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Abstract—The transfer-matrix technique is a convenient way
for studying strip lattices in the Potts model since the comp-
tational costs depend just on the periodic part of the lattie
and not on the whole. However, even when the cost is reduced,
the transfer-matrix technique is still an NP-hard problem since
the time T'(|V],|E|) needed to compute the matrix grows ex-
ponentially as a function of the graph width. In this work,
we present a parallel transfer-matrix implementation that scales
performance under multi-core architectures. The construgion
of the matrix is based on several repetitions of the deletion
contraction technique, allowing parallelism suitable to nulti-core
machines. Our experimental results show that the multi-coe
implementation achieves speedups &.7X with p = 4 processors
and 5.7X with p = 8. The efficiency of the implementation lies
between 60% and 95%, achieving the best balance of speedupdn
efficiency atp = 4 processors for actual multi-core architectures.
The algorithm also takes advantage of the lattice symmetry,
making the transfer matrix computation to run up to 2X faster
than its non-symmetric counterpart and use up to a quarter of
the original space.

I. INTRODUCTION
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high performance computing. It is in this last category veher
most of the scientific community lies, therefore parallel im
plementations for multi-core machines are the ones to have
the biggest impact. Latest work in the field of the Potts model
has been focused on parallel probabilistic simulations[[d]]

and new sequential methods for computing the exact partitio
function of a lattice [11], [12], [13]. To the best of our knbw
edge, there has not been published research regardindgparal
multi-core performance of exact transfer-matrix algarithin

the Potts model. The closest related research regardisg thi
subject has been the massive parallel GPU implementations
of the Monte Carlo algorithms [9], [14], which is out of the
scope of this research since they are not exact. Even when the
exact methods have much higher cost than probabilistic,ones
they are still important because one can obtain exact behavi
of the thermo-dynamical properties of the system such as the
free energy, magnetization and specific heat. Once thematri
is computed, it can be evaluated and operated as many times as
needed. It is important then to provide a fast way for commuuti

the matrix in its symbolic form and not numerically, since
the latter would imply a whole re-computation of the transfe

The Potts model [1] has been widely used to study physicdiatrix each time a parameter is modified. In this work, we
phenomena ofpin latticessuch as phase transitions in the have achieved an implementation that computes the symbolic

thermo-dynamical equilibrium. Topologies such as tridagu

transfer matrix and scales performance as more procesSors a

honeycomb, square, kagome among others are of high interedyailable. The implementation can also solve problemselarg

and are being studied frequently (see [2], [3], [4], [5]). &h
the number of possible spin states is sefjte- 2, the Potts

model becomes the classic Ising model [6] which has been

solved analytically for the whole plane by Onsager [7]. Unfo
tunately, for higher values af no full-plane solution has been
found yet. Therefore, studying strip lattices becomes araht
approach for achieving an exact but finite representation

the bidimensional plane. The wider the strip, the better th
representation. Hopefully, by increasing the width enqugh

some properties of the full plane would emerge.

One known technique for obtaining the partition function

0 ; . -
éexperlmental results such as run time, speedup, efficiency

than the system’s available memory since it uses a secondary
memory strategy, never storing the full matrix in memory.

The paper is organized as follows: section (Il) covers
preliminary concepts as well as related work, sectiong (Il
and (V) explain the details of the algorithm and the additib
?ptimizations to the implementation. In section (VI) we seBt

and knee, using different amount of processors. Sectioh) (VI
discusses our main results and concludes the impact of the
work for practical usage.

of a strip lattice is to compute a transfer matrix based on

the periodic information of the system. One should be aware
however that building the transfer matrix is not free of cémb

natorial computations and exponential cost algorithmdgadn,

the problem requires the computation of partition function

which areNP-hard problems [8].

