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Abstract—In this paper, we consider the problem of collaboratively
estimating the sparsity pattern of a sparse signal with multiple measure-
ment data in distributed networks. We assume that each node makes
Compressive Sensing (CS) based measurements via random projections
regarding the same sparse signal. We propose a distributed greedy
algorithm based on Orthogonal Matching Pursuit (OMP), in which the
sparse support is estimated iteratively while fusing indices estimated at
distributed nodes. In the proposed distributed framework, each node has
to perform less number of iterations of OMP compared to the sparsity
index of the sparse signal. Thus, with each node having a verysmall
number of compressive measurements, a significant performance gain
in support recovery is achieved via the proposed collaborative scheme
compared to the case where each node estimates the sparsity pattern
independently and then fusion is performed to get a global estimate.
We further extend the algorithm to estimate the sparsity pattern in a
binary hypothesis testing framework, where the algorithm first detects
the presence of a sparse signal collaborating among nodes with a fewer
number of iterations of OMP and then increases the number of iterations
to estimate the sparsity pattern only if the signal is detected.

Keywords: Compressive sensing, Sparsity pattern recovery,
multiple measurement vectors, distributed networks

I. I NTRODUCTION

In the Compressive Sensing (CS) framework, a small collection
of linear random projections of a sparse signal contains sufficient
information for complete signal recovery [1]–[3]. There isa con-
siderable amount of work on the development of computationally
efficient and tractable algorithms to recover sparse signals from CS
based measurements obtained via random projections, for example
in [4]–[12]. However, there are several signal processing applications
where complete signal recovery is not necessary. For example, in
applications such as source localization in sensor networks [13], [14],
estimation of frequency band locations in cognitive radio networks
[15], localization of neural electrical activities from a huge number
of potential locations in magnetoencephalography (MEG) and elec-
troencephalography (EEG) for medical imaging applications [16]–
[18], sparse approximation [19], subset selection in linear regression
[20], [21], and signal denoising [22], it is only necessary to estimate
the locations of the significant coefficients of a sparse signal.

A. Related work and our contribution

The problem of sparsity pattern estimation of sparse signals has
been addressed by several authors in the literature in the context of CS
[23]–[31]. These studies focus on CS based sparsity patternrecovery
with a single measurement vector. The achievable performance can
be improved by having multiple observation vectors. Further, in
distributed networks including sensor networks and cooperative cog-
nitive radio networks, multiple measurements appear quitenaturally
since multiple nodes make observations regarding the same phe-
nomenon of interest (PoI). Extensions of sparse signal recovery with
multiple measurement vectors are considered in [32], [33] assuming
that the multiple measurements are available at a single location to
perform the desired task. In such centralized settings, each node in
the network has to transmit its observations along with the elements
of the measurement matrix to solve the sparse signal recovery
problem at the central fusion center. However, when performing

inference tasks based on the observations collected at different nodes
in distributed networks, the trade-off between the resource constraints
(e.g. node power and communication bandwidth) and the achievable
performance gain is a core issue to be addressed in many practical
networks. Thus, distributed approaches for sparsity pattern recovery
are desirable in many practical distributed networks whereeach node
has limited computational and communication power/bandwidth. The
problem of distributed sparsity pattern recovery is considered recently
in the context of cognitive radio networks in [34], [35]. There,
decentralized consensus based algorithms for support recovery of
sparse signals were proposed when each cognitive radio makes CS
based measurements in cooperative cognitive radio networks.

The work in this paper focuses on further reducing the computa-
tional and communication burden at individual nodes in a distributed
network while performing sparsity pattern recovery when each node
in the network observes a noisy version of the same sparse signal.
In contrast to transmitting raw observations along with measurement
matrices to a central fusion center to perform centralized sparsity
pattern recovery, we consider the case where each node triesto find
an estimate of the sparsity pattern by collaboration and fusion. More
specifically, we develop a greedy algorithm based on Orthogonal
Matching Pursuit (OMP) where the indices of the sparse support
are iteratively identified while fusing the estimated indices at each
iteration. We show that, in the proposed distributed algorithm, each
node has to perform less number of iterations compared to thesparsity
index of the sparse signal to reliably estimate the sparsitypattern (in
the centralized OMP algorithm, at leastK iterations are required for
sparsity pattern recovery whereK is the sparsity index of the sparse
signal). Moreover, in the proposed algorithm, each node transmits
only one index at each iteration. Further, we extend the results and
develop a joint algorithm to both detect the sparse signal and to
perform the sparsity pattern recovery only if the sparse signal is
detected.

