
ar
X

iv
:1

20
7.

26
08

v2
  [

cs
.IT

]  
14

 J
ul

 2
01

2

Training Optimization for Energy Harvesting
Communication Systems

Yaming Luo, Jun Zhang, and Khaled B. Letaief,Fellow, IEEE
ECE Department, Hong Kong University of Science and Technology, Hong Kong

Email: {luoymhk, eejzhang, eekhaled}@ust.hk

Abstract—Energy harvesting (EH) has recently emerged as
an effective way to solve the lifetime challenge of wireless
sensor networks, as it can continuously harvest energy from
the environment. Unfortunately, it is challenging to guarantee
a satisfactory short-term performance in EH communication
systems because the harvested energy is sporadic. In this paper,
we consider the channel training optimization problem in EH
communication systems, i.e., how to obtain accurate channel
state information to improve the communication performance. In
contrast to conventional communication systems, the optimization
of the training power and training period in EH communicatio n
systems is a coupled problem, which makes such optimization
very challenging. We shall formulate the optimal training design
problem for EH communication systems, and propose two solu-
tions that adaptively adjust the training period and power based
on either the instantaneous energy profile or the average energy
harvesting rate. Numerical and simulation results will show
that training optimization is important in EH communicatio n
systems. In particular, it will be shown that for short block
lengths, training optimization is critical. In contrast, f or long
block lengths, the optimal training period is not too sensitive to
the value of the block length nor to the energy profile. Therefore,
a properly selected fixed training period value can be used.

I. I NTRODUCTION

In traditional wireless sensor networks, the limited energy at
each node constrains the network lifetime. Energy harvesting
(EH) is a promising technology which has the potential to
provide a powerful solution to achieve perpetual lifetime
without requiring external power cables or periodic battery
replacement [1]. Energy harvesting nodes can harvest energy
from the environment, including solar energy, vibration energy,
thermoelectric energy, RF energy, etc. With its highly self-
reliance capability, EH will undoubtedly play an important
role in future green communication networks.

However, employing energy harvesting nodes poses new
challenges related to the link and network design, as the
harvested energy is typically small and random. Thus although
EH technology improves the long-term performance, the chal-
lengingshort-term performanceneeds to be guaranteed. Pre-
vious works on EH networks have developed communication
protocols to either maximize the throughput or minimize the
transmission completion time, assuming perfect channel state
information (CSI) at the transmitter and receiver, e.g., [2],
[3], [4]. In [3], a directional water-filling (DWF) algorithm
is proposed to solve the transmit power allocation problem
in EH systems, while in [4], a generalized DWF algorithm is
proposed to solve a general utility maximization problem.

In a wireless communication link, CSI is important, e.g.,
for the receiver to decode the transmitted message, or for rate
adaptation at the transmitter. At the receiver side, CSI canbe
obtained by sending pilot symbols from the transmitter. There
exists a tradeoff between the training overhead and the training
performance. Specifically, spending too much energy or time
on channel training will reduce the energy or time for data
transmission. On the other hand, training with too little energy
or time will degrade the estimation performance. To maxi-
mize the throughput, the training period and training power
should be carefully selected. Previous studies have shown
that in conventional communication systems, training power
optimization and training period optimization aredecoupled,
of which the power optimizationis more important. In [5],
it was shown that for a point-to-point link without the peak
power constraint, the optimal training policy involves sending
one pilot symbol with optimized training power. However, in
EH communication systems, the training design is different
and is largely influenced by the low rate and randomness
property of the available energy. The selection of the training
period and training power in EH systems are coupled and both
will depend on the EH profile in the communication block.
Therefore, the training design in EH communication systems
is more challenging and plays a more important role.