With the evolution of multi-core CPUs towards a higher
amount of cores, parallel computing is not anymore limited

to clusters or super-computing; workstations can alsoigeov

II. PRELIMINARIES AND RELATED WORK

Let G = (V, E) be a lattice with|V| vertices,|E| edges
and s; be the state of apin of G with i € [1..q]. The Potts
partition functionZ(G, ¢, 3) is defined as

2(G,q,8) =3 e

T

1)
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where 8 = =, Kp is the Boltzmann constant aridG,)  only on the number of vertices)(2"n?")) with n = |V|.
is the energy of the lattice at a given stafe!. The Potts Asymptotically their method is better than DC considering

model defines the energy of a stafé with the following that many interesting lattices have more edges than vertice

Hamiltonian: However, Haggarcet. al. [19] have stated that the memory
usage of Bjorklund’s method is too high for practical usage
WGr)=—J > s, (2)  For the case of strip lattices, a full application of DC is not

(i,5)€Gr practicable since the exponential cost would grow as a foimct

of the total amount of edges, making the computation rapidly
intractable. Theransfer matrixtechnique, mixed with DC is

a better choice since the exponential cost will not depend on
the total length of the strip, but instead just on the sizehef t
period.

Where (i, j) corresponds to the edge from vertexto v;,
r € [1.¢/Vl], J is the interaction energyJ( < 0 for
anti-ferromagneticand J > 0 for ferromagneti¢ and d,, s,
corresponds to th&ronecker deltaevaluated at the pair of
spins (i, j) with statess;, s; and expressed as

As soon as the matrix is built, the remaining computations

0. 5. = { 1 if s =s; (3) become numerical and less expensive; matrix multiplica-
o 0 if s # s, tions (for finite length) or eigenvalue computations (fdiriite
The free energy of the system is computed as: length). Bediniet. al. [12] proposed a method for comput-
ing the partition function of arbitrary graphs using a tree-
F = —Tlog.(Z) (4)  decomposed transfer matrix. In their work, the authorsinbta

. . . . a sub-exponential algorithm based on arbitrary heurigtcs
As the lattice becomes bigger in the number of Vert'ce?inding a good tree decomposition of the graph. This method

ﬁ\??aftggb?es,vcir:ﬁ ;ﬁn;?(mg:l'g:ﬂgr Eg:tagn|9\) blﬁcogétsicreapld ¥ the best known so far for arbitrary graphs, but when agplie
P (¢"""). In p ' to strip lattices, it costs just as the traditional methdds,

an gquivalgn}_recursive method is more convenient than thﬁ'le tree-width becomes the width of the strip and the cost is
original definition. proportional to the Catalan number of the width. Therefore,

The deletion-contractiormethod, or DC method, was ini- it is of interest to use parallelism in order to improve the
tially used to compute the Tutte polynomial [15] and was therperformance of the transfer matrix problem when dealingp wit
extended to the Potts model after the relation found betweestrip lattices.
the two (see [16], [17]). DC re-defing%(..) as the following

recursive equation A strip lattice is by default a bidimensional gragh =

(V, E) that is periodic at least along one dimension. It can be
Z(G,q,v) = Z(G —e,q,v) +vZ(G/e, q,v) (5) perceived as a concatenationofsubgraphsk” sharing their

. ) . . ) boundary vertices and edges. LRtbe the set of all possible
G — e is the deletion operation, /e is the contraction  strip lattices, then we formally defing:

operation and the auxiliary variable = =%/ — 1 makes
Z(..) a polynomial. There are three special cases when DC
can perform a recursive step with linear cost:

(g +v)Z(G/e,q,v);  If {€} is a spike. is the special operator for concatenating the periods dkfine
2(G,q,v) = (|1VJ\F v)2(G —e,q,v); if {€} s a loop. gKi = (E;,V;) of heightm. Each period connects to the

T 5 it £={0}. other periodskK; | and K, except forK; and K,, which
are the external ones and connecktpand K,,_; respectively
(see Figure 1).

