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ABSTRACT 

We study the design of synthesis filters in noisy filter bank 
systems using an H” estimation point of view. The H m  
approach is most promising in situations where the statis- 
tical properties of the disturbances (arising from quantiza- 
tion, compression, etc.) in each subband of the filter bank 
is unknown, or is too difficult to model and analyze. For 
arbitrary analysis polyphase matrices, standard state-space 
Hm techniques can be employed to obtain numerical so- 
lutions. When the synthesis filters are restricted to being 
FIR, as is often the case in practice, the design can be 
cast as a finite-dimensional semi-definite program. In this 
case, we can effectively exploit the inherent non-uniqueness 
of the H” solution to optimize for an additional average 
performance and thus obtain mixed H2/H“ optimal FIR 
synt,hesis filt.ers. 

1. INTRODUCTION 

Multirate filter banks systems have been a subject of ex- 
tensive studies (see [I] and the references therein) and are 
widely used in many application areas (such as speech and 
image compression, joint source channel coding, adaptive 
systems, and others). The design of perfect reconstruction 
filter banks, capable of exactly replicating the input signal, 
has received particularly high attention. In most of the re- 
search, the subbands of the filter bank system are assumed 
noise free. Such an M-band filter bank system is illustrated 
in Figure 1. The analysis filters H t ( z )  decompose the input 
signal into subband components, which are then decimated 
by a factor of M .  The signal is reconstructed by upsam- 
pling by a factor of M followed by filtering with synthesis 
filters F, ( z ) .  Ideally, the synthesis filters are required to 
exactly reconstruct the delayed version of the input signal. 
However, the decimated signals in the subbands may be, for 
example, encoded and transmitted (as in speech comparison 
applications), or be coded for storage, at which point the 
signal may be compressed and some information lost. The 
perfect reconstruction approach studied in the literature, 
assumes no loss of information in the subbands. However, 
signal quantization and noise corruption in the subbands, as 
well as computational roundoff, are always present in prac- 
tical filter banks systems [2],[3]. Thus, noise in subbands 
must be carefully considered in systems design. 
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Figure 1: M-channel filter bank 
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In order to deal with noise-corrupted filter bank sys- 
tems, multirate Kalman synthesis filtering has been recently 
proposed [4]. The Kalman filtering approaches require a pri- 
ori knowledge of the (first and second-order) noise statistics. 
Therefore in applications involving compression, quantjza- 
tion, etc., where the noise statistics are not readily known, 
the performance of the synthesis filters may be suspect. 

H” estimation, on the other hand, requires no sta- 
tistical assumptions, performs a worst-case design, and is 
therefore robust with respect to noise uncertainty. The 
solution to Hm optimization problem, however, is highly 
non-unique (see, e.g., [8]) .  One way to remove this non- 
uniqueness is to optimize some other criterion besides the 
H” feasibility constraint. In this paper, we discuss a par- 
ticular choice for such a criterion which leads to so-called 
optimal mixed H 2  fH” filter banks. The existence of cor- 
rupting noises in the subbands of the filter bank systems 
is assumed throughout this paper. Analysis filters can be 
designed for good frequency selectivity (i.e., good coding of 
the input signal). Then the synthesis filters are designed 
to minimize the maximum energy gain from the unknown 
disturbances to the estimation errors, i.e., to minimize the 
worst-case reconstruction error to disturbance ratio. 

2. MODEL DESCRIPTION 

To begin our study, we will use a polyphase represent,ation 
of the filter bank shown in Figure 1. We can represent the 



Figure 2: Vector-mat~x equivalent structure 

analysis filter bank in terms of the M x A4 polyphase matrix 

Ho,o(z) HO, l (Z)  ' . .  HO,M - I ( z )  
H1,o(z) Hl,l(Z) ... H I , M  -I (2) 

H M -  1 ,o (2) H M -  1,l ( z )  . . . 

H ( z )  = 

where Hk,l is the Ith polyphase component of the kth anal- 
ysis filter. One can find the polyphase analysis matrix 
H ( z )  by performing a type-1 polyphase decomposition of 
the analysis filters as in [I], 

For the synthesis filter bank, we can define a polyphase 
matrix F ( z )  in the similar manner (see, e.g., [l]), and find 
it by performing a type-2 polyphase decomposition of the 
synthesis filters, 

Blocking the input and output leads to a so-called vector- 
matrix equivalent structure in Figure 2 .  The input signal 
U, (bold symbol denotes a vector) in Figure 2 is of the form 

U3 = [ U Z M  &A4-1  . . , ' 7 J d ~ 4 - - M + l ] ~  

We are interested in estimating the delayed version 
of the input signal (m > 0). The transfer matrix L(z )  in 
Figure 2 can be found as 

O ( M - k ) X k  4 M - k ) X ( M - k )  
Z - ' I k  x k 0 k x  (M- k) 

m = M d + k ,  k = O , l ,  ..., M-1.  

