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Abstract—In this paper, we consider the problem of collaboratively
estimating the sparsity pattern of a sparse signal with muiple measure-
ment data in distributed networks. We assume that each node akes
Compressive Sensing (CS) based measurements via random jactions
regarding the same sparse signal. We propose a distributed rgedy
algorithm based on Orthogonal Matching Pursuit (OMP), in which the
sparse support is estimated iteratively while fusing indies estimated at
distributed nodes. In the proposed distributed framework, each node has
to perform less number of iterations of OMP compared to the sprsity
index of the sparse signal. Thus, with each node having a vergmall
number of compressive measurements, a significant perfornmee gain
in support recovery is achieved via the proposed collaborate scheme
compared to the case where each node estimates the sparsitatiern
independently and then fusion is performed to get a global ésnate.
We further extend the algorithm to estimate the sparsity patern in a
binary hypothesis testing framework, where the algorithm fist detects
the presence of a sparse signal collaborating among nodesthvia fewer
number of iterations of OMP and then increases the number ofterations
to estimate the sparsity pattern only if the signal is deted.
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. INTRODUCTION

In the Compressive Sensing (CS) framework, a small cotiacti
of linear random projections of a sparse signal containficgrft
information for complete signal recovery|[1]+[3]. There ascon-
siderable amount of work on the development of computalipna
efficient and tractable algorithms to recover sparse sigfram CS
based measurements obtained via random projections, &g
in [4]-[12]. However, there are several signal processipgliaations
where complete signal recovery is not necessary. For exanipl
applications such as source localization in sensor nesdi&, [14],
estimation of frequency band locations in cognitive radeaworks
[15], localization of neural electrical activities from aide number
of potential locations in magnetoencephalography (MEG) elec-
troencephalography (EEG) for medical imaging applicati¢h6]—
[18], sparse approximation [19], subset selection in limegression
[20], [21], and signal denoising [22], it is only necessavyestimate
the locations of the significant coefficients of a sparseadign

A. Related work and our contribution

The problem of sparsity pattern estimation of sparse sighab
been addressed by several authors in the literature in titexdaf CS
[23]-[31]. These studies focus on CS based sparsity patteovery
with a single measurement vector. The achievable perfacmaan
be improved by having multiple observation vectors. Furthie
distributed networks including sensor networks and caatpar cog-
nitive radio networks, multiple measurements appear quaterally
since multiple nodes make observations regarding the sdme
nomenon of interest (Pol). Extensions of sparse signalvergowith
multiple measurement vectors are considered_in [32], [33Liming
that the multiple measurements are available at a singkitoc to
perform the desired task. In such centralized settingsh eade in
the network has to transmit its observations along with feenents
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inference tasks based on the observations collected atetfiff nodes
in distributed networks, the trade-off between the resegmnstraints
(e.g. node power and communication bandwidth) and the athie
performance gain is a core issue to be addressed in manycatact
networks. Thus, distributed approaches for sparsity pattecovery
are desirable in many practical distributed networks wieaeh node
has limited computational and communication power/badtwiThe
problem of distributed sparsity pattern recovery is comsd recently
in the context of cognitive radio networks in_[34], _[35]. Tke
decentralized consensus based algorithms for supporvescmf
sparse signals were proposed when each cognitive radiosnm@8e
based measurements in cooperative cognitive radio neswork

The work in this paper focuses on further reducing the comput
tional and communication burden at individual nodes in #itisted
network while performing sparsity pattern recovery wheoheaode
in the network observes a noisy version of the same sparsalsig
In contrast to transmitting raw observations along with sueament
matrices to a central fusion center to perform centralizearsty
pattern recovery, we consider the case where each nodedrfesl
an estimate of the sparsity pattern by collaboration anifusvore
specifically, we develop a greedy algorithm based on Orthabo
Matching Pursuit (OMP) where the indices of the sparse suppo
are iteratively identified while fusing the estimated iradicat each
iteration. We show that, in the proposed distributed atbati each
node has to perform less number of iterations compared tepiduesity
index of the sparse signal to reliably estimate the spapsitiern (in
the centralized OMP algorithm, at leakt iterations are required for
sparsity pattern recovery wheré is the sparsity index of the sparse
signal). Moreover, in the proposed algorithm, each nodestréts
only one index at each iteration. Further, we extend theltsesnd
develop a joint algorithm to both detect the sparse signal tan
perform the sparsity pattern recovery only if the sparsaeaids
detected.