G{V,E}eP & EKZ{V’,E'}:Gzé)K ®)
1

The computational complexity of DC has a direct upper
bound of O(2/F!). When |E| >> |V| a tighter bound is
known based on the Fibonacci sequence complexity [18];

O((Hz—‘/g)"/‘*'E'). In general, the time complexity of DC can 4 B4 >4 > 4 S
be written as 2<K1><K2>4><K1>é Kn>52
D g b P o4 P4 P

Haggard's et al. [19] work is considered the best implementa Fig. 1: Strip lattice model with length and widthm.
tion of DC for computing the Tutte polynomial for any given
graph. Their algorithm, even when it is exponential in time,

reduces the computation tree in the presence of loops,-multi Th . tational chall h . i
edges, cycles and biconnected graphs (as one-step raw)ctio € main computational chaflenge when using a matrix
transfer based algorithm is the cost of building it because

An important contribution by the authors is that by using a., = > . . . X
cache, some computations can be reused (i.e sub-graphs t ¢ Size increases exponentially as a function of the width o

are isomorphic to the ones stored in the cache do not nee{) € strilp._The Erqblem c2)f1tha matrix Siﬁe hash been ir&proved
to be computed again). An alternative algorithm was progosePY analytic techniques [21]. However, the authors spedig t

; : 1 these techniques are only applicable to square and triangul
by Bjorklund et al.[20] which accomplishes exponentiahéi lattices using values of — 2 andq — 3 (Ising and three-state

1A stateG,. is a distribution of spin values on the lattice. It can be seen POtts respectively). For this reason, we prefer to use a more
a graph with an specific combination of values on the vertices general transfer matrix based on its combinatorial aspe/tis

T(G) = min (o@IE'), o(l%ﬁ)'“wl)




the advantage of being useful to any lattice topology, andnitial configurations denotedo; with ¢ € [0..C,, — 1],
allowing any value of; € R. define a combinatorial sequence of identifications just @ th
. . external vertices. Theerminal configurations denoted ¢;

To the best of our knowledge, there is no mention on ith j € [0.Cyy — 1], define a combinatorial sequence of
the effectiveness on parallelizing transfer matrix althoris identficati ; he shared : Initial L
for strip lattices in the Potts model. The core of our work is’! entifications just on the shared vertices. Initia confegions :
to focus on the multi-core parallel capabilities of a preaii generate terminal ones (qsmg the DC method) but not vice
transfer matrix method and confirm or deny the factibility \_ﬁ\]rsq. As S.tatﬁd befprléim :c.s the basic rc;‘ase and dmat_}:_rfégl.
of such computation to run in parallel. In order to achieve atis,oy Is the initial configuration where no identifications

parallelism, we use a transfer matrix algorithm based on %:e applied to the external vertices. It is equivalent asngay

modified deletion-contraction(DC) scheme. It is in fact a ato, is the dempnr/] pagrtmon of th?} Catalanhset. dSlml!arIy,
partial DC that stops its recursion when the edges to be’} corresponds to the base case where no shared vertices are
processed connect a pair of vertices of the next period. As identified. In other wordsy, is the empty configuration for
result, the partial DC generates many partial partitiorcfioms tefmciﬁé?lggn?% tu?gtitgr?ssEg\r/idavirr]g?(?r?\'uﬁ?%Isggggézash&ar]r? d

?es sgggﬁ ?réoe C_Iqu’]n ebslg?atgxal lggﬁ:ﬁ;g%ﬁf&gﬁ?%hﬁﬁﬁf eventually will contain less vertices as more identificasiare

by their combinatorial label, make a row of the transfer iratr performed.

A hash table is a good choice for searching and grouping terms The idea of the algorithm is to compute the transfer
in the combinatorial space of the problem. matrix M in rows, by repeatedly applying the partial DC,
each time to a different initial configuratioR,,, a total of
C,, times. Each repetition contributes to a row bdf. By
default, the algorithm cannot know tldg,, different sequences
of terminal and initial configurations except fok,, which
Our definition of K from section (Il) (Figure 1) will be s given as part of the input of the strip lattice and is the
used to model our input data structure. Given any stripcktti one that triggers the computation. This is indeed a problem
G, only the right-most part of the strip lattice is neededt thafor parallelization. To solve it, we use a recursive germrat
is, K. We will refer to the data structure of,, as K, to  ¢(A[ ][ ],s, H,S) that, with the help of a hash tablé,
denote the basic case where the structure is equal to thiealrig generates all th€',,, configurations and stores them in an array
K,, not having any additional modification. For simplicity 5. A[ ][ ] is an auxiliary array that stores the intermediate
and consistency, we will use ap-downenumeration of the auxiliary subsequences andis the accumulated sequence