The system in Figure 2 is the standard model for a gen- 
eral estimation problem, where the goal is to design the 
causal linear time-invariant estimator F ( z )  to estimate the 
input sequence { u z - d }  from the observations {y,}. The 
performance of the estimator is evaluated according to an 
adopted criterion. For the reasons explained in the intro- 
duction, we will focus on Hm solution. 

The H" optimal solution is, in general, an IIR filter of 
the same McMillan degree as [ H ( z )  L ( z ) IT ,  which could 
be rather high (see, e.g., [SI). In practice, however, IJR 
synthesis filters are rarely used in filter bank applications. 

(One major reason is that finite-precision implementations 
may lead to limit cycles, or other forms of numerical insta- 
bility.) Therefore in the remainder of this paper we shall 
focus on FIR synthesis filters. This has one further advan- 
tage: the H" design procedure can be reduced to a finite 
(rather than infinite) dimensional semi-definite program, so 
that it is possible to effectively optimize the filter weights 
over criteria in addition to the H m  constraint. 

3. FIR SYNTHESIS FILTERS: STATE SPACE 
FORMULATION 

The induced transfer matrix mapping the unknown distur- 
bances U, and u-lni to the estimation errors is 

TF(z) = [ L ( t )  - F ( z ) H ( z )  - o F ( z ) ] ,  (1) 

where a2 represents the noise power. We assume FIR syn- 
thesis filters, i.e., 

F ( z )  = Fo + F1z-l + Fzz-? + . . . + F~-lz-(~-'). 
The state space equations for Tp(z) can be written as 

where 
AH 0 0 

BFCH 0 A F  
A T = [  0 AL 0 1 .  

CT = [-DFCH C L  - C F ] ,  

DT = - D F D H ,  
( A H ,  B H ,  C H ,  D H )  are the matrices in the state space real- 
ization of the transfer function H ( z ) ,  (Ah,  BL,CL,  D L )  are 
the matrices in the state space realization of the transfer 
function L ( z ) ,  and ( A F ,  BF, C F ,  D F )  are the matrices in 
the state space realization of the transfer function F ( z ) .  I t  
is easy to show that 

Cp = [FI . . . FL- I ]  , DF = Fo. 

Thus the design parameters (that is, Fo, . . . F L - I )  appear 
linearly in CF and D F ,  whereas all other system matrices 
in (2) are independent of the impulse response of F ( z ) .  

We now invoke a standard representation of the H ,  
norm as a convex constraint parametrized over the matrices 
obtained from the state-space representation. 

Theorem 1 Given matrices AT and BT in the state-space 
realization o f T F ( z ) ,  the solution to the optimal H -  recon- 
struction problem is given by 
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subject to 

A : X A ~  A ~ X B ~  c,T 
DT 

x > o  
Proof: The proof can be found in, e.g., [8]. 

W 
Notice that constraint (3) is an LMI (linear matrix in- 

equality) in X ,  CT and DT. This SDP can be solved using 
efficient algorithms such as the primal-dual method (171). 

4. MIXED H2/Hm SIGNAL 
RECONSTRUCTION 

As noted in introduction, the solution to the H"" estimation 
problem is highly non-unique. This is due to  the fact that 
the suboptimal H" problem (see, e.g., (61) is expressed as 
a feasibility problem, rather than an optimization problem. 
[Standard implementations of the H" feasibility problem 
yield the so-called central solution (see, e.g., [5]).] One way 
to remove this non-uniqueness is to optimize some other 
criterion besides the Hm feasibility constraint. A natural 
choice for a criterion in a filter bank reconstruction context 
is to minimize the H2 norm of the transfer matrix TF(z), 

By introducing an H" constraint to  the H2 optimiza- 
tion problem, we c m  exploit the non-uniqueness of the so- 
lution to the Hm problem in order to improve some other 
performance aspect of the estimator besides its obvious ro- 
bustness. This leads to the mixed H2/H" criterion (see, 
e.g., [SI), and results in the estimator wit.h the best aver- 
age performance among all estimators achieving the same 
optimal y-level. 

Problem 1 (Mixed H 2 / H "  Signal Reconstruction) 
Given y > 0, find a causal polyphase synthesis filter F ( z )  
that minimizes the H2 norm of the transfer functionTF(2) = 
[ L ( z )  - F ( z ) H ( z )  - u F ( z ) ] ,  subject to the H" norm of 
TF(z) being less than y. In other words, find a causal F ( z )  
that satisfies 

Note that, in the frequency domain, both the objective 
and the constraints are convex. While it is possible to solve 
the above problem by sampling in the frequency domain, 
this generally leads to an infinite-dimensional SDP, since 
we will have an infinite number of constraints (one for each 
frequency). Therefore, as in the pure Hw problem, in or- 
der to obtain a finite-dimensional SDP, we seek a way to  
restate the problem of finding the optimal H2/H" solution 
in terms of its state-space representation. To this end, as- 
suming the state-space description of the transfer function 
TF(z) in (2), we use the standard representation of the H2 
norm as an LMI constraint to formulate the mixed H2/H"" 
optimization problem as a SDP in state-space. 

