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Abstract— Manipulating objects with robotic hands is a
complicated task. Not only the fingers of the hand, but also
the pose of the robot’s end effector need to be coordinated.
Using human demonstrations of movements is an intuitive and
data-efficient way of guiding the robot’s behavior. We propose
a modular framework with an automatic embodiment mapping
to transfer recorded human hand motions to robotic systems. In
this work, we use motion capture to record human motion. We
evaluate our approach on eight challenging tasks, in which a
robotic hand needs to grasp and manipulate either deformable
or small and fragile objects. We test a subset of trajectories in
simulation and on a real robot and the overall success rates
are aligned.

I. INTRODUCTION

Although manipulation of known objects is a well-studied
field, handling deformable or small, fragile objects with
human-level skill is a challenge. Behaviors for robotic hands
can be generated through various approaches, e.g., planning,
reinforcement learning, or imitation learning. We are inter-
ested in leveraging intuitive human knowledge to generate
data for imitation learning with a complex hand. Dataset
generation is difficult in this case. Kinesthetic teaching
becomes tricky when a 5-finger hand and the end effec-
tor’s pose need to be controlled. Teleoperation might not
exploit the full potential of the human demonstration due to
restricted movement or control difficulties. We propose to
use external sensors (motion capture) to track human hands
and transfer their states to robotic hands. To do this, we
infer the human hand’s state with a record mapping [1].
Next, we solve the correspondence problem [26], induced
by kinematic differences between human and robotic hands,
with an embodiment mapping [1].

Our goal is to develop a modular framework that allows
us to easily replace the sensor as well as the target system
(see Figure 1). For example, switching between different
optical methods, e.g., motion capture and camera-based hand
tracking, should be easy. For this reason, we use the MANO
hand model [29], which has previously been used in camera-
based hand tracking [19], as an intermediate representa-
tion of the hand’s state. The embodiment mapping should
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Fig. 1: Proposed approach to embodiment of hand motions.

also be configurable to handle multiple robotic hands. The
implementation is available at https://github.com/
dfki-ric/hand_embodiment.

II. BACKGROUND AND RELATED WORK
A. Motion Capture of Human Hands

Capturing human hand motions as fully articulated 3D
hand poses is demanding due to the dexterity of hands and
high angular velocities. Nevertheless, the task is well studied
and there are numerous solutions, including optical, non-
optical, and hybrid methods.

1) Non-optical Methods: Methods based on electromag-
netic transmitters [30], [22], [4], bending [14], [31], [6]
or stretch-sensors [5], [2], [15], inertial measurement units
[24], [20], [9], or even exoskeletons [28] are often inte-
grated as gloves. Caeiro-Rodrı́guez et al. provide a review
of commercial active smart gloves [3]. These methods are
suitable for real-time applications, but several problems, such
as complex calibration and noisy data with drift over time,
remain. Considering different hand shapes, it is not trivial to
place multiple sensors perfectly on the glove without loss of
accuracy or hand shape-dependent calibration methods.

2) Optical Methods: The continuum of optical methods
ranges from estimators based on markerless, monocular
color images to marker-based motion capture systems using
multiple cameras. Markerless methods, mostly based on deep
learning, led to groundbreaking progress in computer vision.
However, various factors such as lighting conditions, image
resolution, background and skin color can influence their
performance. Optical markerless approaches can be divided
into generative [34], [16] and discriminative methods [41],
[25], [27]. Depth information can improve the accuracy of
markerless optical methods. However, most methods reach
their limits in everyday applications because they generalize
insufficiently. Occlusion and self-occlusion when interacting
with objects are problems that can be addressed with multi-
view approaches [35], [36], [37], [32].
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Optical marker-based methods (motion capture, MOCAP)
are widely used in both the film industry to create realistic
animations [39] and for motion analysis in sports biomechan-
ics and rehabilitation [8]. With proper hardware and envi-
ronment, professional MOCAP systems estimate hand poses
more accurately than markerless methods. With a grow-
ing number of perspectives and higher camera resolutions,
marker detection accuracy, as well as robustness against
occlusions increase. However, such systems are expensive
and of little use outside of laboratories.