vertices, such that the left boundary contains the first of identifications. Before the first call of(A[ ][ ], s, H, S),
vertices and the right boundary the last ones. We will A = [[0,1,2,...,m — 1]], s is null and H as well asS are
introduce the following naming scheme for left and rightempty.g(A[ ][], s, H, S) is defined as:

boundary vertices, this will behared and external vertices,
respectivelyShared verticesorrespond to the left-most ones,| 9 (A[I[].s .H,S){

i.e. the vertices that are shared witt},_; (see Figure 2) and if (fadd_sequence(s,H,S))

are indexed top-down frorfi to m — 1. External verticesare return .

the ones of the right side.¢., the right end of the whole strip for(int k=0; k<A.size (); k++)
lattice) of K,, and are indexed top-down frof’| — m — 1 for(int j=1; j<A[K].size (); j++){
to |V] — 1. for(int i=0; i<j; i++){

if (can_identify (A[k],i,j)){

IIl. ALGORITHM OVERVIEW
A. Data structure

Ki K Kni Kp 0o Ko, 3 CA = COpy(A)
data structure (,:S ::, COpy(S) )
—_— 1| 4 identify (cA,i,j,k,cs)
shared =~ 2 5 external divide (cA,i,j,k)
vertices vertices

g(cA,cs ,H,S)
Fig. 2: Example data structure for a square lattice of width= 3.

1

B. Computing the transfer matrix/.

Computing the transfer matrid/ is a repetitive process Basically,g(..) performs a three-way recursive division of the
that involves combinatorial operations ov&l,,. For a better domain A. For each identification pait, j, the domain is
explanation of the algorithm, we introduce two terminotsgi  partitioned into three sets; (1) the top vertices abgy@) the
initial configurationsandterminal configurationsThese con- middle vertices between j and (3) the vertices below. If
figurations define a combinatorial sequence of identificatio |j —i| < 3 then no set can be created in the middle. The same
for external and shared vertices, respectively, and coore$to  applies to the top and bottom sets if the distance fioon j
the set of all non-crossing partitions. Given the latticeltwi  to the boundary of the actual domain is less than 1. Each time
m, the number of initial and terminal configurations is thea new identificationi, j is added, the resulting configuration

sequence of the Catalan numbers:

m

1 2m\ _ (2m)! m+k
Cm_m—i—l(m) ~ (m+1)!m! _1};[2 k

is checked in the hash table. If it is a new one, then it is
added, otherwise it is discarded as well as further recarsio
computations starting from that configuration. Thanks te th
hash table, repetitive recursion branches are never caaput



Onceg(..) has finished,S becomes the array of all possible If we apply a lexicographical order to each sequence, we can
configurations and{ is the hash that maps configurations to avoid checking properties (10) and (11).

indices. At this point one is ready to start computing therirat
in parallel. We start dividing the total amount of rows by the
amount of processors. Each processor will be computing
total of C,,, /p rows. The initial configuration sequence needed.?_
by each processqy; is obtained in parallel by reading from
S[pi]. Once the configuration is read, it is applied to the
external vertices of its own local copy of the base c&Sg.
After each processor builds their correspondilig: graph,
each one performs a DC procedure in parallel, ‘without an
communication cost. This DC procedure is only partial beeau
edges that connect two shared vertices must never be delet
neither contracted, otherwise one would be processingcesrt
and edges of the next period of the lattice, breaking the ide
of a transfer matrix. An example of a partial DC is illustichite
in Figure 3 for the case when computing the first row.