Il. PROBLEM FORMULATION AND BACKGROUND
Consider a set of. distributed nodes making noisy measurements

on a sparse signal. We assume that each sensor node obtains a

M (< N)-length measurement vectgi via CS based linear random
projections. The measurement vectoi-#t sensor node is given by,

y. = 1)

fori = 0,1,---,L — 1. s is the N x 1 sparse signal and\; is

the M x N random projection matrix at theth node. The noise
vectorv; at thel-th sensor node is assumed to be iid Gaussian with
zero mean vector and the covariance matrfl; wherel,; is the

As + vy

pM x M identity matrix.

When the signas is sparse in the basig such that = ¥ 3 where
3 contains onlyK << N number of significant coefficients, it has
been shown that the randomized lower dimensional projestiof
the form [1) can capture significant information of the spasignal
s. Assume that one has to estimate the sparsity pattern ofraespa

of the measurement matrix to solve the sparse signal regovaignal which will give important information in many appdigons.

problem at the central fusion center. However, when peiifoggm

For example, if the signal is sparse in Fourier domain, tlations
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of non zero coefficients give the locations of significantnhamics only one index needs to be transmitted by each node for futfiois

which is important in spectrum sensing in the wideband regim  reducing communication cost compared to that with distetl.asso
Let U be the support of the sparse coefficient vegiowhich is versions proposed in_[34]._[35]. We dub the proposed algorigs

defined asi/ := {i € {1,2,--- ,N} | B(¢) # 0} where3(7) is the ‘Distributed and collaborative OMP (DC-OMP)'.

i-th element of3 for i = 0,1,--- , N — 1. Then we havek' = n(U) Distributed and collaborative OMP for sparse support estimation:

wheren(S) denotes the cardinality of the s8t Further, letb be a Define M, to be the set containing the neighboring nodes of the

N-length vector which contains binary elements: i.e. I-th node (including itself). As defined in Subsectlah 11, 1étbe the
‘ 1 ifB() #£0 support s_et which contains the_indices of non zero coeffisiefithe
b(i) = { 0 otherwise sparse signal antf; be the estimated support set at théh node.
Further, let®; = A;¥ and 6, ; be thei-th column of the matrix
fori =0,1,--- , N—1 andb be the estimated binary support vector©:. ©;(A) denotes the submatrix &, which has columns 08,
Sparsity pattern recovery with a single measurement vemdar corresponding to the elements in the sefor A C {0,1,--- , N —

be performed via a CS reconstruction algorithm such as aeigad 1}. |.| denotes the absolute value whilgl|, denotes thd, norm.
least square algorithm (Lass®) [1]. [36] or OMP [8]. When tiplé  Further,n(S) denotes the cardinality of the s8tas defined before.
measurement vectors as [ (1) are collected at a centrdbzation, In the proposed DC-OMP algorithm which is stated in Algarith
the support of the sparse signal can be estimated, for eeamfll, once thei-th node finds an indexX;(¢) (which corresponds to
by solving the simultaneous OMP algorithm as given[in| [323][3 the column that is most correlated with the remaining parygf
in which the support can be directly estimated iterativelyhwut ~ at iterationt by performing step 2 in Algorithril1, it is exchanged

reconstructing the complete sparse sigfal among the neighborhoadi1;. Subsequently, each node will have the
index that the nodes in its neighborhood obtained from stepy2
I1l. SPARSITY PATTERN RECOVERY WITH MULTIPLE fusion, each node selects a set of indices (freM;) number of
MEASUREMENT VECTORS DISTRIBUTED ALGORITHM indices) such that most of the nodes agree upon (more defdités

