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ABSTRACT

We consider the problem of recognizing speech utterances spoken to
a device which is generating a known sound waveform; for example,
recognizing queries issued to a digital assistant which is generat-
ing responses to previous user inputs. Previous work has proposed
building acoustic echo cancellation (AEC) models for this task that
optimize speech enhancement metrics using both neural network as
well as signal processing approaches.

Since our goal is to recognize the input speech, we consider en-
hancements which improve word error rates (WERs) when the pre-
dicted speech signal is passed to an automatic speech recognition
(ASR) model. First, we augment the loss function with a term that
produces outputs useful to a pre-trained ASR model and show that
this augmented loss function improves WER metrics. Second, we
demonstrate that augmenting our training dataset of real world ex-
amples with a large synthetic dataset improves performance. Cru-
cially, applying SpecAugment style masks to the reference channel
during training aids the model in adapting from synthetic to real do-
mains. In experimental evaluations, we find the proposed approaches
improve performance, on average, by 57% over a signal processing
baseline and 45% over the neural AEC model without the proposed
changes.

Index Terms— Acoustic echo cancellation, deep learning,
sequence-to-sequence model, multi-task loss, acoustic simulation

1. INTRODUCTION

Voice queries have become increasingly common as a way to com-
municate with smart devices, such as phones and speakers. In chal-
lenging acoustic conditions (background noise, distance from mi-
crophone, etc.), interpretation of queries can fail due to poor speech
recognition accuracy. We focus on the problem of acoustic echo can-
cellation (AEC) — removing a known source of additive interference.
The term “echo” cancellation is used because the device has access
to the original reference signal that is the source of interference, but
the interference itself is an echoic version of the signal that has prop-
agated through the room before being received at the microphone(s).
In this paper, we will denote the user’s speech as the target and the
mixture of reverberant target and background noise as the residual.
The received mixture of echoed reference and residual is denoted as
the probe and the AEC outputs an erased signal.

Our end goals are slightly different from typical AEC scenarios
because our deployment scenario is echo cancellation in the context
of interaction with a smart speaker. As such, there are two impor-
tant characteristics of the target signal. First, we assume that we
are attempting to recover a speech signal — usually a user query.
Second, unlike in telephony or meeting situations, the perceptual

*equal contribution

fidelity of the recovered signal is not as important as its intelligi-
bility to the ASR system. With these considerations in mind, we
propose a model and training protocol designed to simultaneously
perform echo cancellation, dereverberation, and moderate denoising
by learning to predict the target signal given the probe and reference
signals.

The contributions of this work are as follows: We propose an
autoregressive sequence-to-sequence model for performing acoustic
echo cancellation. We demonstrate the value of optimizing on an
ASR encoder loss criterion for producing erased signals which im-
prove intelligibility on ASR systems over purely signal-based met-
rics. Finally we implement two methods for improving robustness
of the model to distortion between echo and reference: by prepar-
ing a mixture of synthetic and quasi-synthetic data for training, and
performing dynamic corruption of the input signals via different con-
figurations of SpecAugment [[1].

2. RELATED WORK

In traditional signal processing, linear AEC techniques attempt to
estimate the overall system of render-propagation-capture by a time-
varying linear filter, usually an adaptive Finite Impulse Response
(FIR) filter. Often the filter coefficients are estimated to replicate the
echo, in the Minimum Mean Square Error (MMSE) sense, given the
reference signal. Then, the filtered version of the reference signal is
subtracted from the probe to obtain an estimate of the target signal.

In recent years, there have been numerous proposed approaches
to applying neural networks for AEC [2 3| [4]. In most previous
work, the criteria for evaluating AEC performance have been signal
driven metrics such as signal distortion ratio (SDR), or echo return
loss (ERL). Work here often predicts the residual signal by predict-
ing an ideal ratio mask (IRM) that is applied to the probe [3] or
gains applied to the output of a linear AEC [5]. While these met-
rics are easy to calculate and correlate well to perceptual cancel-
lation quality, our initial experiments indicated that improvements
in signal-based metrics often did not translate to proportionally im-
proved WER performance.