Each processor must group its partial expressions thag shar

a commonterminal configurationso that in the end there is
nly one final expression; (¢, v) perterminal configuration
he list of final expressions associatedtésminal configu-
rations represents one row of the transfer matrix. The final
expressions become the elements of the row andettminal
configurationsare the keys for getting their respective column
indices. The terminal configuration sequence is neceskaty,

ot sufficient for knowing its indey in M. This is whereH
ggcomes useful for knowing with avera@¢l) cost what is the
actual indexj of a given terminal configuration sequence. As a
5esult, each thread can write their final expressions ;(q, v)
correctly intoM. The main idea of the parallelization scheme
can be illustrated by using Foster's [22] four-step strnateg
for building parallel algorithmspartitioning, communication,
agglomeration, mappingFigure 4 shows an example using

KK Kn1 K

2 p=2.
oood HHHT
/ \ M Partitioning R Oooono Communication HHHT
oood HHHT
......... msl=ls Baaa
L T~ D

<

Mapping Agglomeration

b

23 cl

z; {(a, V) z, {4, v) z, 4, v) 7, {a, V) z, {4, V)

Fig. 4: The parallelism scheme under Foster’s four stepgdesirat-
Fig. 3: An example of how terminal configurations are gersztat egy using two cores.
from the basic one.

Basically, the idea is to give a small amount®fconsecutive
When the DC procedure ends, there will be partial expressionrows to each processor (for examphe= 2, 4,8 or 16) with
associated to a remanent of the graph at each leaf of then offset ofk = pB rows per processor. If the work per row
recursion tree. Each remanent corresponds to the part of the unbalanced, then processing is better to be asynchrpnous
graph that was not computede{ edges connectinghared handling the work by a master process. The asymptotic com-
verticeg and it is identified by its terminal configuration. plexity for computingM under the PRAM model using the
Each one of these remanents specifies one ofthepossible CREW variation is upper-bounded by:
terminal configurations that can exist. For some probleros, n ~ C , L
all terminal configurationgre generated from a single DC, but T(Z) = O(=2(min(2/ ¥ 1.6182V'IFIET))  (13)
only a subset of them. That is why the generator function is p
so much needed in order for the algorithm to work in parallel,The complexity equals the cost of applying DC tim&g, in
otherwise there would be a time dependency among the D@arallel withp processors.

repetitions. When all processors end, the final transfer mafrixis size
: , , , . O X O

For eachterminal configurationy;, its key sequence is
computed dynamically along the branch taken on the DC 21,1(q: v) z12(¢:v) o z2,0m(q5v)
recursion tree; each contraction contributes with a pair of 7 — 221(q,v) 22(q,0) o Z2,0m(¢;v) (14)
indices from the vertices. Consistent terminal configoradi
sequences are achieved by using a small algebra that casnbine 2om,1(q,0)  zem2(q,0) - zom,om(q,v)
the identifications from contractions, made on thleared |f the strip lattice represents an infinite band, then thet nex
vertices An identification of two shared verticgs;, v;] will step is to make a numerical evaluation @ and study the

be denoted as; ;. Each additional identification adds up to ejgenvalues of\/. If the strip lattice is finite, then a initial

the previous ones to finally form a sequence of a terminatqngition vectorZ; is needed. In that cas#/ andZ; together

configuration., .y, + muzy, + - + 7o,y The following 50 5 partition function vectorZ based on the following
properties hold true for sequences: recursion:

— (10) Z(n)=MZ(n—1) (15)
Tap + Te.d = Ted + Tap (11) By solving the recurrence’ becomes:

Ta,b + Tb,e = Ta,b,c (12) 7= MnilZ_; (16)



Zy is computed by applying DC to each one of tlg, two terminal configurations,, andy; with keysn,, . ,, and
terminal configurations T, ..., FESPectively in the following way:

7y = (DC(K,,), DO(K ), ..., DO(K o, ) 17) Tar an = Toypb, € @ =(m—1) =bp_iy1  (20)
Under symmetry, the resulting matrix has a different nunari
sequence of sizes than the original which obeyed the
Calatan numbers. In this case, we denote the size of thexmatri
as D(m) and it is equal to:

The computation otZ, has very little impact on the overall
cost of the algorithm. In fact the cost is practically(m)
because a terminal configuration contains mosplikesand/or
loops which are linear in cost. Moreoveterminal states
can be computed even faster by using the serial and parallel
optimizations, but it is often not required. Computing the ]!
powers of M"~! should be done in a numerical context,

otherwise memory usage will become intractable. As m grows, theCTm term increases faster than the second
term. For big values ofn, D(m) =~ C;L. Table (I) shows the

Finally, the first element o/ is the partition function of = ate at which a non-symmetric and symmetric matrix grows as
studied the strip lattice. After this poinf is used to study a ,,, increases.

wide range of physical phenomenalvarez and Canforaet.

al. [23] have reported new exact results for strip lattices such ) ,

as the kagome of width = 5 using the sequential version of TABLE I: Growth rate of the size of\/ under non-symmetric and
this transfer matrix algorithm. symmetric cases.

m/!

2|

D(m) = CTm + (21)

|3

m | non-sym| sym

2 2 2

IV. ALGORITHM IMPROVEMENTS 3 5 4

. 4 14 10

A. Serial and Parallel paths 5 42 26
6 132 76

The DC contraction procedure can be further optimized ; 14423% 32(2)
for graphs that present serial or parallel paths along their o | 4862 | 2494
computation (see Figure 5). 10 | 16796 | 8524

serial paernallel We made two implementations of the parallel algorithm.
_ _ One using OpenMP [24] and the other one using MPI [25]. We

Fig. 5: Serial and parallel paths. observed that the MPI implementation achieved better perfo
mance than the OpenMP one and scaled better as the number
of processors increased. For this, we decided to continele th
research with the MPI implementation and have discarded the
OpenMP one. We chose a value Bf= 4 for the block-size
(the amount of consecutive rows per process). The value was
obtained experimentally by testing different values as grsw
of 2, in the rangel — 64. As long as the parallelization is

IMPLEMENTATION

Let v, and v, be the first and last vertices of a path, respec
tively. A serial path s is a set of edgee,es, ..., ¢, that
connect sequentially — 1 vertices between, andwvy. It is
possible to process a serial pathrofedges in one recursion
step by using the following expression;

(g +v)" — " balanced a value aB > 1 is beneficial. An important aspect
Z(K,q,v) = MY Y Z(K_s,q,v)+v"Z(K s, q,v) of our implementation is that we make each process generate
q its own H table andS array. This small sacrifice in memory

. (18)  leads to better performance than if and M were shared
On the other hand, parallel path p is a set of edges among all processes. There are mainly three reasons why the
e1, €2, ...,e, Where each one connects redundanglyandv,,  replication approach is better than the sharing approaih: (
formingn possible paths betweeqn anduw. Itis also possible  caches will not have to deal with consistency of shared data,
to process a parallel path efedges in one recursion step by (2) the cost of communicating the data structures is saved
using the following expression; and (3) the allocation of the replicated data will be cotyect
" placed on memory when working under a NUMA architecture.
Z(K,q,v) = Z(K_p,¢,0)+ [(140)" = 1] Z(K/p,¢,0) (19)  The ast claim is true because on NUMA systems memory
allocations on a given process are automatically placedsin i
B. Lattice Symmetry fastest location according to the processor of the CPU. It is
responsibility of the OS (or make manual mapping) to stiek th
process to the same processor through the entire computatio