To imp|ement a centralized Sparsity pattern recovery algur fusion are pI’OVided in Subsecti-l). Note that, in t$1|ep several
based on the measurements collected at distributed nodes ifndices can be selected and thus, the number of iteratiojsreel to
distributed network, it is required that each node trarsriti M/- estimate the support that each node has to perform can béhss
length observation vector along with the elements of thesmeanent the sparsity indexs’.
matrix to a central fusion center. Since transmitting alitiformation
to a fusion center is not desirable in power and bandwidtisttaimed Algorithm 1 Distributed OMP for sparsity pattern estimation
communication networks, we consider a distributed schemehich, At j-th node:
sparsity pattern estimation is performed via collaborateimong 1
nodes with less communication and with each node estimalkiag
sparsity pattern. In[[34],[[35], several consensus bassttillited
schemes are proposed to estimate the support of sparsdssigna A (t) = arg maz | <rie-1,000 > |
based on Lasso. These schemes estimate the full suppott esstha ! W:gl’“. N [lr1,e—1]2
node and then perform fusion via several collaboration mese . . . ok
However, due to computational complexity, performing loast 3) Update the |nde>f sex; (¢) via Igcal communlcatlon%\l (t) =
power constrained sensor nodes may not be desirable. Jea(), {x(0)}i € Ml),*as discussed in subsection li-1

OMP is a greedy approach in which at each iteration, theitocat ~ 4) Setthi(t) = Ui(t — 1) U{A/ (t)} andl, = n(U(t))
of one non zero coefficient or a column ® = AW that participates ) Compute  the  projection _ operator P,(t) =
in the measurement vectgris identified. More specifically, at each O1(th(t)) (@l(zfll e)re (t))) O, (U (t))T. Update
iteration, it picks the column oB which is most f:orrelat_ed yvnth_ the residual vectort; , = (I — P, (t))y;
the remaining part oy. Thgn the selecteq column’s cqntrlbutlon IS 6) Incrementt = ¢ + 1 and go to step 2 if, < K, otherwise, set
subtracted frony and iterations on the residual are carried out. If we Y

. . ) . U, =U (t)
consider one sensor node, at each iteration, ther&ard< possible
incorrect indices that can be selected by the OMP algorithhe
probability of selecting an incorrect index at each itenatincreases 1) Performing step 3 in Algorithm To perform step 3 in
as the number of CS measurements at each nbfledecreases. It Algorithm[I we propose the following procedure.
has been shown that the OMP algorithm requires more measutem Case |: Consider the case where tligh node can broadcast its
for signal reconstruction compared to optimization based.(Basis estimated index at each iteration to the rest of the nodeshén t
Pursuit (BP)) algorithms. However, due to limitation of pessing network. i.e. M; = M where M contains the indices of all
power at each node in many practical distributed networkss i the nodes in the network. This is a reasonable assumptiom whe
desired to have multiple nodes each processing a small nuafbe there are only a small number of nodes in the network (e.g.
measurements. Since all the nodes in the network observeathe cognitive radio networks with & — 10 cognitive radios). During
sparse signal, it is highly likely that the estimate of theldx at each iterationt of the distributed OMP algorithm, théth node
multiple nodes is the same at a given iteration of OMP. To cedubroadcasts\;(¢). Consequently, thé-th node receives the estimates
the error in incorrectly selecting an index at each iteratid OMP  \;(t)'s for i+ € M from the whole network. Further, let(t)
with less number of compressive measurements, we propdssdo be a L-length vector that contains all the indices estimatedLat
the indices estimated by each node during a given iteratipn bodes from step 2 during thieth iteration (i.e. values of;(t) for
collaboration among the nodes in the network. It is worthtieamg ¢ =0, 1,--- , L — 1). At ¢-th iteration, Aj (¢) is updated as follows:
that, in the proposed approach, a node in the network may fget a Check whether there are indices with more than one occusenc
of indices (instead of one index as in the conventional OMR} t (i.e. whether there is any index in the vectgt) that occurs more
correspond to non zero coefficients via collaboration, @sfig when than once). If yes, such indices are put in the sgft) (such that
the number of distributed nodes is closer to or greater thasparsity A/ (t) = {set of indices which occur more than once}. If no,
index. Thus the proposed algorithm can be terminated wisls le(i.e. there is no index obtained from step 2 such that any twoare
number of iterations compared I6 at each node. It should be furthernodes agree with, so that dllindices inc(t) are distinct), then select
noted that, in the proposed OMP based algorithm, at eacdtitar one index frone(¢) randomly and put ir\; (¢). In this case, to avoid