II. PROBLEM FORMULATION AND BACKGROUND

Consider a set ofL distributed nodes making noisy measurements
on a sparse signal. We assume that each sensor node obtains a
M(< N)-length measurement vectoryl via CS based linear random
projections. The measurement vector atl-th sensor node is given by,

yl = Als+ vl; (1)

for l = 0, 1, · · · , L − 1. s is the N × 1 sparse signal andAl is
the M × N random projection matrix at thel-th node. The noise
vectorvl at thel-th sensor node is assumed to be iid Gaussian with
zero mean vector and the covariance matrixσ2

vIM whereIM is the
M ×M identity matrix.

When the signals is sparse in the basisΨ such thats = Ψβ where
β contains onlyK << N number of significant coefficients, it has
been shown that the randomized lower dimensional projections of
the form (1) can capture significant information of the sparse signal
s. Assume that one has to estimate the sparsity pattern of a sparse
signal which will give important information in many applications.
For example, if the signal is sparse in Fourier domain, the locations
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of non zero coefficients give the locations of significant harmonics
which is important in spectrum sensing in the wideband regime.

Let U be the support of the sparse coefficient vectorβ which is
defined as,U := {i ∈ {1, 2, · · · , N} | β(i) 6= 0} whereβ(i) is the
i-th element ofβ for i = 0, 1, · · · , N −1. Then we haveK = n(U)
wheren(S) denotes the cardinality of the setS . Further, letb be a
N -length vector which contains binary elements: i.e.

b(i) =

{

1 ifβ(i) 6= 0
0 otherwise

for i = 0, 1, · · · , N−1 andb̂ be the estimated binary support vector.
Sparsity pattern recovery with a single measurement vectorcan

be performed via a CS reconstruction algorithm such as regularized
least square algorithm (Lasso) [1], [36] or OMP [8]. When multiple
measurement vectors as in (1) are collected at a centralizedlocation,
the support of the sparse signal can be estimated, for example,
by solving the simultaneous OMP algorithm as given in [32] [33]
in which the support can be directly estimated iteratively without
reconstructing the complete sparse signalβ.

III. SPARSITY PATTERN RECOVERY WITH MULTIPLE

MEASUREMENT VECTORS: DISTRIBUTED ALGORITHM

To implement a centralized sparsity pattern recovery algorithm
based on the measurements collected at distributed nodes ina
distributed network, it is required that each node transmits its M -
length observation vector along with the elements of the measurement
matrix to a central fusion center. Since transmitting all the information
to a fusion center is not desirable in power and bandwidth constrained
communication networks, we consider a distributed scheme in which,
sparsity pattern estimation is performed via collaboration among
nodes with less communication and with each node estimatingthe
sparsity pattern. In [34], [35], several consensus based distributed
schemes are proposed to estimate the support of sparse signals
based on Lasso. These schemes estimate the full support set at each
node and then perform fusion via several collaboration schemes.
However, due to computational complexity, performing Lasso at
power constrained sensor nodes may not be desirable.

OMP is a greedy approach in which at each iteration, the location
of one non zero coefficient or a column ofΘ = AΨ that participates
in the measurement vectory is identified. More specifically, at each
iteration, it picks the column ofΘ which is most correlated with
the remaining part ofy. Then the selected column’s contribution is
subtracted fromy and iterations on the residual are carried out. If we
consider one sensor node, at each iteration, there areN−K possible
incorrect indices that can be selected by the OMP algorithm.The
probability of selecting an incorrect index at each iteration increases
as the number of CS measurements at each node (M ) decreases. It
has been shown that the OMP algorithm requires more measurements
for signal reconstruction compared to optimization based (e.g. Basis
Pursuit (BP)) algorithms. However, due to limitation of processing
power at each node in many practical distributed networks, it is
desired to have multiple nodes each processing a small number of
measurements. Since all the nodes in the network observe thesame
sparse signal, it is highly likely that the estimate of the index at
multiple nodes is the same at a given iteration of OMP. To reduce
the error in incorrectly selecting an index at each iteration of OMP
with less number of compressive measurements, we propose tofuse
the indices estimated by each node during a given iteration by
collaboration among the nodes in the network. It is worth mentioning
that, in the proposed approach, a node in the network may find aset
of indices (instead of one index as in the conventional OMP) that
correspond to non zero coefficients via collaboration, especially when
the number of distributed nodes is closer to or greater than the sparsity
index. Thus the proposed algorithm can be terminated with less
number of iterations compared toK at each node. It should be further
noted that, in the proposed OMP based algorithm, at each iteration,