Theorem 2 The mixed H2/H" signal reconstruction prob- 
lem (4) is equivalent to the following SDP: 

subject to (3), 

A $ Y A ~  - Y A $ Y B ~  
B , T Y A ~  B , T Y B ~  - I  

Y 0 I 0 D : ] > O  c; 
CT DT S 

Tr(S) - cy2 < o 
Y > 0. 

(5) 

Notice that y in (3 )  must be feasible, i.e., we must have 

7 5 IlTFllm = ?'opt. 

Proof: The proof can be found in 191. 

Moreover, as in the SDP formulation of the pure H" 
optimization problem, for a given delay and a given analysis 
filter length, the matrices AT and BT are fixed and both 
(3) and ( 5 )  are LMIs in X ,  Y ,  S ,  c y 2 ,  and CT and DT. 

5. SIMULATION RESULTS AND DISCUSSION 

In this section, we illustrate the performance of the H" 
optimal FIR synthesis filters given IIR analysis filters in 
a 2-band filter bank. As the H" approach does not put 
any constraints on the choice of the analysis filters, we may 
choose them arbitrarily. For simplicity, the fifth order But- 
terworth filters were chosen for the analysis filters. Further- 
more, we compare the average performance of the mixed 
H2/H" optimal reconstruction filters with the central Hm 
solution as obtained in 151. 

Figure 3 shows the largest singular value of the error 
transfer function. T F ( e J w )  as a function of frequency. Al- 
though the area under this curve is not, strictly speaking, 
the H 2  norm of TF(eJW) (since we also need to  add the 
contribution from the second singular value), it is some- 
what indicative of the H2 norm, and hence the average 
performance of the filters. Figure 3 clearly shows that the 
H2-optimal synthesis filter has the smallest area under the 
curve, which is a result of the fact that, under given stochas- 
tic assumptions, the H2-optimal synthesis filter have the 
best average perforniance among all possible causal synthe- 
sis filters. On the other hand, the H"-optimal synthesis 
filters yield the error spectra with the smallest peak. Thus 
the Hm-optimal synthesis filters (both central and mixed 
solution) guarantee the best worst-case performance among 
all causal estimators. 

I t  is also clear from Figure 3 that the H2-optimal syn- 
thesis filter can have poor performance if the disturbance 
signals have high frequency components, since the value of 
the error spectrum at  these frequencies is large. This is is 
indicative of the fact that H2-optimal filters may have poor 
robustness properties. The H" filters, on the other hand, 
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Figure 3: s[T~(ej~)] vs. w ,  y = yopt Figure 4: S N R ,  vs.m for worst-case input and noise signals. 

have inferior average performance. The central H”-optimal 
solution, in particular, has poor average performance, since 
the curve of I? [ T ~ ( e j ~ ) ]  is quite flat. The mixed H2/Hm 
solution, however, by virtue of its very construction, has an 
area under the 0 [T~(ej’’’)] curve that is comparable to  that 
of the H2-optimal solution. Thus it achieves close to opti- 
mal average performance, while being robust at the same 
time. 

To compare the performance of bhe various filters for 
the signal reconstruction application, we adopt the SNR of 
the input signal to the reconstruction error ((41) 

Figure 4 compares t.he average and worst-case perfor- 
mances (in terms of the above reconstruction SNR as a 
function of the delay, m) for the optimal mixed H2/H“, 
H2, and central H“ solution. The input signal and noise 
are modeled as white sequences yielding subband signal-to- 
noise ratios of OdB. Thus SNR,  measures the improvement 
with respect to 0dB obtained from performing reconstruc- 
tion. As can be seen from Figure 4, the mixed H2/Hm 
optimal reconstruction filters are on average slightly out- 
performed by the H2 optimal reconstruction filters. The 
average performance of the filters obtained from the cen- 
tral Hm solution, however, is significantly worse than that 
of either the H* or mixed H2/H* one. As mentioned ear- 
lier, this is clearly expected from Figure 3. As can be seen, 
the central H“-optimal and mixed H2/Hm-optimal filters 
significantly outperform the H2-optimal filter, in terms of 
the worst-case performance. 

In summary, the mixed H2/Hm-optimal filter appears 
to achieve the best of both worlds: it has average perfor- 
mance comparable to that of the H2-optimal solution, while 
it significant.ly outperforms this filter in terms of the worst- 
case performance. 
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