Initialize t = 1, Zfll(o) = (), residual vector; o =y;
2) Find the index\;(¢) such that




the same index being selected at subsequent iterationspnee 4ll Algorithm 2 Distributed OMP for sparse signal detection and sparsity
nodes to use the same index. pattern estimation

It is noted that when there are approximately equal or mo#e [-th node:
distributed nodes compared to sparsity ind€xthe vectorc(t) has 1) Initialize t = 1, 24,(0) = 0, residual VeCtor, o = yi, iindes =
at least one set of two indices with the same value, th{$t) is 0 ’
updated appropriately most of the time. Further, in thisecaince : :
egch nodepzaspthe ixdices received from all the other nodésein 2) Find the indexh,(t) such that
network, every node has the same estimatelfoafter algorithm M(t) = arg maz | <rie-1,010 > |
terminates. w1, N [lrre—1]l2

Case II: Next, we consider the case whene; C M; i.e. each
node communicates its estimated index in its neighborhdadhwhas
fewer number of nodes compared to all the nodes in the network
Then, similar to the above cas¥ (¢) is found based or;(¢) as
the indices which have the most occurrences fign) wherec; (t)

3) Update the estimated index se(t) via local communication:
AL () = filh(t), {Xi(t)},i € M,;), as discussed in subsection
[M-11

4) Updatei;ndeq:

contains the indices received by théh node from its neighborhood o if unique(ci(t)) = n(Mi), dindex = tindex + 0

att-th iteration. However, in this case, sinkzéh node does not receive o else (unique(ci(t)) < n(Mi)), tindex = tindex +
the estimated indices from the whole network, at each i@rat p(a(t))

different nodes may agree upon different indices (howewer,see as discussed in SubsectipmIV-2.

experimentally that for a relatively large size #ft;, all the nodes 5) Perform signal detection decision wher Ko
have the same estimated index set at the end). When two neiggb
nodes agree upon two different indicestgh iterations, there is a . - X )
possibility that one node selects the same index at a |ateation 6. Avoid steps 4 and 5 in subsequent iterations
than t. To avoid thel-th node selecting the same index twice, we o If t = Ko andiinacs(t) < lo decide Ho, setifi(t) = 0
perform an additional step; i.e., to check whetb¢(t) determined and go to step 9 R
as above is iff(t — 1). If X\[(t) € Uy(t — 1), setA;(t) = \i(t), 6) Setd;(t) = U(t — 1) U{X\; (t)}, andly = n(Uh(t))
otherwise update\; (t) similar to the procedure described in Case I. 7) Compute  the  projection 1operator P (t) =
euth(t)) (@l(al(t))T@l(zJ{l(t))) eith(t)T.  Update
IV. SPARSE SIGNAL DETECTION AND SPARSITY PATTERN the residual vectorr, ; = (I — P;(¢))y;
ESTIMATION 8) Incrementt =t + 1 and go to step 2 it; < K,

Next, we consider the case where one has to detect whether th8) setlh = Ui(t)
sparse signal is present and estimate the sparsity pattéyrifadhe

o If t = Ko and i;nges(t) > Io, decide, and go to step

signal is present. We consider the following binary hypsihéesting L K=10, Lo10, N256, SNR=17.32278 1oq_ 10 L0, N=256, SNR=17.3227
problem, ’ ”
0.8
Hi:y1 = Ais+vg 89
0.6|
Ho: y1 = v 2

1
a

—S-OMP
---DC-OMP (proposed)
-+ D-OMP; no collaboration|

fori =0,1,---,L — 1 and where under hypothes}$, the sparse
signal is present. In the following, we extend the collakivea
algorithm discussed above to first detect the sparse sigidaihen to
estimate the sparsity pattern without ever reconstrudtiegsignal.
Further, we assume thdt > K.