only one index needs to be transmitted by each node for fusion, thus
reducing communication cost compared to that with distributed Lasso
versions proposed in [34], [35]. We dub the proposed algorithm as
‘Distributed and collaborative OMP (DC-OMP)’.

Distributed and collaborative OMP for sparse support estimation:
Define Ml to be the set containing the neighboring nodes of the
l-th node (including itself). As defined in Subsection II, letU be the
support set which contains the indices of non zero coefficients of the
sparse signal and̂Ul be the estimated support set at thel-th node.
Further, letΘl = AlΨ and θl,i be thei-th column of the matrix
Θl. Θl(A) denotes the submatrix ofΘl which has columns ofΘl

corresponding to the elements in the setA for A ⊂ {0, 1, · · · , N −
1}. |.| denotes the absolute value while||.||p denotes thelp norm.
Further,n(S) denotes the cardinality of the setS as defined before.

In the proposed DC-OMP algorithm which is stated in Algorithm
1, once thel-th node finds an indexλl(t) (which corresponds to
the column that is most correlated with the remaining part ofyl)
at iterationt by performing step 2 in Algorithm 1, it is exchanged
among the neighborhoodMl. Subsequently, each node will have the
index that the nodes in its neighborhood obtained from step 2. By
fusion, each node selects a set of indices (fromn(Ml) number of
indices) such that most of the nodes agree upon (more detailsof this
fusion are provided in Subsection III-1). Note that, in thisstep several
indices can be selected and thus, the number of iterations required to
estimate the support that each node has to perform can be lessthan
the sparsity indexK.

Algorithm 1 Distributed OMP for sparsity pattern estimation

At l-th node:

1) Initialize t = 1, Ûl(0) = ∅, residual vectorrl,0 = yl

2) Find the indexλl(t) such that

λl(t) = arg max
ω=1,··· ,N

| < rl,t−1, θl,ω > |

||rl,t−1||2

3) Update the index setλ∗
l (t) via local communication:λ∗

l (t) =
fl(λl(t), {λi(t)}, i ∈ Ml), as discussed in subsection III-1

4) SetÛl(t) = Ûl(t− 1) ∪ {λ∗
l (t)} and lt = n(Ûl(t))

5) Compute the projection operator Pl(t) =

Θl(Ûl(t))
(

Θl(Ûl(t))
TΘl(Ûl(t))

)−1

Θl(Ûl(t))
T . Update

the residual vector:rl,t = (I−Pl(t))yl

6) Incrementt = t+1 and go to step 2 iflt < K, otherwise, set
Ûl = Ûl(t)

1) Performing step 3 in Algorithm 1: To perform step 3 in
Algorithm 1 we propose the following procedure.
Case I: Consider the case where thel-th node can broadcast its
estimated index at each iteration to the rest of the nodes in the
network. i.e. Ml = M̄ where M̄ contains the indices of all
the nodes in the network. This is a reasonable assumption when
there are only a small number of nodes in the network (e.g.
cognitive radio networks with a5 − 10 cognitive radios). During
each iterationt of the distributed OMP algorithm, thel-th node
broadcastsλl(t). Consequently, thel-th node receives the estimates
λi(t)’s for i ∈ M̄ from the whole network. Further, letc(t)
be a L-length vector that contains all the indices estimated atL
nodes from step 2 during thet-th iteration (i.e. values ofλi(t) for
i = 0, 1, · · · , L − 1). At t-th iteration,λ∗

l (t) is updated as follows:
Check whether there are indices with more than one occurrences
(i.e. whether there is any index in the vectorc(t) that occurs more
than once). If yes, such indices are put in the setλ∗

l (t) (such that
λ∗
l (t) = {set of indices which occur more than once}. If no,

(i.e. there is no index obtained from step 2 such that any two or more
nodes agree with, so that allL indices inc(t) are distinct), then select
one index fromc(t) randomly and put inλ∗

l (t). In this case, to avoid
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the same index being selected at subsequent iterations, we force all
nodes to use the same index.