B. Human Hand Pose Models

Cobos et al. show that 24 degrees of freedom (DOF)
are suitable for modeling the high kinematic complexity of
human hands during manipulation [7]. Yet, no universal kine-
matic hand model is equally suitable for all capturing meth-
ods, and the number of measurement points varies between
different hardware setups. In non-optical methods, labeled
3D joints of hand and finger key points, as well as joint
angles, are commonly measured. Optical approaches usually
estimate labeled 2.5D or 3D joints, but not joint angles.
Mostly, labeled 3D points are assigned to a hand skeleton,
which is helpful for advanced applications. However, human
hand poses can also be represented as differentiable 3D hand
models such as MANO [29], whose surface mesh can be
fully deformed and posed. Compared to only regressing a
3D hand skeleton, this 3D hand mesh makes the method
usable for computer vision and embodiment mapping.

C. Embodiment Mapping

Embodiment mappings solve the problem of fitting move-
ments demonstrated by a human to a robotic target system.
The main challenge of this task is to deal with the differences
between kinematic structures and dynamics of humans and
robots. Previous works define complex objective functions
that have to be solved for a complete trajectory, and focus
on robotic arms [23], [17], [18] that have less variety in
kinematic design than robotic hands.

We aim to design an embodiment mapping for different
robotic hands and input modalities. This is achieved by using
MANO [29] as an intermediate hand state representation, i.e.,
as an adapter between input modalities and target systems,
while previous approaches only support one input modality
and only work with robotic arms.

D. Robotic Hands

We consider two robotic hands as target platforms: Pren-
silia’s Mia Hand, as an example of a simple, robust robotic
hand, and the Shadow Dexterous Hand of Shadow Robot
Company as an example of a complex, fragile hand.1

1) Mia Hand: The Mia Hand is a simple, but robust
robotic hand with 4 DOF that can be controlled at 20Hz. The
controllable joints are: thumb adduction/abduction (binary)
and flexion, index finger flexion as well as coupled flexion
of middle, ring, and little finger, which are controlled by the

1Although we mostly evaluate these two hands, the BarrettHand and the
Robotiq 2F-140 gripper are already integrated in the open source release.

Fig. 2: Motion capture experiment.

same motor. As it is not possible to quickly switch between
adduction and abduction of the thumb, we consider this joint
to be fixed.

2) Shadow Dexterous Hand: The Shadow Dexterous
Hand is complex as it has 24 DOF, of which 20 are controlled
actively at 500Hz. The last two joints of each finger (except
the thumb) are coupled, such that the last joint moves when
the previous one reaches the joint limit and vice versa.

III. MODULAR RECORD AND EMBODIMENT
MAPPING FOR ROBOTIC HANDS

We propose a modular framework to transfer human hand
motions to robotic hands. Modularity allows us to easily
adapt to new input modalities and target systems.

A. Desiderata

To transfer hand motions demonstrated by humans to
a robot, we define a record mapping and an embodiment
mapping. Our approach is designed to fulfill the following
criteria:
• The approach should be adaptable to different input

modalities by replacing the record mapping.
• Hence, the result of the record mapping should be a

common representation of human hand states.
• The embodiment mapping should be fast enough to

enable immediate transfer in teleoperation scenarios.
• The embodiment mapping should be able to adapt to

the target system through configuration.

B. Record Mapping for Motion Capture System

The objective of the record mapping is to estimate the
state of the MANO model from motion capture markers. We
use a Qualisys MOCAP system and a glove with 13 passive
markers (see Figure 2) for the right hand. Three markers on
the back of the hand and two markers per finger are used
to reconstruct the pose of the hand and the configuration of
each finger (see Figure 3a).

We use colors to distinguish between estimated or mea-
sured quantities and configuration parameters in formulas.
To estimate the pose Tworld,MANO ∈ SE(3) (read: active
transformation from MANO frame to world frame) of the
MANO model, we first derive the pose Tworld,hand ∈ SE(3)
of the hand based on three labeled markers on the back of



(a) Motion capture glove with
frame defined by markers at the
back of the hand.

(b) MANO model with ex-
pected marker positions indi-
cated by green spheres.

Fig. 3: Mapping from motion capture markers to MANO.

the hand. In accordance with the two-vector representation
[10], we define the hand frame orientation by the approach
vector (direction from right to front hand marker) and the
orientation vector (normal of the plane defined by the three
markers). The origin of the hand frame can be any point
in the plane of the three markers. Our frame convention is
shown in Figure 3a. When we know the fixed transformation
Thand,MANO ∈ SE(3), we compute

Tworld,MANO = Tworld,handThand,MANO.

