
FACTORING M-BAND WAVELET TRANSFORMS INTO REVERSIBLE INTEGER 

MAPPINGS AND LIFTING STEPS 

Tony Lin*, Pengwei Hao, and Shufang Xu 

Peking University, Beijing, China 

*
 This work was supported by NSFC project 60302005, FANEDD of China under Grant 200038, and KFAS ISEF.  

ABSTRACT 

In this paper, a matrix factorization method is presented 

for reversible integer M-band wavelet transforms. Based 

on an algebraic construction of orthonormal M-band 

wavelets with perfect reconstruction, the polyphase matrix 

can be factorized into a finite sequence of elementary 

reversible matrices that map integers to integers reversibly. 

We show that the reversible integer mapping is essentially 

equivalent to the lifting scheme, thus we extend the 

classical lifting scheme to a more flexible framework.  

1. INTRODUCTION 

For signal processing and pattern recognition, M-band 

wavelets have attracted considerable attention due to their 

ability to provide much more freedom than the classical 

two-band wavelets, and their close connection to M-

channel filter bank. However, the increased degrees of 

freedom make it challenging to design M-band wavelets 

with some useful properties.  

As there are M-1 wavelet filters and only one scaling 

filter in an M-band wavelet system, usually two-step 

construction procedure is applied to reduce the design 

difficulties. The first step is to design the scaling filter 

with K-regularity [8, 14], linear-phase [1], and other 

properties [2, 13]. Then in the second step, wavelet filters 

are chosen to meet some pre-specified conditions with the 

given scaling filter [1, 8, 14, 18]. The disadvantage of 

two-step construction is that the scaling filter and the 

wavelet filters are designed separately, and it can not fully 

exploit the freedom provided by M-band wavelets. In [4, 

10, 12], the lifting scheme is generalized to M-band 

wavelets. But due to the complexity, it is not easy to 

factorize a general M-band wavelet transform into lifting 

steps.

In [11] an algebraic construction of orthonormal M-

band wavelets with perfect reconstruction is presented 

based on matrix decomposition. It is natural to factorize 

the construction matrices further into lifting steps, or into 

elementary reversible matrices that immediately map 

integers to integers, which is proposed in this paper. In 

Section 2 we review some conclusions of the algebraic 

construction method [11], reversible integer mapping [3, 

7], and the lifting scheme [5, 9]. Section 3 describes the 

main results of our factorization, and Section 4 shows our 

factorization is equivalent to the lifting scheme. This 

paper is concluded in Section 5.  

2. PRELIMINARY 

2.1. M-band wavelets 

Suppose the filter bank matrix of M-band wavelets with 

length ML is ],,,[ 110 LAAAA , where 
jA  are M M

matrices with 2M  and 2L . The first row of A is for 

the low-pass filter, and other M-1 rows are for high-pass 

filters of the wavelets. Thus, the polyphase matrix is 
)1(

1

1

10)( L

L zzz AAAP .

The constraint conditions for an orthonormal M-band 

filter bank with perfect reconstruct property are as follows:  
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For the case of L=2 and L=3, the following results have 

been proved in [11]:  

For L=2, ],[ 10 AAA  satisfy (1) if and only if they 

have the following decompositions:  
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where Mnn 10
, and U and V are orthogonal matrices 

with 
1eeUV MT .
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For L=3, ],,[ 210 AAAA  satisfy (1) if and only if they 

have the decompositions 2,1,0, kT

kk VUSA , where 
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and U and V are orthonormal matrices and satisfy 

1210 )( eeVSSSU MT .

2.2. Reversible integer mapping 

An integer factor is defined as 1 for real numbers. A 

triangular elementary reversible matrix (TERM) is an 

upper or lower triangular square matrix with integer factor 

diagonal entries, and a single-row elementary reversible 

matrix (SERM) is a square matrix with integer factor 

diagonal entries and only one row of off-diagonal entries 

that are not all zeros. If all the diagonal entries are equal 

to 1, the matrix is called a unit TERM or a unit SERM.  

One important property for elementary reversible 

matrices is that we can use reversible integer mappings to 

approximate to them. For example, let ][ ijaA  is an M×M

upper TERM, the linear transform Axy  can be 

approximated by the following reversible integer mapping:  

MMMM

M

ij

jijiiii

xay

Mixaxay 1,,2,1,
1

where r  denotes the integer part of a real number r.

Because 
iia  is an integer factor that does not change the 

magnitude, the output 
iy  is an integer if the input 

ix  is an 

integer. Moreover, 
ix  can be recovered from 

iy  with the 

order 
11 ,,, xxx MM
.