Two notable sequence-to-sequence speech prediction models
that have been proposed recently are Parrotron [6] and Textual Echo
Cancellation [7]]. The authors in [6] use an ASR encoder and a
text-to-speech (TTS) decoder to perform speech transformation. In
order to optimize for intelligibility, the Parrotron model is trained to
simultaneously minimize an ASR decoding loss as well as a spectral
decoding loss on the same encoded representation. A drawback of
this approach is that the transcription of the source signal is required
in order to compute the ASR related loss. In [7], the authors assume
that the echoed reference is generated by text-to-speech (TTS) and
use a Parrotron-style network to remove the echoed reference using
only the textual source of the reference signal. The model in that
paper uses only spectral loss for training.



3. MODEL ARCHITECTURE

The proposed neural AEC model uses an encoder-decoder struc-
ture to reconstruct spectral frames of the erased signal by casting
the problem as a sequence-to-sequence task. As in [6] and [7], we
use frame level features (80-dimensional log-mel spectral vectors)
for both source and target sequences. The source sequence features
are computed from the probe and reference signals, and the target
sequence features are computed from the clean target signal. Al-
though all three signals should be synchronous, in this system we
align probes and references using their cross correlation and enforce
that source and target sequences have matching lengths.

The model is comprised of a speech encoder followed by a spec-
tral decoder, which are described in the following sections.

3.1. Encoder

The speech encoder is similar to the encoder described in [8],
which takes a sequence of speech features as input and produces
a high dimensional hidden representation sequence. We compute
feature frames for each of the probe and reference signals, then
stack each frame depthwise to create an input tensor that has shape
[B,T,80,2], where B is the batch size and T is the number of
frames. For the encoder used in this work, we used 3 unidirectional
LSTM layers, each with 512 hidden dimensions, and no temporal
downsampling, so the number of hidden representation has the same
number of frames as the input.

3.2. Decoder

We use an autoregressive spectral decoder to predict a sequence of
spectral frames from the encoded sequence. The decoder is based
on the decoder component described in [9], which is designed to
produce spectrogram frames. For the decoder used in this work,
we made two small changes. First, because the context needed to
transform input to output is local to the frame being processed, we
omitted the attention layer. Also, since we constrain the output to
be the same number of frames as the input, we also omit the end-of-
sequence prediction component of the decoder — the decoder stops
producing input when the input frames are exhausted.

The spectral decoder consists of a single 512 dimension LSTM
layer followed by an 80 dimension projection layer that feeds its
output to a pre-net and a post-net. The pre-net is a feed-forward
network that serves to gate the influence of the previous time-step’s
output compared to the source. The post-net is a stack of five convo-
lutional layers that act on the predicted spectral frames to produce a
residual correction factor that is added to create the final prediction.
Each non-final convolutional layer applies a 1-dimensional convo-
lution in time, with 512 filters of size 5, followed by batch normal-
ization and tanh activation. The output of the decoder is a sequence
of 80-dimensional log-mel spectral frames which can be inverted
back to a time domain waveform via Griffin-Lim [10] or by using
a neural vocoder [11]. For this paper, we used Griffin-Lim to pro-
duce waveform inputs when needed (e.g. for performing recognition
evaluations on AEC output).

3.3. Loss Function

Our initial experiments used purely spectral loss when training the
network. This loss is computed by summing the mean L1 and mean
L2 (or MSE) distance between the target spectral features and the
output of the decoder, both before and after applying the post-net
correction.
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Fig. 1. Model block diagram for inference pathway. The encoder,
structured as a typical speech encoder, takes in frame level features
and produces a latent representation that is decoded by a spectral
decoder to produce frame level features.