With the known pose of the MANO model, estimat-
ing the finger states boils down to solving five individual
optimization problems. We compute each finger’s forward
kinematics, fβ,i,j(q) = pi,j , for the two points pi,1,pi,2
(see Figure 3b), where qi ∈ R9 are the joint angles of finger
i ∈ {1, ..., 5}. The resulting optimization problems for each
finger are defined as

q∗i = argmin
qi

∑2
j=1 ||p̂i,j − fβ,i,j(qi)||2 +R(qi)

subject to qmin
i ≤ qi ≤ qmax

i ,

where we penalize each joint angle individually in positive
and negative direction with R(qi) = ||max(wi,+◦qi,0)||2+
||min(wi,− ◦ qi,0)||2 with weights wi,+,wi,− ∈ R9 (◦
is the Hadamard product and min, max are element-wise
operators). qmin

i , qmax
i ∈ R9 are lower and upper bounds

for joint angles, and β ∈ R10 are shape parameters of
the MANO model. p̂i,j are measured positions of motion
capture markers. We solve these optimization problems with
sequential least squares programming (SLSQP, [21]) and
numerically estimated gradients.

The MANO model’s full state is defined by q∗i ∈ R9

and Tworld,MANO ∈ SE(3), from which we can compute the
corresponding marker points p∗i,j ∈ R3.

C. Embodiment Mapping

The embodiment mapping translates MANO states to
states of the target system, which is a combination of a
robotic arm and hand. Assuming that poses are reachable,

(a) Model of Mia hand with
expected marker positions.

(b) Model of Shadow dexterous
hand with expected marker po-
sitions.

Fig. 4: Extended kinematic hand models.

the robotic hand’s pose first needs to be matched to the mesh
pose, i.e., we must define Trobot,MANO ∈ SE(3).

Next, the individual finger configurations are optimized to
be as close as possible to the MANO mesh. Without real-
time constraints, the ideal solution is to define an objective
function to either maximize the overlap between the volumes
or to minimize the distance between the inner surfaces of
MANO’s fingers and the fingers of the robotic hand. With
the intention to be able to transfer motions in real-time, we
propose a simplified approach. We define points with respect
to the links of the robotic hands (see Figure 4) and minimize
the distance to their corresponding virtual markers on the
MANO mesh (see Figure 3b), for which the positions are
known from the record mapping.

Thus, the optimization of finger joints reduces to an
inverse kinematics problem, in which only the distance
between two pairs of points per finger i is minimized:

r∗i = argmin
ri

2∑
j=1

||fβ,i,j(q∗i )− gi,j(ri)||2,

subject to rmin
i ≤ ri ≤ rmax

i . fβ,i,j(q∗i ) is known from
record mapping and gi,j(ri) is the corresponding forward
kinematics function for the robotic hand with the joint angles
ri ∈ RNi and limits rmin

i , rmax
i ∈ RNi . The number of

optimized joints Ni ∈ N depends on the target system, as
e.g., the Mia hand’s index finger is controlled by a single
motor while the Shadow dexterous hand uses three motors to
control the index finger. The optimization problem is solved
by SLSQP.

D. Configuration

While we assume well-defined kinematics, it is necessary
to configure certain parameters of the record and embodiment
mapping. For this work, these parameters were configured
manually, however, this could be partially automated. For
instance, a black-box optimizer could set the shape parame-
ters for the MANO model to fit motion capture markers.

For the record mapping, we need to configure:
• Thand,MANO ∈ SE(3): transformation between MANO

base and hand coordinate frame defined by three motion
capture markers at the back of the hand

• β ∈ R10: shape parameters of MANO
• wi,+,wi,− ∈ R9: weights to penalize each joint angle

individually in both directions



No. Task Variations Demonstrations

1 Grasp insole from front or back 213
2 Insert insole - 12
3 Grasp small pillow from four sides 224
4 Grasp big pillow from four sides 130
5 Grasp electronic component from all sides 55
6 Assemble electronic components from all directions 54
7 Flip pages - 38
8 Insert passport in box - 37

Total 763

TABLE I: Overview of datasets used for evaluation.