In this paper, we investigate the training optimization prob-
lem in EH communication systems. We first characterize the
properties of the training design in an EH communication
system. We then propose two different training policies to
determine the training period and power. The first training
policy adaptively adjusts the training period based on the
energy profile in the whole transmission block, while the
second one is designed in an adaptive way according to
the average EH rate of the block. Simulation results will
show that training optimization is important to improve the
communication performance in EH systems, especially when
the transmission block is not very long. For long block lengths,
the optimal training period is not too sensitive to the valueof
the block length. Therefore, a fixed training period value can
be used if properly selected.

II. SYSTEM MODEL

We consider a point-to-point communication link where
the transmitter is an EH node, as shown in Figure 1. The
transmitter can only use the energy it harvests, and we assume
that all the harvested energy is used for communication.
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Figure 1. The basic system model.

The channel is characterized by block fading, and within a
coherence block, the channel gainh is constant withh ∼
CN

(

0, σ2
h

)

. The additive white Gaussian noise is denoted
as n with n ∼ CN

(

0, σ2
)

. The communication within one
transmission block includes two stages: the training stageand
the data transmission stage. The partition of the two stages
is in the unit of a time slotTS . The fading block length is
denoted asT , with N = T

TS
slots, while the training stage

length isTt, with Nt = Tt

TS
slots. During the training stage,

the receiver obtains an estimate ofh, denoted aŝh, through the
use of a pilot signal. The estimation error is denoted ash̃ with
h̃ = h − ĥ. Before the transmission stage, the receiver feeds
back the value of̂h to the transmitter. The feedback channel
is assumed to be perfect, while the case with unideal feedback
will be discussed in future work.

A. Energy Model

An important factor that determines the performance of an
EH system is theEH profile, which models the variation of
the harvested energy with time. Several different types of EH
profiles are shown in the left part of Figure 2. For convenience,
we plot all EH profiles inside a 2-D coordinate system of
accumulated energy versus time.

To demonstrate the property and impact of energy profiles,
we adopt similar EH assumptions as in [2], [3]. Specifically,
we assume that the energy profile in the considered transmis-
sion block is known before the communication starts. This
assumption is applicable for predictable energy models, such
as solar energy [6].

The utilization of the harvested energy is constrained by
the EH profile, and therefore theenergy neutrality constraint
exists in EH systems [7]. The energy neutrality means that
the energy consumed thus far cannot exceed the total energy
harvested. For simplicity, we assume that the EH node can
only use the energy harvested in the previous slots. If the
consumed power is denoted asP (t), the initial energy in the
energy buffer asE0, and the harvested energy in thekth slot
asEk, then the energy neutrality constraints can be expressed
as

ˆ lTS

0

P (t) dt ≤
l−1
∑

k=0

Ek, (1)

wherel is the index of the time slot withl = 1, 2, ..., N .
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Figure 2. The energy profile and feasible energy consumptionpolicies in the
2-D coordinate system of accumulated energy versus time. The left part plots
energy profiles, for two general EH cases, and two special cases: the non-EH
case and the constant-rate EH case. The right part plots the feasible energy
consumption domain and policies for a given EH profile, of which the bold
line is the EH profile, the area under it is the feasible domain, and a curve
connecting the bottom-left point and the top-right point inside this domain is
a feasible energy consumption policy, two examples of whichare shown.

As shown in (1), a certain EH profile determines afeasible
energy consumption domain, and only the policies inside this
domain arefeasible energy consumption policies, both of
which are plotted in the same coordinate system with the
EH profile in the right part of Figure 2. Due to the energy
neutrality constraint (1), we cannot use the energy arriving
in the future, but can back up the current energy for future
use. This causal energy constraint determines the directional
property of all power allocation policies in EH systems, which
will be discussed in more detail later.