Since the motivation for our work is improving speech recogni-
tion accuracy on the erased signal predicted by our AEC, we also ex-
plored changing the loss function to bias the AEC towards producing
outputs useful to an ASR as input. In the ideal case, both the AEC
output and target signal would produce the same latent representa-
tion when run through the ASR model’s encoder. Observing this, we
integrated an ASR loss which runs the predicted and target features
through an ASR encoder, pre-trained on clean audio, and computes
the MSE between the respective latent representations. The final loss
term is then

loss = loSSspectral + A loSSASR

where A is a hyperparameter. Figure [2] illustrates how the losses
are computed and combined. Unlike the auxiliary decoder loss used
by Parrotron, the ASR encoder loss compares latent representations
of the predicted and target signals without needing the underlying
transcription, which removes the need for labeled training data.

3.4. Training

All of our models are trained using Lingvo [12]], which is built on top
of TensorFlow [13]]. The AEC models were trained with a batch size
of 128 using the ADAM optimizer [[14] and scheduled sampling [[15]
on a randomly selected half of the autoregressive decoder input.

The ASR model used in the loss function is a ContextNet [[16]
CNN-RNN transducer, trained on LibriSpeech to 3.8 WER on
test-clean. The whole model has 31 million parameters and
the encoder contains 23 stacked convolution blocks. Importantly,
the AEC model fails to converge when the ASR loss is included at
the start of training. We resolve this by making A dependent on the
current training step and linearly ramping A up from zero to its final
value, 0.01, over the first 20k training steps.

Because SpecAugment has been shown to be a useful method
of data augmentation for improving WER performance [1, 6], we
also experimented with applying SpecAugment to AEC model in-
puts during training. When using SpecAugment, we masked up to 27
of 80 frequency bins divided between 2 frequency masks and up to
5% of frames split between 10 time masks. Models using SpecAug-
ment trained for 200k steps and models without for 90k steps.

4. DATA PREPARATION

A key challenge in building a neural network based AEC is data col-
lection. In real world recordings, the echoed reference component



of the probe can be distorted by non-linearities in the loudspeaker’s
reproduction of the signal [17]. These distortions can vary at dif-
ferent volumes, temperatures and between different loudspeakers.
A common practice is to apply a functional non-linearity to mimic
loudspeaker distortion as in [[18]. Of course, the highest fidelity way
to capture these effects in training data is to record echoed refer-
ence outputs in real rooms, but this has the considerable downside
of being expensive and time consuming. We used a multi-pronged
approach to creating diverse AEC training data - by processing with
a room simulator, by combining re-recorded real world data with
a room simulator, and by dynamically augmenting the data during
training using SpecAugment [[1].

4.1. Source Data

For training and evaluation of the AEC techniques compared in this
paper, we drew from two sources of speech data: parts of the Lib-
riSpeech corpus were used as both targets and references, and an
internal set of TacoTron-generated [9]] TTS utterances were used as
references. For simulating room environments, we used the room
simulator described in [19]]. Separately to the echoed reference,
background noise was added as described in [[19], with noise sources
drawn from a set of daily life and cafe noise recordings.

4.2. Training Data
4.2.1. Synthetic Echo

In this setup, the return path of the echoed reference was wholly
simulated. The target and reference signals were randomly selected
from the train—-clean portion of the LibriSpeech corpus. For
each synthetically noisified utterance, a room configuration was
sampled from one of 100,000 possibilities, and the simulated probe,
echoed reference, and residuals were computed via simulation. The
room configurations were constrained to replicate the geometry of
a smart speaker; with the loudspeaker set up as a noise source in a
fixed position relative to the microphones. The target source was
randomly positioned away from the microphones, with elevation
angle restricted to the interval [45°,135°] and distance varying
between 0.25 and 8 meters, with a mean of 2.5 meters. For this
simulated condition, the target-to-noise-ratio and target-to-echoed-
reference-ratio were randomly chosen in the ranges of (0, 20) and
(-20, 0) dB, respectively. In total, there were approximately 153k
training utterances produced using the synthetic echo setup.