It is noted that when there are approximately equal or more
distributed nodes compared to sparsity indexK, the vectorc(t) has
at least one set of two indices with the same value, thus,λ∗

l (t) is
updated appropriately most of the time. Further, in this case, since
each node has the indices received from all the other nodes inthe
network, every node has the same estimate forU after algorithm
terminates.

Case II: Next, we consider the case whereMl ⊂ M̄; i.e. each
node communicates its estimated index in its neighborhood which has
fewer number of nodes compared to all the nodes in the network.
Then, similar to the above caseλ∗

l (t) is found based oncl(t) as
the indices which have the most occurrences fromcl(t) wherecl(t)
contains the indices received by thel-th node from its neighborhood
at t-th iteration. However, in this case, sincel-th node does not receive
the estimated indices from the whole network, at each iteration,
different nodes may agree upon different indices (however,we see
experimentally that for a relatively large size ofMl, all the nodes
have the same estimated index set at the end). When two neighboring
nodes agree upon two different indices att-th iterations, there is a
possibility that one node selects the same index at a later iteration
than t. To avoid thel-th node selecting the same index twice, we
perform an additional step; i.e., to check whetherλ∗

l (t) determined
as above is inÛl(t − 1). If λ∗

l (t) ∈ Ûl(t − 1), setλ∗
l (t) = λl(t),

otherwise updateλ∗
l (t) similar to the procedure described in Case I.

IV. SPARSE SIGNAL DETECTION AND SPARSITY PATTERN

ESTIMATION

Next, we consider the case where one has to detect whether the
sparse signal is present and estimate the sparsity pattern only if the
signal is present. We consider the following binary hypothesis testing
problem,

H1 : yl = Als+ vl;

H0 : yl = vl. (2)

for l = 0, 1, · · · , L − 1 and where under hypothesisH1 the sparse
signal is present. In the following, we extend the collaborative
algorithm discussed above to first detect the sparse signal and then to
estimate the sparsity pattern without ever reconstructingthe signal.
Further, we assume thatL ≥ K.

The idea is based on the properties of the OMP algorithm. If the
signal is not present in the model (2), it is very unlikely that two nodes
in the network will select the same index of the support set atany
given iteration based on the step 2 in the OMP algorithm presented
in Algorithm 1. However, when the signal is present (i.e. hypothesis
H1), the probability that two nodes select the same index at each
iteration is higher as the number of nodes is close to or greater than
the sparsity indexK. That is because, when the signal is present and
in relatively high signal-to-noise ratio region, the column index of the
projection matrixΘl which is most correlated with the remaining part
of the observation can be estimated at thel-th node as one of the
index of the true sparse support, and multiple nodes can get the same
index during a given iteration. Taking this information into account,
we extend the algorithm such that it first detects the sparse signal with
fewer number of iterations and increase the number of iterations to
find the sparsity pattern only if the signal is detected as described in
Algorithm 2.

2) Updating iindex in step 4: Step 4 in Algorithm 2 is performed
as given below. Att-th iteration,cl(t) contains all the indices received
by the l-th node from its neighborhood. The functionunique(cl(t))
gives the number of distinct indices of the support set inc(t). If
all the indices incl(t) are different from each other,unique(cl(t))
equals to the number of nodes in the neighborhood of thel-th node
including itself. If there are any two indices incl(t) with the same

Algorithm 2 Distributed OMP for sparse signal detection and sparsity
pattern estimation

At l-th node:

1) Initialize t = 1, Ûl(0) = ∅, residual vectorrl,0 = yl, iindex =
0

2) Find the indexλl(t) such that

λl(t) = arg max
ω=1,··· ,N

| < rl,t−1, θl,ω > |

||rl,t−1||2

3) Update the estimated index setλl(t) via local communication:
λ∗
l (t) = fl(λl(t), {λi(t)}, i ∈ Ml), as discussed in subsection