Fig. 5: Objects used to record datasets. Left to right and top
to bottom: insole with markers, insole and bag, small pillow
with markers, open passport, passport and box, electronic
components with markers.

• qmin
i , qmax

i ∈ R9: joints’ lower and upper bounds
For the embodiment mapping, we need to configure
• Trobot,MANO ∈ SE(3): transformation between the

MANO mesh’s and the robotic hand’s bases
• expected marker positions (see Figure 4) with respect

to corresponding frames in the hand’s kinematic tree

IV. EVALUATION

A. Research Question

It has been shown that the state of the MANO model can
be obtained from RGB images [19]. Our goal is to evaluate
whether

1) It is possible to obtain the MANO representation from
motion capture data.

2) The embodiment mapping can be adapted to both
robotic hands.

3) The embodiment mapping obtains plausible configura-
tions of the robotic hand even when the target system
has less DOF than a human hand.

4) The transferred trajectories result in physically verified
useful behaviors of the target systems.

5) Both record and embodiment mapping can be executed
at a frequency suitable for teleoperation.

B. Datasets

To evaluate the hand embodiment mapping, we recorded
demonstrations of multiple tasks and variations of these with
a Qualisys MOCAP system. Table I describes the tasks and

(a) Dataset of 224 grasps for a small pillow.

(b) Dataset of 213 grasps for an insole.

Fig. 6: Two of the datasets used for evaluation. Object-
relative trajectories of the end effector are represented by
lines and coordinate frames that indicate the orientation at
the beginning and end. The large coordinate frames in the
middle define object poses.

reports the number of demonstrations for each of these.2

Objects that were used during these experiments are shown
in Figure 5 and visualizations of the end-effector trajectories
in Figure 6.

C. Estimation of MANO State (Qualitative Evaluation)

Marker positions were tracked with an error of about
1mm. We can also use them to evaluate the quality of the
estimated MANO states. Figure 7 shows exemplary mea-
surements of the motion capture markers with corresponding
estimations of the MANO model by the record mapping from
marker positions. Differences between the MANO state and
the actual hand mainly stem from inaccuracies of the MANO
configuration. In particular, shape and the placement of the
three markers at the back of the MANO model are different.
Marker placement also varies between experiments and even
within individual recordings.

Obvious differences between the estimated MANO state
and the actual hand state can be seen, e.g., in Figure 7a
(red ellipses): while the marker positions are closer to the
metacarpophalangeal joint of the real hand (see Figure 3a),
they are closer to the proximal interphalangeal joint of the
estimated MANO state. Furthermore, we can see in Figure
7b (red ellipses) that the lengths of the fingers do not
always match the corresponding marker positions. In the

2Only one subject was recorded because of COVID-19. We argue that
this is sufficient since parameters of the record mapping are tuned manually.



(a) Grasping and assembling electronic components.

(b) Grasping a small pillow.

(c) Grasping an insole.

(d) Flipping the page of a passport.

(e) Grasping a passport and putting it in a box.

Fig. 7: Exemplary configurations of MANO mesh after
record mapping and corresponding motion capture markers.
Simplified meshes that illustrate the position of the manip-
ulated objects are displayed with the markers that we used
to track their pose. For some objects we also see the object
frame. Illustrations were made with Open3D [40].

same example, the marker close to the metacarpophalangeal
joint of the middle finger is laterally shifted, which was due
to the marker not being perfectly aligned at the center of
the finger. Nevertheless, we can see in Figure 7 that the
estimated MANO states are generally plausible explanations
of the measured marker positions.

D. Adaptability to Robotic Hand (Qualitative Evaluation)

Figure 8 shows the result of an interactive embodiment
mapping. A GUI application was used to set the 48 joint
parameters of the MANO model. The embodiment mapping
determines joint angles of the robotic hand. Both the MANO
mesh and the configuration of the robotic hand are visualized.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8: Interactive embodiment mapping. MANO state and
robotic hand after embodiment mapping are displayed to-
gether. This visualization is based on Open3D’s visualizer
[40] and pytransform3d [13].