Among all kinds of EH processes, there are two special
cases: thenon-EH case and theconstant-rate EHcase, as
shown in the left part of Figure 2. Here we treat the con-
ventional non-EH system, i.e., without the EH function and
only with the average power constraint, as an extreme case
of energy harvesting, in which all the energy arrives before
the first slot. This is equivalent to relaxing all the causal
energy constraints. The feasible energy domain of non-EH
nodes is the union of all the possible EH profiles with the
same total energy in a given time duration, so it provides the
bestperformance among all the EH profiles. Constant-rate EH
refers to the node that can harvest energy at a constant rate.
In this case, the profile can be considered as a deterministic
process. In practical systems, when the EH profile does not
change frequently or the block length is small, a constant-rate
EH profile is a good approximation of the energy profile in
each transmission block, with the mean of the EH process as
its harvesting rate.

The battery capacity is also an important factor for the EH
link performance besides the EH profile. In this paper we
assume that the energy buffer is of an infinite capacity, while
the case with a finite buffer capacity will be dealt with in
future work.

III. I MPACT OF CHANNEL TRAINING IN EH SYSTEMS

In this section, we first investigate the training policy for
EH systems and compare it with non-EH systems. We will
then develop power allocation for the data transmission stage.
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Figure 3. Comparison of the power allocation policies in thetraining stage
for non-EH and EH systems. The left and right figures represent the non-EH
and EH cases, respectively.

A. Training Stage in EH Systems

In the training stage, we denote the average training power
in the jth time slot asP̄j (1 ≤ j ≤ Nt), then the variance of
the estimation error with an MMSE channel estimator is [8]

σ2
h̃
=

σ2σ2
h

σ2 + σ2
h

∑Nt

j=1 P̄j

. (2)

We see that only the sum of average training powers matters.
This means that as long as the total training power is the same,
the training performance is fully determined, independentof
the training period or the power allocation inside this stage.
Thus, we will use the discrete-time expression ofPj = P̄j to
denote training powers.

Due to the causal energy constraint in EH systems, there
exists a big difference in the training design for non-EH
systems and EH systems. In the non-EH system without a
peak power constraint, the optimalNt is always 1 [5], as
shown in the left part of Figure 3. An intuitive explanation
is that we can always achieve a good training performance
with enough training power (as long as it is less than the
total power available). Meanwhile, we shall make the training
period as small as one time slot. Thus, what matters is the
power allocated for channel training rather than the training
period. However, this is not the case for the EH system.
Due to the stochastic EH profile, the energy arrival in the
first time slot may be very small, as shown in the right part
of Figure 3. Hence, fixing the training period as 1 slot will
generally provide an inaccurate channel estimation. The total
training power is largely determined by the training period,
which makes it more important than the power allocation, and
increases the difficulty of the training design.

In EH systems, we select such a training power allocation
policy that, for a givenNt, all the harvested energy for1 ≤
j ≤ Nt− 1 is exhausted, while there may be some energy left
at slot Nt, of which the value is optimized. This isoptimal
because it is not possible to find a smaller training period
N ′

t < Nt to achieve the same training performance.

B. Data Transmission Stage in EH Systems with Estimation
Errors

Considering the channel estimation error and the training
overhead, the average achievable throughput in each time slot

is

R = E
ĥ







1

N

N
∑

i=Nt+1

log2






1 +

∣

∣

∣ĥ

∣

∣

∣

2

Pi

σ2 + Piσ
2
h̃












. (3)

As shown in [9], this is a lower bound for the capacity with
channel estimation error and we will use it as the performance
metric in the paper.

By substituting (3) and adopting (9) in [10], this rate
expression can be finally transformed to

R =
1

N
log2 (e)

N
∑

i=Nt+1

exp

(

1

Ki

)

E1

(

1

Ki

)

, (4)

where Ki =
σ4
hPi

∑Nt
j=1

Pj

σ4+σ2σ2
h
Pi+σ2σ2

h

∑Nt
j=1

Pj

, and E1 (x) =
´ +∞

x
t−1e−tdt.

