution (6), we see that the Optirr%gprfect CSI and with the same EH process. It will be de_noted
training period is influenced by the block length and EH prdS “Upper bound 1". The second is the non-EH case with the
files. Generally speaking, a larger block length will result in s5@me total energy in each transmission block and adopting th
longer training periodN;, but a smaller training period ratio oPtimal channel training in_[5]. We shall denote it as “upper
a = 5t WhenN approaches infinity,N; also approaches bound 2.

infinity, while the ratioa approaches zero. In the simulation, we assume that_ the channel_ is distributed
] ] ash ~ CN(0, 1). Both the energy arrival process in each time
C. A Special Case — The Constant-rate EH Profile slot and the initial energy in the energy buffer are assumed

The constant-rate EH process can be used to approximatdoe Poisson distributed, with parameterset to be 1. The
any general EH system when the energy harvesting rate dagsrage SNR is also 1.The simulation is run for 1000 random
not change intensively. Thus, in this section we will shoatthEH realizations. We selecV, = 30 for the fixed training
the optimal solution of the constant-rate EH case can peovideriod scheme, and/; = 0.04N for the fixed training period
another sub-optimal solution for the general EH systemh witatio scheme. The results are shown in Figure 4.
the same average EH rate. This solution is very practical as i We see that the optimal policy and two sub-optimal policies
only needs the mean value of the EH profile, rather than &se very close to each other, and all have small gaps to
instantaneous realization. the performance bounds. The achievable throughput of sub-

To optimize N, for the constant-rate EH case, the gradiemptimal solution 2 is slightly lower than that of sub-optima
analysis of throughput shows that the optimal value for bo#folution 1. It should be emphasized that the sub-optimal
the training and transmission powers equals the EH rasmlution 2 does not need the instantaneous realizationeof th
denoted byPy, i.e., the transmit power is a constant in bottEH process, but only the average energy harvesting rateeof th
stages, and we only need to determivig the training period. process, which makes it more practical. We can also find that
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Figure 4. The comparison of different training schemes farious block  Figure 5. Performance of the optimal policy and the fixed qyofor N =

lengths assuming a Poisson EH process. 1250 with a Poisson EH process. The optimal policy adaptipéks a value
of N; for different energy profiles, while the fixed policy alwayBooses a
single N¢.

when N is small, the gaps between all the fixed policies and

the optimal one are very large, which means that we needt}ginin olicies to determine the training period and powe

adaptively adjust the training period for different EH plesi o segoewd of which is especiall attractisepas it onl rpo :

However, whenN is large, the throughput gaps between th}!}1 P y Y TeEp

fixed policies and the optimal one are not very big, exceé‘[formatmn about the average EH rate instead of the detaile

or . 1T means rat o a ow bty envormentg ) P n b tansission ik Furhermor e
i.e., with a largeN, it is feasible to select a fixed training y ' ¥t

period or ratio not only independent of the EH process bS?Iected fixed training period can provide satisfactory- per
also independent of the block length ’ “formance, which provides a practical option for systems tha

Next, we elaborate more on the fixed, policy, as we cannot adaptively adjust the training period.
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