III-1
4) Updateiindex:

• if unique(cl(t)) = n(Ml), iindex = iindex + 0
• else ( unique(cl(t)) < n(Ml)), iindex = iindex +

ρ(cl(t))

as discussed in Subsection IV-2.
5) Perform signal detection decision whent = K0

• If t = K0 and iindex(t) ≥ I0, decideH1 and go to step
6. Avoid steps 4 and 5 in subsequent iterations

• If t = K0 and iindex(t) < I0 decideH0, set Ûl(t) = ∅
and go to step 9

6) SetÛl(t) = Ûl(t− 1) ∪ {λ∗
l (t)}, and lt = n(Ûl(t))

7) Compute the projection operator Pl(t) =

Θl(Ûl(t))
(

Θl(Ûl(t))
TΘl(Ûl(t))

)−1

Θl(Ûl(t))
T . Update

the residual vector:rl,t = (I−Pl(t))yl

8) Incrementt = t+ 1 and go to step 2 iflt < K,
9) setÛl = Ûl(t)
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Fig. 1. Performance of the sparsity pattern recovery with distributed OMP
algorithm: (left) the probability of correctly recoveringthe sparse support
(PD = Pr(b̂ = b)) vs M/N (right) the percentage of the support correctly

recovered vsM/N ; N = 256, K = 10, L = 10, γ̄ =
||s||2

2

Nσ2
v

= 17.3227dB

value, we set the value ofρ(cl(t)) as the number of such indices.
After performingK0 (which is less thanK) number of iterations,
if iindex in step 4 in Algorithm 2 is very small (less thanI0 where
I0 ≪ K), the algorithm decides that no sparse signal is present and
terminate the process resulting in the null set as the estimated support
set. If iindex ≥ I0, it decides that the sparse signal is present and
continues estimating the support set similar to Algorithm 1.

V. SIMULATION RESULTS

In this section, we present some simulation results to demonstrate
the performance of proposed algorithms for sparsity pattern recovery
based on distributed CS based measurements. In the following,
we assume that the entries of each projection matrixAl for l =
0, 1, · · · , L−1 are drawn from a Gaussian ensemble with mean zero
and variance1

N
.

To compare the performance of the proposed Algorithm 1 with
other approaches, we consider two benchmark cases. (i). Distributed
OMP with no collaboration: in this case, each node performs OMP
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independently to obtain the support set estimateÛl(t), i.e., the step
3 is eliminated in Algorithm 1 and setλ∗

l (t) = λl(t). To fuse
the support sets estimated at individual nodes, each node transmits
its estimated support to a fusion center and performs a majority
rule based fusion scheme to obtain a global estimate ofU . (ii).
Simultaneous OMP (S-OMP) [32]: S-OMP algorithm is carried out
using all the raw observations at the fusion center. Thus, this scheme
requires each node to transmit itsM -length observation vector as
well as the projection matrixAl to the fusion center.

In Figures 1 and 2, we illustrate the performance of the sparsity
pattern estimation based on proposed DC-OMP as in Algorithm1
in terms of different performance metrics. In both figures, we let
K = 10, N = 256, L = 10, and SNR at each node, defined as
γ̄ =