Different from non-EH systems that use a constant transmit
power in the data transmission stage, in the EH system, we
need to determine the power allocation between different time
slots, as the power allocated to each slot needs to satisfy the
energy neutrality constraint (1). For givenNt, ĥ andσ2

h̃
, the

power allocation problem is as follows:

Problem 1:

max
PNt+1,...PN

1
N

∑N
i=Nt+1 log2

(

1 +
|ĥ|2Pi

σ2+Piσ
2

h̃

)

s.t. TS

l
∑

i=Nt+1

Pi ≤ Ete +
∑l−1

k=Nt
Ek

TS

N
∑

i=Nt+1

Pi = Ete +
∑N−1

k=Nt
Ek

l = Nt + 1, ..., N − 1,

whereEte denotes the energy left from the training operation,
and is known before the optimization.

In Problem 1, the first constraint is the energy neutrality
constraint. In contrast to non-EH systems, even if the chan-
nel stays unchanged, the power still needs to be adaptively
allocated from slot to slot due to the causal EH constraints.
The second constraint means that at the end of the block,
the node needs to use up all the available energy, as we do
not consider the energy sharing between blocks to render our
problem tractable, while the case with block-to-block energy
sharing will be discussed in future work.

We make the following two comments on Problem 1. First,
similar to the training power, the data transmission power is
expressed in a discrete-time form, as it is optimal for the
power inside one slot to be constant due to the concavity of
the objective function. Second, as the training power and the
data transmission power are the same from the perspective of
energy consumption, we use the same notationP and only
distinguish between them by the time index.

The throughput expression with estimation errors satisfies
the condition of the directional water-filling (DWF) algorithm
[4], and thus the optimal power allocation follows DWF. Such
a DWF algorithm has a special property that the solution is
only determined by constraints, irrespective of the parameters



Algorithm 1 DWF algorithm for Problem 1 with differentNt

1) Initialization: Set integersk0 = 0 andn = 1.

2) Iteration: Iteratekn = arg min
k:k≤N

{
∑k−1

j=kn−1
Ej

k−kn−1

}

with n

adding 1 each time, untilkn = N , so finally an index
setK0 = {kn} is constructed.

3) Results forNt=0: The optimal power in theith slot is

pn =

∑kn−1

j=kn−1
Ej

kn−kn−1
for i ∈ [kn−1 + 1, kn], and a power

setP0 = {pn} is obtained forNt=0.
4) Update for Nt 6= 0: Reset k′0 = Nt, recalculate

k′1 = arg min
k:k≤N

{∑k−1

j=k′

0

Ej

k−k′

0

}

, then the index set forNt

is KNt
= {k′1} ∪ {all kn ∈ K0 that kn > k′1}.

5) Results forNt 6= 0: The power fori ∈ [k0 + 1, k′1]

is p′1 =

∑k′

1
−1

j=k′

0

Ej

k′

1
−k′

0

, while the other powers are un-
changed, then the power set forNt is PNt

= {p′1} ∪
{all pn ∈ P0 that pn > p′1}.

in the objective function. So in our problem the solution is
independent of̂h andσ2

h̃
, i.e., the estimation performance and

the value of the estimated channel gain do not have any impact
on the power allocation. This special property can largely
simplify the power allocation, as there is no need to completely
reallocate the data transmission power for different values of
Nt. We only need to execute the power allocation over the
whole block once forNt = 0, and update a few points for other
values ofNt. Accordingly, we develop an efficient algorithm
to solve Problem 1 for differentNt, as shown in Algorithm 1.

From Algorithm 1, we can see that for a givenNt, the
power allocation result consists of several intervals, andthe
power is a constant value inside each of these intervals. The
endpoint indices of all intervals form anindex setKNt

, while
the powers in these intervals form apower allocation set
PNt

. Furthermore, according to Steps 4 and 5 of Algorithm
1, for differentNt, the majority (i ∈ [k′1, N ]) of the transmit
power allocation is unvaried, while only asmall proportion
(i ∈ [k0 + 1, k′1]) changes withNt. This property brings the
possibility of decoupling the training power allocation and the
selection of training period, which will be used in the next
section for the optimal training design.