A very important optimization is to detect the lattice’s
symmetry when building the matrix. By detecting symmetry,
the matrix size is significantly lower because all symmetric The implementation saves each row to secondary memory
pair ofterminal statesre grouped as one terminal state. As theas soon as it is computed. Each processor does this with its
width of the strip lattice increases, the number of symmetri own file, therefore the matrix is fragmented inidiles. This
states increases too, leading to matrices almost a half th&econdary memory strategy is not a problem because practica
dimension of the original. We establish symmetry between case shows that numerical evaluation is needed before using



the matrix in its non-fragmented form. In fact, fragmentéesfi  at full capacity. The&kneeis useful for finding the optimal value
allow parallel evaluation of the matrix easier. We will nover  of p for a balance between efficiency and computing time. It
numerical evaluation in our experiments because it is out ofs called knee because the hint for the optimal value @

the scope of this work. located in the knee of the curve (thought as a leg), thatds, it
lower right part. In order to know the value @f suggested
VI. EXPERIMENTAL RESULTS by the knee, one has to count the position of the closest point

to the knee region, in reverse order. Our results of the knee

We performed experimental tests for the parallel transfeg,. > 6 show that the best balance of performance and

matrix method implemented with MPI. The computer used forefficiency is achieved withp — 4 (for m < 6, the knee is
all tests is listed in table II. o

not effective since there was no speedup in the first plaoe). |
other words, whilep = 8 is faster, it is not as efficient as with

TABLE II: Hardware and tools used for experiments. p=4.
Hardware Detail
CPU AND FX-8350 8-core 4.0GHz B. Results on the kagome test
Ml implementation| apemnpt 1333Mhz For the test of the kagome lattice, we used 5 different strip

widths in the rangen € [2,6]. For each width, we measured
8 average execution times, one for each value af [1, 8].

Our experimental design consists of measuring the parall s a whole, we performed a total of 40 measurements for

performance of the implementation at computing the transfel !¢ kagome test. The standard error for the average exacutio
matrix of two types of strip lattices (see Figure 6); &buare times is below 5%. Additional performance measures such as
and (2)kagomgp P 9 ' speedup, efficiency and knee have also been computed. In

this test, we found that the block-size & = 4 was a bad

» » choice because the work per row was unbalanced. Instead,
we found by experimentation thd® = 1 makes the work
assignation much more balanced. In this test we can only use
lattice symmetry form = 3,5. We decided to run the whole
benchmark without symmetry in order to maintain a conststen
behavior for all values ofn (but we will still report how it

> » performs when using symmetry).

Square Kagome Figure 8 shows the performance results for the kagome
_ . _ strip test. We observe that the performance of the kagome
Fig. 6: The. two tests to be used for the experiments. The redipa  test is similar to that of the square test, but just a litthwdo
the input for the program. because the deletion-contraction repetitions on the geaph
not as balanced in computational cost as in the square test.
Nevertheless, performance is still significantly benefiaiad
the maximum speedup is stib.1X when p = 8 on the
For the test of the square lattice, we test 9 different strigargest problems. Whem > 5, the efficiency of the parallel
widths in the rangen € [2,10]. For each width, we measure implementation is over 60% for all values pf In this test,
8 average execution times, one for each valug@ af [1,8].  the knee is harder to identify, but by looking into detail twe t
As a whole, we perform a total of 72 measurements for théargest problems one can see a small curve that suggests
square test. The standard error for the average executi@sti  which is in fact 90% efficient when solving large problems.
is below 5%. We also compute other performance measurd=or the case ofn = 4, the knee suggesis = 2 processors
such as speedup, efficiency and Bmee[26]. In this tests, we  which is also 90% efficient.
made use of the lattice symmetry for all sizesnof

A. Results on the square test

When using symmetry on both tests, we observed an extra
Figure 7 shows all four performance measures for thémprovementin performance of up 20X for the largest values
square lattice. From the results, we observe that there isf m. This improvement applies to both sequential and parallel
speedup for every value pfas long asn > 4. Form < 4,the  execution. The size of the matrix transfer matrix is also im-
problem is not large enough to justify parallel computation proved under symmetry, in the best cases we achieved almost
hence the overhead from MPI makes the implementatiomalf the dimension of the original matrix, which in practice
perform worse than the sequential version. The plot of theraduces td /4 the space of the original non-symmetric matrix.
execution times confirms this behavior since the curvesscrod attices as the kagome will only have certain valuesnof
each other form < 4. The maximum speedup obtained waswhere it is symmetric. In the other cases, there is no other
5.7 when usingp = 8 processors. From the lower left graphic option but to do non-symmetric computation. For latticeshsu
we can see that efficiency decreasegascreases, which is as the square lattice, symmetry is always present.
expected in every parallel implementation. What is impurta
is that for large enough problemse(, m > 6), efficiency is
over 65% for allp. For the case op = 4, we report 94% of
efficiency, which is close to perfect linear speedup.#ox 6, The implementation used for all tests used a static sched-
the implementation is not so efficient because the amount ailer, hence the block-sizB. We also implemented an alterna-
computation involved is not enough to keep all cores workingive version used a dynamic scheduler. The dynamic schedule