The idea is based on the properties of the OMP algorithm.df t
signal is not present in the modEl (2), it is very unlikelytttvao nodes
in the network will select the same index of the support sedrst
given iteration based on the step 2 in the OMP algorithm prteske
in Algorithm[d. However, when the signal is present (i.e. dthesis
H.), the probability that two nodes select the same index ah eac o
iteration is higher as the number of nodes is close to or granan Value, we set the value gf(c,(¢)) as the number of such indices.
the sparsity index<. That is because, when the signal is present arftfter performing Ko (which is less thani) number of iterations,
in relatively high signal-to-noise ratio region, the coluindex of the if éinae= in step 4 in Algorithni® is very small (less thap where
projection matrix9; which is most correlated with the remaining part/o < K), the algorithm decides that no sparse signal is present and
of the observation can be estimated at tite node as one of the terminate the process resulting in the null set as the ettiraupport
index of the true sparse support, and multiple nodes carhgetame Set. If iinaec > Io, it decides that the sparse signal is present and
index during a given iteration. Taking this informationdraccount, Continues estimating the support set similar to Algorifiim 1
we extend the algorithm such that it first detects the spagsalswith
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H:ig. 1. Performance of the sparsity pattern recovery wigtriiuted OMP
algorithm: (left) the probability of correctly recoverintpe sparse support
(Pp = Pr(b = b)) vs M/N (right) the percentage of the support correctly

2
recovered vSM/N; N = 256, K = 10, L = 10,5 = 1°l2 — 17.32274B

fewer number of iterations and increase the number of iterstto V. SIMULATION RESULTS
find the sparsity pattern only if the signal is detected asrnilesd in In this section, we present some simulation results to dsnate
Algorithm [2. the performance of proposed algorithms for sparsity pattecovery

2) Updating iinges in Step 4: Step 4 in Algorithn2 is performed based on distributed CS based measurements. In the fojpwin
as given below. At-th iteration,c;(¢) contains all the indices receivedwe assume that the entries of each projection makixfor [ =

by thel-th node from its neighborhood. The functiamique(c;(t)) 0,1,---,L—1 are drawn from a Gaussian ensemble with mean zero
gives the number of distinct indices of the support set(t). If and variances..
all the indices inc;(t) are different from each othetnique(ci(t)) To compare the performance of the proposed Algorifim 1 with

equals to the number of nodes in the neighborhood of tttkenode other approaches, we consider two benchmark cases. (fyitDied
including itself. If there are any two indices in(t) with the same OMP with no collaboration: in this case, each node perfornPO
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rithm [0 vs M/N; N = 256, K = 10, L = 10, 7 = 122 — 17320748,

observed via the proposed algorithm compared to D-OMP with n
collaboration with smallM/, which is the more desirable scenario
independently to obtain the support set estini4tg), i.e., the step in resource constrained distributed networks. To furthestrate the
3 is eliminated in Algorithm1l and sex;(t) = M\ (t). To fuse efficiency of the proposed algorithm, in Fid. 2, we plot thener of
the support sets estimated at individual nodes, each naderiits iterations of the DC-OMP algorithm that each node has toagperf
its estimated support to a fusion center and performs a Fhajorin recovering the sparsity pattern. It is observed from Bighat as
rule based fusion scheme to obtain a global estimaté/ofii). M/N increases, the proposed algorithm estimates the spaedtsrp
Simultaneous OMP (S-OMP) [32]: S-OMP algorithm is carriad o reliably by executing onlys K/2 number of iterations at each node.
using all the raw observations at the fusion center. Thus,sttheme When M/N increases, as observed from Hiy. 1, the performance of
requires each node to transmit itd-length observation vector asboth DC-OMP and D-OMP with no collaboration converges to the
well as the projection matriXA; to the fusion center. same level but DC-OMP requires very small number of iteratiat
In FiguresTl and2, we illustrate the performance of the styars€ach node to achieve that performance compared to that w@vp
pattern estimation based on proposed DC-OMP as in AlgorifhmWith no collaboration which require&” number of iterations at each
in terms of different performance metrics. In both figures lgt node irrespective of the value aff/N.
K = 10, N = 256, L = 10, and SNR at each node, defined as !N Fig.[3, we illustrate the performance of Algoritlith 2 fotteleting
5 = H;izé — 17.3227dB. Also, in FiguresTL andl2 we assumethe sparse signal before est.imating the. sparsity patteren.th
I . . . the performance of sparse signal detection as well as thesigpa
that M’. = M as considered in case | in Subsection ]il-1. The attern estimation in Fid.l3. For sparse signal detectioobability
the estimated support set at each T)de based on Algomhm Tofetection and the false alarm are givenBy = Prob(d = 1|H1)
the same. In Figll1, by performing0” runs and averaging over 5 Pg = Prob(6 = 1|Ho), respectively where is the detection
10 wials, we plot the probability of correctly recoverinet full decision. For sparsity pattern detection, the probabditydetection
support set,Pp = ]?r(b = b) (left) and Fhe percentage of ;. given by P& — Prob(h = b'[H1)Prob(H.) + Prob(h —
the_support set that is estlmatgd correctly (right) MYN where boF‘lo)PTOb(Ho), where we redefine the variables such thdt
M is the number of compressive measurements at each node-rsl he binary support of the signal (i.e. the support undeft,)