IV. OPTIMAL TRAINING DESIGN

As seen from the last section, in EH communication sys-
tems, the coupling of the training period selection and the
training power allocation brings the main difficulty in the
training design, and the training period selection is especially
critical. In this section, we will investigate the optimal training
design in EH systems and propose two training policies.

A. Problem Formulation

With the average throughput in (4) as the objective and
considering energy neutrality constraints, the optimal training
problem in EH communication systems is formulated as

Problem 2:

max
P1,...PN ,Nt

N
∑

i=Nt+1

exp
(

1
Ki

)

E1

(

1
Ki

)

s.t. 1 ≤ Nt < N,Nt ∈ N

TS

l
∑

i=1

Pi ≤
∑l−1

k=0 Ek, l = 1, 2, ..., N − 1

TS

N
∑

i=1

Pi =
∑N−1

k=0 Ek.

This problem has two difficulties: 1) the optimization ofNt

andPi are coupled; 2) the optimization variableNt exists in
the summation limit in the objective function, and only takes
discrete values. Due to the intractability of this problem,we
propose a sub-optimal solution in the next subsection.

B. A Sub-optimal Solution

Due to the difficulties of Problem 2, we adopt a DWF
approximation and a rate approximation to derive a sub-
optimal solution. Both of these simplifications have good
approximation properties, which will be verified by the simula-
tion results. In addition, for the special case of the constant-rate
EH, both approximations become equivalent to the original
problem. As commented in Section II, the constant-rate EH
model is a good approximation for the energy profile in each
transmission block in different EH systems, so our sub-optimal
solution will be in general close to optimal.

1) DWF Approximation:First, based on the property of
Algorithm 1 as discussed in Section III.B, we make an
approximation to decouple the training power allocation and
the training period selection. From Algorithm 1, the power
allocation in the whole transmission block only changes in a
small number of slots for different values ofNt. We make
an approximation that the power allocation is fixed for all
values ofNt, i.e., we ignore the possible changes of power
allocation in some slots for differentNt. This simplification
will decoupleNt andPi, so that we can perform the DWF
power allocation just once, and then optimizeNt over a fixed
power allocation result. In this way, we can get a sub-optimal
solution with low computational complexity.

2) Rate Approximation:With the DWF approximation, the
problem is still intractable, as the variableNt only takes
integer values and appears in the summation of the objec-
tive function. To further simplify the problem, we make
the following rate approximation: first, for a given value
of Nt, we calculate the estimation error assuming a con-
stant training power to equal the average EH rateP̄H , i.e.,
σ2
h̃

=
σ2σ2

h

σ2+σ2
h

∑Nt
j=1

Pj

≅
σ2σ2

h

σ2+σ2
h
NtP̄H

; second, we determine

the achievable throughput̂R assuming all the slots including
the training period are used for data transmission with the
transmit power equal to the DWF result in the respective slot,
i.e., R̂ =

∑N

i=1 Mi, whereMi = exp
(

1
Ki

)

E1

(

1
Ki

)

is the
average throughput for theith slot considering the estimation
error; finally, we include the throughput loss due to the training
period, i.e.,R =

∑N
i=Nt+1 Mi ≅

N−Nt

N

∑N
i=1 Mi =

N−Nt

N
R̂.

To summarize, Step 1 is to consider the effect of the estimation



error, Step 2 is adopting the DWF approximation while ignor-
ing the time taken by training, and Step 3 is to take the time
consumed by training back into consideration. While greatly
simplifying the problem, this rate approximation preserves the
essential tradeoff in the original training design problem, i.e.,
the tradeoff between the resource consumed by training and
the estimation performance.

