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ABSTRACT

In this paper, we describe our speech generation system for
the first Audio Deep Synthesis Detection Challenge (ADD
2022). Firstly, we build an any-to-many voice conversion
(VC) system to convert source speech with arbitrary language
content into target speaker’s fake speech. Then the converted
speech generated from VC is post-processed in time-domain to
improve the deception ability. The experimental results show
that our system has adversarial ability against anti-spoofing
detectors with a little compromise in audio quality and speaker
similarity. This system ranks top in Track 3.1 in the ADD 2022,
showing that our method could also gain good generalization
ability against different detectors.

Index Terms— ADD 2022, time-domain, deception abil-
ity, anti-spoofing, voice conversion

1. INTRODUCTION

Thanks to the superiority of deep learning and large-scale
of high-quality open source speech corpus [1] [2], computa-
tional generated speech has reached humanlike naturalness
and hi-fidelity audio quality. With a small batch of record-
ing audio samples, state-of-art synthesis systems can generate
non-distinguishable speech with high similarity of the tar-
get speaker. However, these technologies threaten the anti-
spoofing and automatic speaker verification (ASV) systems
greatly. In a recent study [3], synthetic speech is perceptu-
ally non-distinguishable from bona fide speech, and even well
trained human detectors can get only 80% in accuracy.

According to a survey [4], audio deepfake methods can
divide into three subcategories: replay attack, speech synthesis
and voice conversion. Replay attacks are defined as replaying
the recording of a target speaker’s voice. Although the method
is simple and efficient, it’s application is constrained by record-
ing environment and language content. Speech synthesis (SS),
also know as text to speech (TTS), is a technique that convert
written language into human speech. Neural network-based
SS systems can generate deepfake audios with a significant
improvement in both intelligibility and naturalness, especially
those with the end-to-end architectures, such as [5], [6], [7],
[8], [9]. The main benefit of SS is that it can generate speech
with arbitrary language content. Another benefit of SS is that

it can generate any speaker’s voice with the development of
adaptive TTS [10] technology, such as [11] and [12]. Voice
conversion (VC) is a technique that converts a source speaker’s
voice to a target speaker’s voice without changing linguistic
information. The latest out-of-standing VC systems trend to
utilize Variational Autoencoder (VAEs) and Generative Ad-
versarial Network (GAN) frameworks to improve the target
speaker similarity and audio quality. Such as Cycle-VAE [13],
Disentangled-VAE [14], fang’s CycleGAN-based nonparallel
VC [15], STARGAN-VC [16] and StarGANv2-VC [17].

Aim to accelerate and foster research on detecting deep
synthesis and manipulated audios, Audio Deep Synthesis De-
tection Challenge [18] is held as Signal Processing Grand
Challenge on ICASSP 2022. The challenge contains four
tracks, among which the Track 3 is an audio fake game (FG)
which includes two sub tasks: Track 3.1 Generation task (FG-
G) is a generation task aims to generate fake audios that can
fool the fake detection model. Track 3.2 Detection task (FG-D)
is a detection task tries to detect all the generated fake audios,
including results from FG-G. Our team has participated in the
FG-G task and won the top rank.

This paper describes our contributions about audio deep-
fake anti-spoofing, especially VC-based fake speech genera-
tion method to “attack” the neural network-based detection
systems. The backbone of our system is FastSpeech-VC [19]
followed with HiFi-GAN [9]. Our FastSpeech- VC is designed
to converts bottleneck feature (BNF) into mel- spectrograms.
And then generate audio signal from the mel- spectrograms
by the HiFi-GAN. In order to fool the detection systems, we
further add a post-processing modification on the generated
audio, which cause a slight decay in audio quality but a signif-
icant promotion in spoofing. Audio samples are available at
our demo page1

The rest of this paper is organized as follows. Section
2 introduces our proposed method. Section 3 describes our
implementation details and experimental results. Finally, the
conclusion is given in section 4.

2. SYSTEM DESCRIPTION

The goal of the Track 3.1 FG-G is to generate fake audio
that can fool the detection system, which requires the distribu-

1https://guo-t-w.github.io/KeAI-ADD-2022/
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tion overlap between the generated audio and target speaker’s
natural audio to be as high as possible.

Inspired by [20], we propose an adversarial approach to
make the distribution of the VC generated converted speech,
to be closer to that of the natural audio of target speaker. As
shown in Figure 1, the converted speech is sent to a residual
generation network (RGN) to enable a white-box attack on a
pretrained detection model.

