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ABSTRACT

In the case of multicomponent AM-FM signals, the ideal-
ized representation which consists of weighted trajectories on
the time-frequency (TF) plane, is intrinsically sparse. Recent
advances in optimal recovery from sparsity constraints thus
suggest to revisit the issue of TF localization by exploiting
sparsity, as adapted to the specific context of (quadratic) TF
distributions. Based on classical results in TF analysis, it is
argued that the relevant information is mostly concentrated in
a restricted subset of Fourier coefficients of the Wigner-Ville
distribution neighbouring the origin of the ambiguity plane.
Using this incomplete information as the primary constraint,
the desired distribution follows as the minimuml1-norm so-
lution in the transformed TF domain. Possibilities and limita-
tions of the approach are demonstrated via controlled numer-
ical experiments, its performance is assessed in various con-
figurations and the results are compared with standard tech-
niques. It is shown that improved representations can be ob-
tained, though at a computational cost which is significantly
increased.

Index Terms— time-frequency, localization, sparsity

1. TIME-FREQUENCY LOCALIZATION

1.1. AM-FM signals as time-frequency trajectories

If we consider a signal made of the superimposition of a finite
number of AM-FM components:

x(t) =
K

∑

k=1

ak(t) eiϕk(t),

it is natural to attach to it anidealizedTF distribution (TFD)
ρ(t, f) which essentially distributes the total energy along TF
trajectories according to:

ρ(t, f) =

K
∑

k=1

a2
k(t) δ (f − ϕ̇k(t)/2π) . (1)

In such a picture, each component is characterized at each
time instant by essentially one instantaneous frequency (which,

in a first approximation, can be identified to the phase deriva-
tive), weighted by the corresponding instantaneous power.

Except for very special cases, there is no general method-
ology to automatically get a distribution as in (1). In the case
of a single component (K = 1), it is well-known [6] that a
perfect localization can be attained for pure FM signals with
a linear modulation (a1(t) = 1 and ϕ̇1(t) = f0 + α t) by
using the Wigner-Ville Distribution (WVD):

Wx(t, f) =

∫ +∞

−∞

x
(

t +
τ

2

)

x∗

(

t −
τ

2

)

e−i2πfτ dτ. (2)

Although this property can be extended to some forms of
nonlinear FMs (e.g., Bertrands’ distributions for power-laws
[6]), it is generally at the expense of a substantially increased
complexity in the definition (and the computation) of the dis-
tributions, with furthermore the limitation of being adapted
to some specific type of FM only and to not extend to mul-
ticomponent situations. For this last point, the well-known
drawback of energy distributions is to obey a quadratic super-
position principle which creates cross-terms in between any
two components of a signal, and thus significantly reduces
the readability of Wigner-type distributions [6, 7].

1.2. Classical techniques of TF localization

The aforementioned difficulties have led to many develop-
ments during the last 20 years but, unfortunately, since both
localization and creation of cross-terms result from the very
same mechanism [7], it turns out that trying to impose simul-
taneously localization and cross-terms reduction is faced with
a trade-off that can be viewed as a form of time-frequency
uncertainty principle. The simplest way to understand where
this trade-off comes from and how to manage it is to interpret
the WVD in its 2D Fourier transform plane.

By definition, the WVD admits a 2D Fourier transform
which is referred to as theambiguity function(AF) and reads

Ax(ξ, τ) =

∫ +∞

−∞

x
(

t +
τ

2

)

x∗

(

t −
τ

2

)

ei2πξt dt.

If we introduce the TF shift operatorTξ,τ which acts on
signalsx(t) ∈ L2(R) as

(Tξ,τx) (t) := x(t − τ) e−i2πξ(t−τ/2),



we readily get thatAx(ξ, τ) = 〈x,Tξ,τx〉 and, by construc-
tion, the AF can thus be viewed as a TF correlation func-
tion. As such, an AF exhibits most properties of a corre-
lation function, including hermitian symmetry and the fact
that its modulus is maximum at the origin. Moreover, in
the case of multicomponent signals, the total AF consists of
both auto-componentsneighbouring the origin of the plane
andcross-componentsmostly located at a TF distance from
the origin which directly depends on the TF separation be-
tween the individual components and that are the Fourier im-
ages of the undesired cross-terms in the TF plane. This ob-
servation early prompted [5] to propose improvements upon
the WVD by weighting the AF around the origin of the plane
prior applying an inverse 2D Fourier transform: the more re-
stricted the weighting domain, the more effective the cross-
terms suppression but, at the same time, the more decreased
the TF localization. Although this procedure (which defines
Cohen’s class [6] on geometrical grounds) proved reasonably
effective, other approaches have also been proposed, which
basically exploit the phase information usually discarded in
simple quadratic distributions such as spectrograms (or scalo-
grams). In this respect, reassigned spectrograms [8] proved in
particular extremely efficient to approach (1) and will thus be
used in Section 3 for a sake of comparisons.