fﬁn be seeré frlom 't:kllﬁ 1 tthat,f at relgtl\(/)e,\l/lypsm.?klll valueﬁl\/fsz ' while b° denotes the vector with all zeros (binary support uridey.
€ proposed aigorithm outperforms - with no collatiora Similarly the probability of false alarm, is given by = Prob(b =

In resource constrained distributed networks, especiallgensor . - 0 S
o . : . b'|Ho)Prob(H1)+ Prob(b = b°|H1) Prob(Ho). Further, in Fig[B
e P e o b e use the same vales for e parametrs 1 and- 3 vsed
" 9 Figured1 anf]2 an&, = 3 andIp = 2. From Fig[3, it is seen that

the computational complexity among nodes to save the dver . . . .
node power. Thus, fusing the estimated indices of the nam-zeg‘ gorithm[2 reliably detects the sparse signal even with iy eenall

- . . . . value of M /N, and the performance of the sparsity pattern recovery
coefficients a_t each |terat|o_n of the OMP algorithm ensurbigher after detec<ing the signal has performance that is closkabwhen
performance in exact sparsity pattern recovery comparéuhtovhen . . : . L

. ; the sparsity pattern recovery is done as in Algorifim 1 (wheis
OMP is performed at each node independently. However)/gaV known a priori that the signal is present)
increasesPr(b = b) of both algorithms converge to 1, since when '
the number of compressive measurement at each node ingrease
OMP (with or without collaboration) works better and recevéhe VI. concLusioN
sparsity pattern almost exactly with a single measuremestov. In this paper, we addressed the problem of recovering a com-
It has been shown in [8]/[37] that OMP requires approximatelmon sparsity pattern based on CS measurement vectors tedllec
M > (1+ €)4Klog N, € > 0 measurements for reliable sparsityat distributed nodes in a distributed network. A distribligreedy
pattern recovery in the noise free case. Thus, even withyasreall algorithm based on OMP is proposed to estimate the sparaitgrp
M at each node, having number of nodes, S-OMP achieves thigia collaboration in which each distributed node is recir®
limit and provides a significant performance gain comparedhe perform less number of iterations of the greedy algorithmmjgared
proposed algorithm at very smal/ /N values. However, S-OMP 10 the sparsity index. When it is not knovan priori that a sparse
requires a considerable communication overhead comparatiet Signal is present or not, the algorithm was extended to parfo
proposed algorithm. Further, in the proposed algorithnchesode detection of the sparse signal with a fewer number of itenatbefore
has the same estimator at the end in contrast to the cepttaz completely recovering the sparsity pattern. The propodgdrithm
OMP. In Fig.[d, we further plot the percentage of support tkat is shown to have significant performance gains compared @b th
correctly recovered. for example, %t ~ 0.1, the proposed algorithm With each node performing OMP independently and then futieg
correctly recovers approximatel§5% of the support while D-OMP estimated supports to achieve a global estimate. Comjletedtical
with no collaboration recovers only abad% of the support. Thus, analysis of the algorithm will be considered in a future work
from both sub figures of Fig1, significant performance gain i
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