C. Static vs dynamic scheduler
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Fig. 7: Runtime, speedup, efficiency and knee for differémtssof the square strip lattice.

was implemented by using a master process that handlaglith a higher amount of edges, such as the kagome lattice. In
the jobs to the worker processes. For all of our tests, théhe kagome tests, the results were very similar to the ones of
dynamic scheduler performed slower than the static sckedul the square, but slightly lower because the problem becomes
For extreme unbalanced problems, we think that the dynamimore unbalanced. A natural extrapolation of this behavior
scheduler will play a more important role. For the momentwould suggest that very complex lattices will be even more
static scheduling is the best option as long as problems staynbalanced. We propose to use dynamic scheduling for such
within a moderate range of work balance. complex cases and static scheduling for simpler ones.

The main difficulty of this work was not the parallelization
itself, but to make the problem become highly parallelizabl

In this work we presented a parallel implementation forwhich is not the same. For this, we introduced a preprocgssin
computing the transfer matrix of strip lattices in the Pottsstep that generates all possildgminal configurationswhich
model. The implementation benefits from multi-core paral-are critical for building the matrix. This step takes an gmsi-
lelism achieving up t&.7X of speedup withp = 8 processors. icant amount of time compared to the whole problem, making
Our most important result is the efficiency obtained for allit useful in practice. We also introduced smaller algoriitim
speedup values, being the most remarkable one 3t improvements to the implementation; (1) fast computatibn o
speedup with 95% of efficiency when usipg= 4 processors. serial and parallel paths, (2) the exploit of lattice synmyet
In the presence of symmetric strip lattices, the implenteria for matrix size reduction, (3) a set of algebra rules for megki
achieved an extraX of performance and used almost a quarterconsistent keys in all leaf nodes and (4) a hash table for
of the space used in a non-symmetric computation. accessing column values of the transfer matrix.

VII. CONCLUSIONS

Our experimental results serve as an empirical proof that In order to achieve a scalable parallel implementation,
multi-core implementations indeed help the computation osome small data structures were replicated among processor
such a complex problem as the transfer matrix for the Pottsvhile some other data structures per processor were cre-
model. It was important to confirm such results not only forated within the corresponding worker process context, mot i
the classic square lattice, but also for more complex kdtic any master process. This allocation strategy results iterfas
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Fig. 8: Runtime, speedup, efficiency and knee for differér¢ssof the kagome strip lattice.
cache performance and brings up the possibility for exiplgit Modern multi-core architectures have proven to be useful
NUMA architectures. for improving the performance of hard problems such as the

. . . . computation of the transfer matrix in the Potts model. In the
Even when this work was aimed at multi-core architectures, b

S . future, we are interested in further improving the algariti
we are aware that a distributed environment can become Ve yar 1o build more efficient transfer matrices
useful to achieve even higher parallelism. Since rows dhg fu '
independent, sets of rows can be computed on different nodes
In the case of static schedulinge(, no master process), there
will be no communication overhead because all processes
will know their corresponding work based on their rank and  The authors would like to thanRONICYTfor funding the
the block valueB. In the case of dynamic schedulinge,  PhD program of Cristobal A. Navarro. This work was pariall
master process), nodes will communicate sending single bytsupported by the FONDECYT project§® 1120495 andV®
messages, and not matrix data, resulting in a small overhead 20352.
which should not become a problem if the block valBes
well chosen.
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