The following result shows that normalized matrices 

with determinant 1 can be factorized into TERMs or 

SERMs, which has been proved in [7]:  

Lemma 1. If an M×M matrix A satisfies that det(A)=

1, then A has a unit TERM factorization of A=PLUS0

and  a unit SERM factorization of A=PSMSM-1…S1S0 , 

where P is a permutation matrix with det(A)=det(P), L a 

unit lower TERM, U a unit upper TERM, S0 a unit SERM 

with nonzero off-diagonal entries in the last row, and Sm

(m= M,M-1,...,1) a unit SERM with nonzero off-diagonal 

entries in the m-th row. 

2.3. The lifting scheme  

The lifting scheme was developed to construct second 

generation wavelets [16, 17], but it was found later that 

first generation wavelets can be also built with the lifting 

scheme [5]. The lifting scheme leads to fast, reversible, 

in-place implementation of wavelet transforms. We will 

show one example to illustrate the main idea.  

Consider the two-band Daubechies 4 wavelet 

transform [5, 9]. The filter form is  
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The polyphase matrix for the filter can be formulated as  
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The determinant of the polyphase matrix is –z-1. Usually 

the normalized polyphase matrix with determinant 1 is 

used, which can be given by  
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Then, a lifting factorization can be given by  
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Let the z-transform of an input signal s[n] be S(z), and its 

even and odd components are Se(z) and So(z). Then, the z-

transform representation of wavelet transform is given by  
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By the uniqueness of the z-transform representation, we 

have
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Sequentially, we obtain the following lifting steps:  
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From this example, we can see that the filter form, the 

matrix factorization, and the lifting steps can be converted 

from one representation into another [9]. In addition, the 

zm term in the lifting factorization corresponds to ][)( mns i

or ][)( mnd i  in the lifting steps.  
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3. FACTORIZATIONS 

In this section, we give the TERM or SERM factorization 

of  the polyphase matrix P(z) of an orthonormal M-band 

filter bank ],,,[ 110 LAAAA  with perfect reconstruction 

for the cases of L=2 and L=3.

3.1. The case of L=2

For the case of L=2, by (2), the polyphase matrix has the 

following form:  
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Because U and V are both orthonormal matrices, 

det(U)= 1 and det(V)= 1. By Lemma 1, U and V have 

TERM factorization of form PLUS0 and SERM 

factorization of form PSMSM-1…S1S0. The intermediate 

matrix  
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is equivalent to identity matrix, except for a translation of 

the input signal corresponding to the lower-right part. 

Thus, reversible integer mapping can be implemented for 

M-band wavelets of the case L=2. 

3.2. The case of L=3

For the case of L=3, by (3), the polyphase matrix has the 

following form:  
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and the transform with B can be implemented for 

reversible integer mapping directly, we only need to 

consider how to factorize the matrix  
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Noting that C, S, and C+S are all nonsingular, ISC 22 ,
and CSSC , and using the following useful equalities:  
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we can get many different reversible integer mapping 

factorizations. For the limitation of the paper length, we 

here just present four of them as below.  

1. The factorization with 3 TERMs: 
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2. The factorization with 4 TERMs: 
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3. The factorization with 4 TERMs: 
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4. The factorization with 7 TERMs: 
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Thus, reversible integer mapping can be implemented for 

M-band wavelets of the case L=3. 
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4. EQUIVALENCE TO THE LIFTING SCHEME 

It has been proved in [5] and [12] that any biorthogonal 

two-band or M-band wavelet transform can be obtained 

using lifting. This corresponds to a factorization of the 

polyphase matrix into a sequence of lifting matrices and 

one diagonal scaling matrix. A lifting matrix is a unit 

upper or lower triangular square matrix with nonzero off-

diagonal entries only in the first column or the first row.  

We show that the reversible integer mapping is 

equivalent to the lifting scheme. Obviously, a lifting 

matrix is a TERM or a SERM. On the other hand, a 

TERM can be converted into a sequence of SERMs [7], a 

SERM can be converted into a SERM corresponding to 

the first row by one row exchange and one column 

exchange only, and a SERM or a permutation matrix can 

also be factorized into lifting matrices. Then essence can 

be conveyed by the following simple examples. Let 
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5. CONCLUSION 

In this paper, we first review an algebraic construction of 

M-band wavelets, reversible integer mapping, and the 

lifting scheme. Based on the algebraic construction, the 

polyphase matrix can be factorized into a sequence of 

elementary reversible matrices that map integers to 

integers. These elementary reversible matrices can be 

further factorized into lifting matrices, which establish the 

equivalence to the lifting scheme, and allow us to 

generalize the lifting scheme to a more flexible framework. 

To find the general and optimal factorization for generic 

M-band wavelets is our future work.  
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