3) Solution to the Simplified Problem :Based on previous
two steps, the training design problem can be formulated as:
Problem 3:

max
NT

N−Nt

N

∑N

i=1 exp
(

1
KSi

)

E1

(

1
KSi

)

s.t. 1 ≤ Nt < N,Nt ∈ N,

whereKSi =
σ4
hPiNtP̄H

σ4+σ2σ2
h
Pi+σ2σ2

h
NtP̄H

, and allPi are determined
through Step 1~3 of Algorithm 1. The solution for Problem 3
is a sub-optimal solution for Problem 2.

For simplicity, we denotex = 1
Nt

. Whenx is assumed con-
tinuous, the objective function is concave, the proof of which
is omitted due to space limitation. Through the derivative with
respect tox we can get an implicit solution, i.e., the solution
of Problem 3 is the solution of the following equation (the
discretization part is omitted due to space limitation)

N
∑

i=1







Mi

[

1 +

(

N

Nt

− 1

)

σ2

σ2
hPiGi

]

−

(

N
Nt

− 1
)

1 +Gi







= 0,

(5)
whereGi =

σ2
hP̄HNt

σ2+σ2
h
Pi

.
When N approaches infinity, we can get an asymptotic

solution ofNt and its ratio overN in closed form as

Nt =
2N

1 +
√
1 + 4NW

, α =
Nt

N
=

2

1 +
√
1 + 4NW

, (6)

where W =
∑N

i=1
MA

i

∑

N
i=1

σ4+σ2σ2
h
Pi

σ2σ2
h
P̄H

(

1−
σ2MA

i

σ2
h
Pi

) , and MA
i =

exp
(

σ2

σ2
h
Pi

)

E1

(

σ2

σ2
h
Pi

)

.
From the expression of solution (6), we see that the optimal

training period is influenced by the block length and EH pro-
files. Generally speaking, a larger block length will result in a
longer training periodNt, but a smaller training period ratio
α = Nt

N
. WhenN approaches infinity,Nt also approaches

infinity, while the ratioα approaches zero.

C. A Special Case – The Constant-rate EH Profile

The constant-rate EH process can be used to approximate
any general EH system when the energy harvesting rate does
not change intensively. Thus, in this section we will show that
the optimal solution of the constant-rate EH case can provide
another sub-optimal solution for the general EH systems with
the same average EH rate. This solution is very practical as it
only needs the mean value of the EH profile, rather than its
instantaneous realization.

To optimizeNt for the constant-rate EH case, the gradient
analysis of throughput shows that the optimal value for both
the training and transmission powers equals the EH rate,
denoted byPH , i.e., the transmit power is a constant in both
stages, and we only need to determineNt, the training period.

By applying (5) to the constant-rate EH case, the optimal
Nt for the constant-rate EH is the solution of

MCon

[

1 +

(

N

Nt

− 1

)

σ2

σ2
hPHGCon

]

−

(

N
Nt

− 1
)

1 +GCon
= 0, (7)

whereGCon =
σ2
hPHNt

σ2+σ2
h
PH

, MCon = exp
(

1
KCon

)

E1

(

1
KCon

)

,

andKCon =
σ4
hP

2
HNt

σ4+σ2σ2
h
PH (1+Nt)

.
Note that (7) is the exact optimal solution for a constant-

rate EH system. Meanwhile, it also provides an approximate
solution for a general EH communication system. Thus, we
propose a second sub-optimal solution to Problem 2 as follows.
First, we equate the total energy in a given transmission block
of a general EH system with that of a constant-rate EH system,
from which we can get an equivalent̂PH , the average EH
rate. Then, the approximate solution is derived by solving the
training optimization problem for a constant-rate EH system
with rate P̂H . This provides a sub-optimal value ofNt. Once
we get this value ofNt, the directional water-filling algorithm
can be applied for power allocation in the data transmission
stage to further improve the performance.