Different from [20], we build an automatic speaker verifi-
cation system for targeted speakers (ASV-TS), which is used
as the anti-spoofing system for the adversarial training of the
residual generation network. Given the set of all speech data
D = {DT , DO}, where DT is the natural audio set of target
speakers and DO denotes the set of all other speech data, the
goal of ASV-TS is to distinguish DT from DO as accurately
as possible. However, the separating hyperplane between DT

and DO determined by the ASV-TS may not perform well in
complex scenarios, since only limited audios of target speakers
in AIShell-3 could be used in Track 3.1 in the ADD 2022. In
order to improve the performance of the ASV-TS system, vari-
ous data augmentation techniques is adopted on the available
speech data in DO. In addition, the residual signal is gener-
ated based on the time-domain signal directly, instead of the
spectral amplitude, to avoid loss of information.

Our entire system involves two stages, i.e., voice conver-
sion and time-domain adversarial post-processing, which will
be introduced in detail next.

Converted
speech

Post-processed
speech

Residual
speech

LFCC
Extractor

Regularization loss

Adversarial
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Residual
Generation Network

ASV-TS
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Fig. 1. Time-Domain Adversarial Post-Processing framework

2.1. Voice Conversion

As shown in Figure 2, a VC system is built to generate audio for
specific timbres and content. The overall framework consists
of three parts, BNF extractor, synthesizer network and vocoder.

Both phonetic posteriorgram (PPG) and BNF are widely
used features in current VC tasks, which retain acoustic in-
formation while excluding speaker identities and are obtained
from the ASR acoustic model. In our work, we use a DNN-
based acoustic model from an ASR system trained with our
own data, to perform as the BNF extractor, which consists of 7
TDNN layers and 3 unidirectional LSTM layers, followed by
the 512-dim bottleneck layer.

Our synthesizer network is based on Fastspeech-VC frame-
work [19], which originates from FastSpeech [7] TTS model.
The synthesizer network can predict mel-spectrograms from
BNF. Meanwhile, speaker ids are used to control the speaker
identity of synthesized utterances. Therefore, our system can
achieve any to many voice conversions without reliance on the
training data of source speakers. In the synthesizer network,
the encoder and the decoder are composed of a stack of N = 6
duplicate Feed-Forward Transformer (FFT) blocks.

Finally, HiFi-GAN vocoder is used to reconstruct audio
from predicted mel-spectrograms.

2.2. Time-Domain Adversarial Post-Processing

2.2.1. Target Speaker Verification Model

Commonly used ResNet-34 [21] is adopted to build the
ASV-TS model in our work. The loss function is binary
cross-entropy. We used linear frequency cepstrum coefficients
(LFCCs) with a window size of 25ms and an overlap of 10ms
as input of detection model.

2.2.2. Residual Generation Network

The RGN in our system is a fully convolutional feed-forward
network with waveform as input. It’s architecture is similar
to the generator of MelGAN [8]. Residual signal is generated
by RGN and are then added to the input audio to obtain the
post-processed speech.

2.2.3. Adversarial Training

Given s ∈ RT denote the samples of input signal, the residual
signal generated by RGN can be defined as P (s) ∈ RT . When
training the RGN, the adversarial training is conducted with
objectives as:

LA = 1−Dt(F (s+ P (s))) (1)

where F is the LFCC features extractor and Dt(.) represents
the probability of the target audio predicted by the ASV-TS
model. In addition, a regularization loss, which is composed of
three parts, is also designed to maintain the subjective quality
of post-processed speech.

LR = Lr + Lm + Ls (2)

Among them, the Lr is the difference between the maximum
and the minimum sample values in the generated residual
waveform. The Lm is the mean square error (MSE) between
the value of generated residual samples and a zero vector. By
denoting the post-processing modification at each sample as

Mt =
abs(P (st))

abs(P (st)) + abs(st) + 0.0001
(3)
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Fig. 2. Voice Conversion framework.The solid and dashed lines represent the data flow for training and inference respectively

where P (st) and st are the generated residual and input values
of t-th sample. The Ls is defined as

Ls =
1

T

T∑
t=1

Mt (4)

The Ls can further guarantee that the post-processing modifi-
cations are as slight as possible, especially in silence clips.

The final loss function of our post-processing model is

L = λALA + λRLR (5)

where λA and λR are the scale factors of adversarial and
regularization loss respectively.