1.3. A sparsity perspective

If the analyzed signal is given in discrete-time and supposed
to be of dimensionN in time, its TFD is of dimensionN2

when computed overN frequency bins. However, assuming
that K ≪ N , i.e., that the number of components is much
smaller than the dimension of the signal, the targeted TFD
which is supposed to satisfy (1) is distributed over the plane
in a very sparse way, with onlyK 1D trajectories where at
mostK.N values are expected to be non-zero. Imposing such
a sparsity is therefore a new way of approaching the problem.

2. LOCALIZATION FROM SPARSITY
CONSTRAINTS

2.1. Principle

The principle of the approach is very simple. It consists in
selecting a suitable collection of AF samples neighbouring
the origin of the plane in a given domainΩ(ξ, τ) and search-
ing for the sparsest TFDρ such that its 2D Fourier transform
F{ρ} coincides with the original AF overΩ. Looking for a
perfectly spiky solution such as (1) would require to minimize
the total number of non-zero coefficients, i.e., thel0-norm of
the TFD. While this turns out not to be practicable from a
computational viewpoint, a series of recent works [3, 4] have
shown that a near-optimal solution can be attained at a sensi-
bly more affordable cost by minimizing thel1-norm, reduc-
ing the problem to the solving of a linear program. It is this
technique which is proposed to be followed here, the desired

localized TFDρ(t, f) being therefore the solution of the con-
strained minimization problem:

min
ρ

‖ρ‖1 ; F{ρ} − Ax = 0|(ξ,τ)∈Ω (3)

At this point, it is worth emphasizing that the specific con-
text we are interested in makes the proposed approach slightly
different from a classical recovery problem from an incom-
plete Fourier description. Indeed, the AF is by definition the
2D Fourier transform of the WVD, and there is no point in
recovering the latter from the knowledge of the AF overΩ.
The rationale is rather thatΩ conveys the essential informa-
tion about local features of the constitutive components of the
signal and discards cross-terms that limit readability. The re-
sulting TFD ρ(t, f) is therefore more “constructed” by the
procedure than “reconstructed” since it defines an idealized
object which does not existper seprior optimization.

2.2. Constraints

Exact vs. approximate— The primary constraint which is
given by (3) imposes a strict equality overΩ in the AF do-
main. This however can be relaxed [4] according to

min
ρ

‖ρ‖1 ; ‖F{ρ} − Ax‖2 ≤ ǫ|
(ξ,τ)∈Ω

, (4)

whereǫ is a user-specified bound. Both possibilities (3) and
(4) will be considered in the following.

Selection of Fourier samples— As far as the specification of
the domainΩ is concerned, a number of different possibilities
are also offered, in terms of both area and shape. Based on
Theorem 1.3 of [3], the cardinality ofΩ should be

card(Ω) = O
(

K.N. log(N2)
)

for the recovery ofK AM-FM trajectories ofN points each
in a TF domain of sizeN2. In practice, results given in [3]
suggest that the logarithmic term can be replaced by a con-
stant in between4 and8. Stressing again the fact that a per-
fect recovery of the WVD is not our objective and that as
much AF values outside from the origin as possible are to
be discarded, this constant term should be preferably cho-
sen smaller. As justified in the forthcoming Section 3, it
proved reasonably efficient in the simulations we conducted
to choosecard(Ω) ≈ N .

Concerning the shape of the AF domain onto which the
1/0 mask withO(N) non-zero elements is to be applied to
the AF, we chose here the simplest solution which is to make
use of a fixed square geometry. A refined procedure would
consist in selecting a domain whose geometry matches the
(data-dependent) structure of the AF near the origin (e.g., with
aRadially Gaussian Kernel[1]), but this will not be followed
up here because of space limitation.

Additional constraints— One particular interest of the ap-
proach based on optimization is that further constraints can
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Fig. 1. Synthetic example— Different TFDs are displayed in
the case of a 128 points signal whose TF model (1) is given in
the middle of the top row, in between the Wigner-Ville Distri-
bution (left) and a reassigned spectrogram (right). The bottom
row presents the results obtained from optimizations based on
the only knowledge of the13 × 13 Fourier samples of the
WVD neighbouring the origin of the AF plane. From left to
right: minimuml2-norm, exact minimuml1-norm according
to (3) and approximate minimuml1-norm according to (4)
with ǫ = 0.05 ‖x‖2. For all diagrams, amplitudes are color
coded logarithmically, with a dynamic range of18 dB.

be imposed besides (3) or (4). One can think, e.g., of the
marginalization properties attached to unit cross-sections in
the AF plane [6]. This however is not necessarily relevant
in the context of a sharp TF localization since, in the case of
multicomponent signals, highly oscillatory behaviours along
TF trajectories will be favoured. A more interesting variation
is to favor regular time evolutions, what can be achieved ex-
plicitly by imposing specific AF cross-sections or, implicitly,
by using as a starting point a time smoothed WVD.

3. EXAMPLES

The feasability of the method has been tested on simple, yet
informative examples. All the computations have been made
in MATLAB , with the TIME-FREQUENCYTOOLBOX1 for the
TF computations and thel1-MAGIC TOOLBOX2 for the opti-
mization.