Figure 8 shows exemplary configurations of the Mia hand
(a – c) and configurations of the Shadow dexterous hand
(d – h). There are differences between the MANO mesh
and the robotic hand that the embodiment mapping cannot
compensate for: the Mia hand is slightly smaller than the
MANO mesh so that the little finger cannot be aligned
perfectly, and the little finger of the Shadow dexterous hand
is longer than the one of the MANO mesh. The Mia hand has
only 4 DOF, which results in a less accurate embodiment,
in particular when the middle finger, ring finger, and little
finger have a different flexion as these move jointly in the
Mia hand. There are also differences that occur due to an
inadequate objective: the Shadow dexterous hand is able to
minimize the positional difference between the finger tips
without having the correct orientation (see Figure 8d) and
as long as the tip positions are reached it does not matter
whether the joint angles are similar (e.g., see Figure 8h). As
it will become apparent in Sections IV-E and IV-H, the last
point is the price that we pay to for real-time control of a
robotic hand.



(a) MANO. (b) Mia hand. (c) Shadow hand.

Fig. 9: Contact surfaces of the MANO model and the robotic
hands are marked in red color.

Hand Thumb Index Middle Ring Little

Mia hand 12.2 8.3 17.4 23.3 30.2
Shadow dexterous hand 5.2 6.3 5.6 5.9 9.8
Robotiq 2F-140 28.6 13.4 - - -

TABLE II: Mean average distance (unit: mm) of contact
surfaces. One frame per demonstration (763) was selected.
A simple Robotiq gripper with 1 DOF is used as baseline.

E. Similarity Between MANO and Robotic Hand

We compare inner surfaces of fingers of the robotic hands
to the MANO mesh to evaluate the embodiment. Hence, we
define the contact surfaces of the MANO model and each
robotic hand for each finger that we compare (see Figure 9).

For evaluation we draw 100 points from the contact
surface of each finger of the robotic hand by Poisson
disk sampling [38], compute the minimum distance to the
closest triangle of the corresponding surface of the MANO
mesh per sample, and average these minimum distances
over all samples per finger. More precisely, we compute
1
N

∑N
i=1 minj∈{1,...,M} d(pi, Tj), where d(p, T ) is the dis-

tance between a point and a triangle [12], pi are points on the
contact surface of the robotic finger, Tj are triangles of the
corresponding finger of MANO, N is the number of samples
from the robotic finger, and M is the number of triangles
on the contact surface of MANO. The result is an average
distance between the two surfaces. Since the computation
is considerably slower than the embodiment, we do it for
selected cases only.

Table II shows that more DOF enable the embodiment
mapping to fit desired configurations more closely. The Mia
hand, e.g., has problems with fitting the middle, ring and
little fingers because they are controlled by the same motor.

F. Transfer to Simulation

We use PyBullet [11], one of the few physics engines
that support robots and deformable objects, to verify physical
plausibility of transferred motions. Since setting up realistic
simulation environments and modeling deformable objects
that have complex shapes is difficult, we focus on the tasks
of grasping an insole and a small pillow. We model them as
homogeneous objects with the stable Neo-Hookean model
[33] for hyperelastic material. For the insole we set Young’s
modulus to E = 100 kPa and Poisson’s ratio to ν = 0.2.
For the pillow we set E = 10 kPa and ν = 0.2.

(a) Insole and Mia hand. (b) Pillow and Shadow hands.

Fig. 10: Simulation with floating hands.

Object Samples Hand Success Rate

Insole 213 Mia 71.4%
Shadow 40.4%

Small pillow 224 Mia 92.8%
Shadow 65.2%

TABLE III: Success rates of simulated grasps.

We test whether the object can be held after the execution
of each grasp by simulating the effect of gravity. The objects
float initially (see Figure 10). After each completed grasp,
we evaluate its success by allowing the object to fall from
gravitational force. We continue the simulation for two sec-
onds and measure whether the object is still in the hand. To
exclude problems of reachability, we simulate only floating
hands without a robotic arm. Since the pillow is much
larger than both hands, the best strategy is to grasp it with
two hands. Hence, we execute the same demonstrated grasp
with two hands, where one trajectory is rotated 180 degrees
around the axis pointing up in the middle of the pillow, which
works because the pillow is symmetric. Otherwise a second
human hand would have to be recorded.