4.2.2. Re-recorded Echo

In order to account for real loudspeaker-induced distortions and dif-
ferences between synthetic room impulse responses and real-world
room return path effects, we also created a set of re-recorded echo
utterances. Drawing from the TTS utterances, we collected re-
recorded versions of these utterances as echoed reference signals by
playing them out of smart speakers in various conference room en-
vironments and recording the resulting output on the smart speaker
microphones. 7592 training pairs and 1546 test pairs of (reference,
echoed reference) signals were collected in this manner.

The re-recordings were then combined with target signals
drawn, without re-recording, from the train—-clean portion of
LibriSpeech using the same room configurations as in Section[d.2.1}
The re-recorded echo signal was used directly as the echoed refer-
ence, without propagating through the room simulation. Otherwise,
the echoed reference, background noise source and simulated path
of the target signal were mixed together with the same distribution

—\ '
probe & reference
predicted
AEC target
v —— Model |1 35l
R :
c C T v
T = O
) @ O
= “ C
S 2w
o
o A
w :
e —— = e 128|.
target
R Spectral “~— ASR
Loss Loss

Fig. 2. Two types of losses are are used to optimize the AEC model.
Spectral loss is computed between the predicted output and ground
truth target features. ASR loss is computed between the encoded
representations of the predicted features after passing through a pre-
trained ASR encoder. ASR encoder weights are kept fixed while
training the AEC model.

of SNRs as in Section[d.2.I] Approximately 34k training utterances
were produced using this re-recorded setup.

4.3. Evaluation data

The test sets for evaluation were constructed as described in Sec-
tion [4.2.2] but with the test pairs of re-recorded reference signals,
target signals drawn from LibriSpeech test-clean, and target-
to-echoed-reference-ratio levels held fixed at 0dB, -5 dB, and -10
dB to create three test set variants of escalating difficulty. The room
impulse responses and background noise samples used for the test
sets were all unseen during training.

5. EXPERIMENTS

Unless otherwise specified, speech recognition results were obtained
using the ContextNet ASR model described in Section[3.4]

5.1. Data Augmentation Effects

We varied the inputs used for training to gain insight into the ef-
fects of augmenting datasets and inputs. These results are shown in
Table [[] When controlling for dataset and loss function, we found
that applying SpecAugment to the reference signal alone resulted in
the most consistent WER reductions. This was the SpecAugment
configuration used in our final model during training. Our interpre-
tation of this outcome is that SpecAugment introduces a challenging
form of mismatch between the reference and its echo for which the
model must compensate and that this mismatch is different from and
complementary to the diversity of echoic effects presented by the
synthetic/re-recorded data alone.

By looking at matched SpecAugment configurations in Table
we observe the benefit of including synthetic and re-recorded data
in training. Although the re-recorded training data is closest to test
set conditions, there are still significant gains from adding training
set diversity. When not applying SpecAugment, there was a relative
WER reductions of 25.5% (averaged across SNR levels) when using
the larger combined dataset compared to the re-recorded data alone.

5.2. ASR Loss Robustness

One concern with optimizing the AEC model using a pretrained ASR
encoder is that the AEC will overfit to the idiosyncrasies of that spe-
cific ASR encoder and produce outputs that are mismatched when



Training Dataset SpecAugment \ 0dB -5dB -10dB
None 59.14 70.33  80.75

. Both Inputs 47.68 5926 71.14
Synthetic Reference Probe Only 5394  66.15 78.01
Reference Only | 31.47 43.23 57.50

Re-recorded Reference None ‘ 19.66 2535 34.28
None 14.19 18.71 26.54

. Both Inputs 13.13 1597 21.98
Synthetic + Re-recorded b 1 oy 1279 1583 2215
Reference Only | 12.51 15.54 22.30

Table 1. Input data effects. WERs of models trained with different
SpecAugment configurations and dataset partitions. All models here
were trained with spectral loss only.
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Fig. 3. ASR Loss Robustness. Word Error rates for different ASR
models on AEC model outputs, comparing outcomes when training
with and without loss 4 sr. Only the LibriSpeech CNN model (blue
line) was used for computing loss asr during training.

presented to other ASR models. To measure this effect, we trained
two AEC models, one with and one without lossasg, and evalu-
ated the outputs on three different ASR models, of which only one
was used for calculating loss asr during training.