||s||2
2

Nσ2
v

= 17.3227dB. Also, in Figures 1 and 2 we assume

that Ml = M̄ as considered in case I in Subsection III-1. Then
the estimated support set at each node based on Algorithm 1 is
the same. In Fig. 1, by performing104 runs and averaging over
10 trials, we plot the probability of correctly recovering the full
support set,PD = Pr(b̂ = b) (left) and the percentage of
the support set that is estimated correctly (right) vsM/N where
M is the number of compressive measurements at each node. It
can be seen from Fig. 1 that, at relatively small values ofM/N ,
the proposed algorithm outperforms D-OMP with no collaboration.
In resource constrained distributed networks, especiallyin sensor
networks, it is desirable to perform the desired task by employing
less measurement data (i.e. with smallM ) at each node distributing
the computational complexity among nodes to save the overall
node power. Thus, fusing the estimated indices of the non-zero
coefficients at each iteration of the OMP algorithm ensures ahigher
performance in exact sparsity pattern recovery compared tothat when
OMP is performed at each node independently. However, asM/N
increases,Pr(b̂ = b) of both algorithms converge to 1, since when
the number of compressive measurement at each node increases,
OMP (with or without collaboration) works better and recovers the
sparsity pattern almost exactly with a single measurement vector.
It has been shown in [8], [37] that OMP requires approximately
M ≥ (1 + ǫ)4K logN , ǫ > 0 measurements for reliable sparsity
pattern recovery in the noise free case. Thus, even with a very small
M at each node, havingL number of nodes, S-OMP achieves this
limit and provides a significant performance gain compared to the
proposed algorithm at very smallM/N values. However, S-OMP
requires a considerable communication overhead compared to the
proposed algorithm. Further, in the proposed algorithm, each node
has the same estimator at the end in contrast to the centralized S-
OMP. In Fig. 1, we further plot the percentage of support thatis
correctly recovered. for example, atM

N
≈ 0.1, the proposed algorithm

correctly recovers approximately75% of the support while D-OMP
with no collaboration recovers only about30% of the support. Thus,
from both sub figures of Fig. 1, significant performance gain is
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recovery with Algorithm 2;N = 256, K = 10, L = 10, γ̄ =
||s||2

2
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v

=

17.3227dB; (left) Probability of detection, (right) probability of false alarms

observed via the proposed algorithm compared to D-OMP with no
collaboration with smallM , which is the more desirable scenario
in resource constrained distributed networks. To further illustrate the
efficiency of the proposed algorithm, in Fig. 2, we plot the number of
iterations of the DC-OMP algorithm that each node has to perform
in recovering the sparsity pattern. It is observed from Fig.2 that as
M/N increases, the proposed algorithm estimates the sparsity pattern
reliably by executing only≈ K/2 number of iterations at each node.
WhenM/N increases, as observed from Fig. 1, the performance of
both DC-OMP and D-OMP with no collaboration converges to the
same level but DC-OMP requires very small number of iterations at
each node to achieve that performance compared to that with D-OMP
with no collaboration which requiresK number of iterations at each
node irrespective of the value ofM/N .

In Fig. 3, we illustrate the performance of Algorithm 2 for detecting
the sparse signal before estimating the sparsity pattern. We plot
the performance of sparse signal detection as well as the sparsity
pattern estimation in Fig. 3. For sparse signal detection, probability
of detection and the false alarm are given byP s

D = Prob(δ = 1|H1)
andP s

F = Prob(δ = 1|H0), respectively whereδ is the detection
decision. For sparsity pattern detection, the probabilityof detection
is given by Pu

D = Prob(b̂ = b1|H1)Prob(H1) + Prob(b̂ =
b0|H0)Prob(H0), where we redefine the variables such thatb1

is the binary support of the signals (i.e. the support underH1)
while b0 denotes the vector with all zeros (binary support underH0).
Similarly the probability of false alarm, is given byPu

F = Prob(b̂ =
b1|H0)Prob(H1)+Prob(b̂ = b0|H1)Prob(H0). Further, in Fig. 3
we use the same values for the parametersN,K,L and γ̄ as used in
Figures 1 and 2 andK0 = 3 andI0 = 2. From Fig. 3, it is seen that
Algorithm 2 reliably detects the sparse signal even with a very small
value ofM/N , and the performance of the sparsity pattern recovery
after detecting the signal has performance that is close to that when
the sparsity pattern recovery is done as in Algorithm 1 (where it is
known a priori that the signal is present).

VI. CONCLUSION

In this paper, we addressed the problem of recovering a com-
mon sparsity pattern based on CS measurement vectors collected
at distributed nodes in a distributed network. A distributed greedy
algorithm based on OMP is proposed to estimate the sparsity pattern
via collaboration in which each distributed node is required to
perform less number of iterations of the greedy algorithm compared
to the sparsity index. When it is not knowna priori that a sparse
signal is present or not, the algorithm was extended to perform
detection of the sparse signal with a fewer number of iterations before
completely recovering the sparsity pattern. The proposed algorithm
is shown to have significant performance gains compared to that
with each node performing OMP independently and then fusingthe
estimated supports to achieve a global estimate. Complete theoretical
analysis of the algorithm will be considered in a future work.
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