Figure 1 compares different TFDs in the case of aN =
128 points signal made of the superimposition of a linear and
of a sinusoidal FM, both modulated in amplitude with a Gaus-
sian. In this example, the different optimizations have been
based on the only knowledge of the13 × 13 Fourier samples

1http://tftb.nongnu.org
2http://www.l1-magic.org
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Fig. 2. Rényi entropy andl1-distance— Using the same sig-
nal as in Fig. 1, the localization properties and proximity from
the model of the different TFDs are quantified in terms of the
Rényi entropy of order 3 (left, with the model entropy in thick
black line) andl1-distance (right), as a function of the relative
number of AF samplescard(Ω)/N used in the optimizations.

of the WVD neighbouring the origin of the AF plane, i.e., on
a subset of about1% only of the total number of AF coef-
ficients. From a qualitative point of view, it turns out from
this Figure that the approximate minimuml1-norm solution
(according to (4)) is very effective, even as compared to the
reassigned spectogram which is known to usually behave best
for this kind of signal (and whose window length has been
optimized so as to best fit the model in thel1-norm sense).
This appreciation can be quantified further in terms of both
the achieved performance with respect to the actual model,
and the influence of the cardinality of the AF domain from
which the optimization is conducted. This is reported in Fig-
ure 2 which displays both a localization measure (the Rényi
entropy of order 3 [2]) and thel1-distance to the model as a
function of card(Ω)/N . What is revealed by this Figure is
that both minimuml1-norm solutions are generally better lo-
calized (i.e., have a smaller Rényi entropy) than the other con-
sidered TFDs, with even an entropy that might be smaller than
the model one whose value is in this case6.37. In particular,
the exactl1 solution has always the minimum entropy but, as
evidenced by Fig. 1, this is due to an oversparse, discontinu-
ous, structure which results in a larger distance to the actual
model. The evolution of this distance shows that the best be-
havior is obtained with the approximate minimuml1-norm
solution, the minimum being obtained forcard(Ω) ≈ N .
Additionnally, it is worth noticing that, while the WVD we
started with is known to attain negative values and whereas
no positivity constraint has been imposed, the minimuml1-
norm solutions happen to be almost positive.



Fig. 3. Real data example— This Figure compares a reas-
signed spectrogram (left column) and the approximate min-
imum l1-norm solution (4) withǫ = 0.05 ‖x‖2 (right col-
umn) in the case of a bat echolocation call of effective length
N = 400, the optimization being based on the knowledge of
the 23 × 23 Fourier samples of the WVD neighbouring the
origin of the AF plane. The bottom row displays enlarged
versions of the distributions within the yellow boxes in the
top row. For all diagrams, amplitudes are color coded loga-
rithmically, with a dynamic range of18 dB.

As a complement to the synthetic example of Fig. 1, Fig-
ure 3 is concerned with some real data, namely the classi-
cal benchmark signal of a bat echolocation call3 of effective
lengthN = 400. In this case too, the approximate minimum
l1-norm solution (4) withcard(Ω) = 23 × 23 ≈ 1.3 N com-
pares very favorably with a reassigned spectrogram in terms
of localization, with even some smoother regularity along TF
trajectories.

Given the above reported findings, the new discussed ap-
proach is no doubt attractive in terms of ability to give sharply
localized TFDs in the case of AM-FM multicomponent sig-
nals. There is however a price to pay for this performance,
which is a quite heavy computational cost. For illustrating
this point, Table 1 reports the average computation times as-
sociated to the simulations of Fig. 2: one can see that, un-
der similar conditions, thel1-based TFDs differ from classical
ones by several orders of magnitude.

4. CONCLUSION AND PERSPECTIVES

A new approach has been proposed for getting sharply local-
ized TFDs in the case of multicomponent AM-FM signals by

3The authors wish to thank Curtis Condon, Ken White, and Al Feng of
the Beckman Institute of the University of Illinois for the bat data and for
permission to use it in this paper.

WV RSP l1-eq l1-err
average time (sec.) 0.16 0.30 52 175

Table 1. Computational cost— This Table reports the average
computation times associated to the simulations of Fig. 2. All
computations have been performed with MATLAB R2007a in
similar conditions (MacIntel Core2Duo 2.16 GHz).

making profit of the assumed sparsity of their energy distribu-
tion in the TF plane. Due to space limitations, only the princi-
ple of the method has been outlined and there is clearly plenty
of room for more thorough investigations and further develop-
ments. The selection of the Fourier samples in the AF domain
needs special attention in terms of both area and shape, and
it is expected that the use of adapted kernels (as proposed,
e.g., in [1]) might prove useful. Whereas the heavy computa-
tional load can be considered as a severe drawback, it is worth
stressing again that one advantage of the optimization-based
approach is that additional constraints can be envisioned so
as to satisfy specific properties in the TF plane (such as, e.g.,
regularity conditions related to smoothed marginals). Those
different points are under current investigation and will be re-
ported elsewhere.
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