Table III shows the success rate of the embodiment
mapping for each combination of task and hand. Considering
morphological differences between the human hand and the
robotic hands 100% success rate is hardly achievable. De-
spite resembling MANO states more faithfully, the Shadow
hand does not perform better than the Mia hand in these
tasks. We attribute this to the fact that it is not necessary
to have many DOF to match the recorded human cylindrical
and pinch grasps. In fact, the geometry of the Mia hand
is better suited to grasp these two objects firmly than the
Shadow hand, mainly due to its big thumb. Note that we
expect grasping to work better when force sensors are
used as feedback. Thus, it is best to use the transferred
motion in combination with a controller that could, e.g., be
generated through reinforcement learning. Modeling contact
and friction of deformable objects in simulation is difficult.
Hence, we perform experiments on the real system to check
whether we can trust results from simulation.

G. Transfer to Real System

1) Methods: The trajectories generated by the embodi-
ment were tested in a real robot. The set-up comprises a
robot arm (UR10e, Universal Robots), a 6-axis force-torque
sensor (HEX-E v2, OnRobot) mounted at the wrist of the
robot arm, and an anthropomorphic artificial hand (MIA
hand, Prensilia). The target object is a deformable insole



bending at the edge of a table and the grasp point is outside
of the table. During the tests, the insole was positioned in
the same location by means of a mask. The arm and the
hand were controlled at a frequency of 100 Hz and 20 Hz,
respectively. The data from the embodiment mapping were
used to control the robot via a multi-node ROS environment.
The experiment included a subset of 80 trajectories differing
for grasp location (i.e., 40 tip and 40 heel), but characterized
by the same grasp type (i.e., cylindrical). The experiment
comprised of two experimental conditions. The first (Coordi-
nated Trajectories - CT), is aimed at assessing the capacity of
the embodiment to successfully transfer coordinated motions.
Thus, in this session, the reaching motion of the arm and the
grasping action of the hand were controlled in a coordinated
fashion as computed by the embodiment. The second (Se-
quential Trajectories - ST) sought to assess the success rate
when the reaching motion of the arm is accomplished before
the grasping action of the hand. For each trial, the robot
executed the trajectory of the arm and the joint trajectories
of fingers to grasp the insole. At the end, the robot moved
toward the human operator through a predefined trajectory.
The grasp was judged successful if the object did not fall
during the lifting and transporting phases (without changing
the object orientation as for the simulation). Finally, if the
grasping action of the robot succeeded, the human operator
pulled the object out of the hand along the direction of the
long fingers. In this phase, we recorded the magnitude of the
force at the wrist of the robot and used this data to indirectly
evaluate the stability of the grasp.

2) Results and discussion: Results of the experiments
are summarized in Table IV. Overall, the success rate is
83.8% (67 out of 80 trajectories) for the CT condition, and
62.5% (50 out of 80 trajectories) for the ST condition. This
trend is also confirmed by looking at the performances for
the different grasp locations. These results show that the
embodiment mapping preserves the benefits of the human
motor coordination in the action of grasping. Among the
different grasp locations, the heel has the highest success rate
(95% and 75% for the CT and ST conditions, respectively).
Successful trajectories can lead to stable or slightly stable
grasps, and we used the force recorded during the pull-out
phase to discriminate among these two classes. A grasp was
judged stable if the maximum of the magnitude of the force
is greater than a threshold of 2.8 N (this value was set based
on the performance of the sensor used). Overall, the success
rate of stable grasps is 72.5% (58 out of 80 trajectories)
for the CT condition. This result is aligned with the output
of the simulation, being 70% considering this subset of 80
trajectories (Table IV).

H. Real-Time Control Capabilities

One intended use case of the embodiment mapping is to
enable real-time control of a robotic arm and hand through
a motion capture system. A limiting factor is the frequency
at which we receive hand states from the motion capture
system, which is 100 Hz. We must generate commands
for the robotic hand from motion capture with a similar

Success rate Success (trajectories) #

C
oo

rd
in

at
ed

Tr
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ec
to

ri
es

Tip
All 72.5% 29 (40)

Stable 62.5% 25 (40)
Simulation 62.5% 25 (40)

Heel
All 95.0% 38 (40)

Stable 82.5% 33 (40)
Simulation 77.5% 31 (40)

Overall
All 83.8% 67 (80)

Stable 72.5% 58 (80)
Simulation 70.0% 56 (80)

Se
qu

en
tia

l
Tr

aj
ec

to
ri

es

Tip All 50.0% 20 (40)
Stable 42.5% 17 (40)

Heel All 75.0% 30 (40)
Stable 62.5% 25 (40)

Overall All 62.5% 50 (80)
Stable 53.8% 43 (80)

TABLE IV: Success rates and stability of the grasps for the
set of 80 trajectories executed in coordinated and sequential
fashion.