V. SIMULATION RESULTS

In this section, we provide simulation results to show the
importance of training optimization in EH communication
systems. We will compare the throughput performances of
the optimal policy, two sub-optimal policies, and several fixed
training policies. The result of the optimal policy, i.e., the
solution of Problem 2, is obtained by exhaustive search. The
sub-optimal solutions include (5) as sub-optimal solution1,
and (7) as sub-optimal solution 2. The fixed training policies
include: fixing a training period valueNt, fixing the training
period ratioNt

N
, and the conventional fixing 1-slot policy, i.e.,

Nt = 1. These training policies will also be compared with
two performance upper bounds. One upper bound assumes
perfect CSI and with the same EH process. It will be denoted
as “upper bound 1”. The second is the non-EH case with the
same total energy in each transmission block and adopting the
optimal channel training in [5]. We shall denote it as “upper
bound 2”.

In the simulation, we assume that the channel is distributed
ash ∼ CN(0, 1). Both the energy arrival process in each time
slot and the initial energy in the energy buffer are assumed
to be Poisson distributed, with parameterλe set to be 1. The
average SNR is also 1.The simulation is run for 1000 random
EH realizations. We selectNt = 30 for the fixed training
period scheme, andNt = 0.04N for the fixed training period
ratio scheme. The results are shown in Figure 4.

We see that the optimal policy and two sub-optimal policies
are very close to each other, and all have small gaps to
the performance bounds. The achievable throughput of sub-
optimal solution 2 is slightly lower than that of sub-optimal
solution 1. It should be emphasized that the sub-optimal
solution 2 does not need the instantaneous realization of the
EH process, but only the average energy harvesting rate of the
process, which makes it more practical. We can also find that
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Figure 4. The comparison of different training schemes for various block
lengths assuming a Poisson EH process.

whenN is small, the gaps between all the fixed policies and
the optimal one are very large, which means that we need to
adaptively adjust the training period for different EH profiles.
However, whenN is large, the throughput gaps between the
fixed policies and the optimal one are not very big, except
for Nt = 1. This means that in a low mobility environment,
i.e., with a largeN , it is feasible to select a fixed training
period or ratio not only independent of the EH process, but
also independent of the block length.

Next, we elaborate more on the fixedNt policy, as we
cannot changeNt in some practical systems. Considering
typical values of coherence bandwidthWc = 500kHz and
coherence timeTc = 2.5ms (from [11]) as an example, the
block length isN = 1250. Figure 5 compares the throughput
of the optimal policy with adaptively selectedNt and the fixed
policy with different fixed values ofNt. We can see that when
Nt lies in the interval[13, 128], the performance gap between
the fixed policy and optimal policy is within5%; while the
interval for a10% gap is[8, 189]. This indicates that as long
asNt belongs to a proper region, it is a fairly good policy to
fix Nt independent of the instantaneous EH process.

From these results, we see that if the training period can be
adaptively adjusted in each block, we can get the approximate
optimal value using the sub-optimal solution 2 in (7). On
the other hand, if the training period needs to be fixed, we
can select a proper fixed value according to the throughput
gap requirement, which will work well especially for the low
mobility environment.

VI. CONCLUSIONS

In this paper, we investigated the optimal training design
for EH communication systems, which was shown to be
quite different from conventional non-EH systems and poses
new challenges. We found that the training period should be
carefully selected, especially when the coherence block length
is not very long. In particular, we proposed two sub-optimal
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Figure 5. Performance of the optimal policy and the fixed policy for N =
1250 with a Poisson EH process. The optimal policy adaptively picks a value
of Nt for different energy profiles, while the fixed policy always chooses a
singleNt.

training policies to determine the training period and power,
the second of which is especially attractive as it only requires
information about the average EH rate instead of the detailed
energy profile in each transmission block. Furthermore, we
demonstrated that in low mobility environments, a carefully
selected fixed training period can provide satisfactory per-
formance, which provides a practical option for systems that
cannot adaptively adjust the training period.
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