The three pre-trained ASR models evaluated are: a CNN-based
global context model [16], a bidirectional LSTM-based listen-
attend-spell model [20], and a streaming LSTM-based RNN-T
model [21]. The first two models were trained on the train partition
of LibriSpeech, and the last model was trained on a large corpus of
far field and near field non-LibriSpeech utterances.

Figure 3] shows the WER of each of the ASR models on the out-
puts of the AEC models. Though only the in-domain CNN speech
encoder was used to calculate 1lossasg for the AEC model incor-
porating that loss, we observe consistent improvements for the other
two ASR models across all SNRs as well. This improvement holds
despite significant differences in model structure, training data, and
frontend configuration. As expected, we observe the largest im-
provements for the matched ASR encoder (CNN), followed by the
in-domain LSTM recognizer, and smaller, but still significant gains
for the out-of-domain model.

0dB -5dB -10dB

Target* — 381 —
Residual* 12.18 11.14 12.30
Probe 75.86 8220 85.78
STFT-based AEC 31.37 3255 3691
IRM AEC [3] 23.01 30.75 41.85
Neural AEC (ours) 11.03 1349 18.48
-AsrLoss 12.51 15.54 2230
-SpecAugment 14.19 18.71 26.54
-Synthetic Dataset | 19.66 2535 34.28

Table 2. System comparison. WER calculated on different SNR test
subsets using various AEC models and available signals. Target and
residual are oracle signals not available to the model at inference.

5.3. Final System

We combined all of the proposed modifications to the model and
evaluated WER results in Table 2] For comparison purposes, we
contrast against two other AEC techniques. The first is a linear AEC
system that performs adaptive filtering on STFT subbands, similar
to [22], but using longer STFT frames and within-band only filter
taps. We also implemented and trained a mask-based neural network
AEC model as described in [3]]. That model is trained to predict an
ideal ratio mask (IRM) that is then used to mask the spectral mag-
nitude of the probe, which is then inverted back to the time domain.
During training, the IRM target is computed using the residual and
echoed reference. When training this model, we used both synthetic
and re-recorded data, but did not apply SpecAugment.

As expected, all AEC techniques significantly improve recog-
nition accuracy compared to evaluating on the probe signal alone.
Moreover, both neural models improve over the STFT-based AEC
at higher SNRs (0 dB and -5 dB), but the IRM-based model de-
grades much more sharply than the STFT-based AEC as SNR de-
creases. Our neural model, when including all proposed improve-
ments, achieves significant improvements compared to both alter-
natives at all three SNR levels. In addition to the analysis in Sec-
tions [5.1] and [5.2} we show ablation results from successively re-
moving each of the proposed improvements from the final system.

Interestingly, our final model produces outputs that yield better
WER in the 0 dB case than running recognition on the residual signal
directly, which has no echoed reference. This is presumably because
the model was trained with non-reverberant, noise-free utterances as
its training targets and therefore learned to predict de-reverberated
and de-noised features rather than just the residual.

6. CONCLUSION

We proposed an autoregressive neural network model to perform
AEC in situations with double-talk and background noise. The
model was trained using a dataset augmented with synthetic ex-
amples with SpecAugment masks applied to increase robustness
to mismatch between the reference and the echoed reference. To
adapt the model towards being an input to an ASR system, the
loss function was extended with a pretrained ASR encoder. When
compared to a purely signal processing-based AEC technique and
a mask-based neural AEC model, our proposed approach improved
speech recognition accuracy across several noise levels.

Acknowledgements: Thanks to James Walker and Bharath Ran-
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