Ta
sk

no
. Record/Embodiment Mapping Frequency in Hz

MANO Mia Shadow

Frames mean min mean min mean min

1 42,285 99.7 5.1 228.0 15.0 178.7 0.7
3 31,020 65.8 5.9 261.1 102.2 136.7 9.0
6 16,984 95.2 7.7 293.9 123.1 180.7 10.5
7 15,484 63.4 9.1 263.1 108.5 128.0 0.7

TABLE V: Evaluation of speed. Results are statistics of each
frame of each demonstration of the task (only tasks with
>10,000 frames). Computations are done by one core of an
AMD Ryzen 7 2700 CPU. Task numbers refer to Table I.

frequency. Table V shows the frequencies at which we are
able to compute record and embodiment mapping. While
the lowest frequencies for both mappings prevent real time
control even with a control frequency of 20Hz for the Mia
hand, the average frequency of the embodiment mapping is
well above the frequency at which the motion capture system
provides measurements. The record mapping is often too
slow for 100Hz. Nevertheless, it is possible to split hand
pose estimation, which can be done at a high frequency, and
estimation of finger configuration, which does not need to
be done at a high frequency to control the Mia hand.

V. CONCLUSIONS

We show that MANO states can be obtained from MOCAP
in addition to the usual approach with one camera. Using
MOCAP allows for more complex, natural motions than
kinesthetic teaching and occlusions are less likely than with a
single camera. Furthermore, we introduce a modular frame-
work to transfer human hand motions to two robotic hands
with varying complexity through a configurable embodiment
mapping that is fast enough for complex robotic hands.
Even without feedback, most embodied trajectories could
successfully solve the task of grasping simulated insoles
and pillows. Real results are aligned with simulation. Ex-
periments also show that coordination between hand pose



and finger movements is more effective than sequential
execution, which emphasizes the relevance of our approach.
However, results could be improved with, e.g., reinforcement
learning. On the one hand this would considerably reduce the
necessary exploration for reinforcement learning and on the
other hand it would make transferred motions more robust.
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[37] R. Wang, S. Paris, and J. Popović. 6d hands: Markerless hand-tracking
for computer aided design. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, UIST ’11,
page 549–558, New York, NY, USA, 2011. ACM.

[38] C. Yuksel. Sample elimination for generating poisson disk sample
sets. Computer Graphics Forum (Proceedings of EUROGRAPHICS),
34(2):25–32, 2015.

[39] M. Y. Zhang. Application of performance motion capture technol-
ogy in film and television performance animation. In Instruments,
Measurement, Electronics and Information Engineering, volume 347
of Applied Mechanics and Materials, pages 2781–2784. Trans Tech
Publications Ltd, 10 2013.

[40] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for
3D data processing, 2018.

[41] C. Zimmermann and T. Brox. Learning to estimate 3d hand pose from
single rgb images. In ICCV, 2017. https://arxiv.org/abs/1705.01389.

http://pybullet.org
http://pybullet.org

	I INTRODUCTION
	II BACKGROUND AND RELATED WORK
	II-A Motion Capture of Human Hands
	II-A.1 Non-optical Methods
	II-A.2 Optical Methods

	II-B Human Hand Pose Models
	II-C Embodiment Mapping
	II-D Robotic Hands
	II-D.1 Mia Hand
	II-D.2 Shadow Dexterous Hand


	III MODULAR RECORD AND EMBODIMENT MAPPING FOR ROBOTIC HANDS
	III-A Desiderata
	III-B Record Mapping for Motion Capture System
	III-C Embodiment Mapping
	III-D Configuration

	IV EVALUATION
	IV-A Research Question
	IV-B Datasets
	IV-C Estimation of MANO State (Qualitative Evaluation)
	IV-D Adaptability to Robotic Hand (Qualitative Evaluation)
	IV-E Similarity Between MANO and Robotic Hand
	IV-F Transfer to Simulation
	IV-G Transfer to Real System
	IV-G.1 Methods
	IV-G.2 Results and discussion

	IV-H Real-Time Control Capabilities

	V CONCLUSIONS
	References