3. EXPERIMENTS

3.1. Datasets and Model Details

• Voice Conversion: For Track3.1 Generation task, par-
ticipants are required to generate deepfake audio of 10
target speakers using the AIShell-3 dataset [1]. We first
trained multi-speaker synthesizer network and universal
vocoder based on the AIShell-3, and then fine-tuned
them for all target speakers. After that, 5000 deepfake
audios of 10 target speakers, denoted as VC-T5000, are
generated. The deepfake waveform of each speaker is
produced with 500 utterances recorded by mobile phone
in quiet environment as source speech.

• ASV-TS Model: ASV-TS model is trained to distin-
guish the natural speech of target speakers from other
audios. We take all utterances of 10 target speakers as
positive samples. Meanwhile, the same amount of au-
dios of other speakers randomly selected from AIShell-3
and deepfake audios generated from VC and TTS (built
on AIShell-3) are used as negative audios. In addition,
each of negative audio is augmented by a method ran-
domly chosen from Table 1 to further extend the set of
negative audios.

• RGN: For the training of RGN, all audios in VC-T5000
are used, and the ASV-TS model is employed to per-
form adversarial training. In the post-processing net-
work, four upsampling layers with 8x, 8x, 2x, 2x factors
respectively are used to achieve 256x upsampling. All
input audios are reshaped with shape [T, 256], and the
shape of output residual signal is [T*256, 1]. The val-
ues of learning rate are [0.0001, 0.00005, 0.000025,
0.0000125, 0.00000625], where decay boundaries are
[5000, 10000, 30000, 50000] steps. In order to guar-
antee the post-processing modifications are as slight as
possible, we set λR = 20 and λA = 1.

Table 1. List of Data Augmentation Methods

Approach Methods Description

Distortion

noise MUSAN and
music self-collected
babble
reverb room impulse response
volume -10dB to 20dB

Compression

MP3
OGG Random
AAC compression ratio
OPUS

sample rate 16kHz -> 8kHz

3.2. Evaluation

The deception success rate (DSR) is chosen as the metric for
generation task. DSR is defined as followed:

DSR =
W

A ∗N
(6)



where W is the count of wrong detection samples by all the
detection models on the condition of reaching each own EER
performance, A is the count of all the evaluation samples, and
N is the number of detection models.

The results are shown in Figure 3. Our team id is C10. It
can be seen that our final result ranks first, which also shows
the effectiveness of our proposed model.
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Fig. 3. The final DSR score of our submited audios

3.3. Analysis

We analysed the character error rate (CER) and the cosine
similarity (COS_SIM) of speaker embedding vectors of the
speech before and after post-processing. As shown in Table 2,
the CER and cosine similarity have no significant change,
showing that post-processing has no effect on audio quality.

In order to compare the spoofing performance of before
and after post-processing, a new spoofing detection model is
trained based on the data of ADD 2022 Detection Task. The
model configurations are the same as ASV-TS model. We
randomly select 1.4K utterances from the audio before and
after post-processing, respectively, and combine them with
0.6K utterances from AIShell-3 as two test sets. From Table 3
we can find that, the EER changed from 24.7% to 74.0%,
which means the deception ability of post-processed speech is
significantly improved.

Furthermore, we analyzed the spectrum of speech. Figure
4 illustrates the spectrograms before and after post-processed
by RGN model. It can be seen that the difference between the
two spectrograms is very slight, especially in low frequency
region. In addition, there is nearly no residual signal has been
added to the silence clips in the input audio, which means
RGN only perturbs where there is speech information.

4. CONCLUSION

This paper introduces our system for FG-G. It involves two
stages, including voice conversion and time-domain adver-
sarial post-processing. The voice conversion model is built

Table 2. The CER and cosine similarity of speaker embedding
vectors the speech before and after postprocessing

Speaker ID Source Before After

CER(%) CER(%) COS_SIM CER(%) COS_SIM

SSB0139 _ 14.39 0.93 14.76 0.91
SSB0535 _ 13.24 0.91 13.26 0.90
SSB0601 _ 13.70 0.90 14.46 0.88
SSB0603 _ 13.63 0.90 13.86 0.87
SSB0607 _ 13.27 0.89 14.26 0.85
SSB0609 _ 13.96 0.89 14.75 0.86
SSB0629 _ 13.83 0.94 14.04 0.91
SSB0666 _ 13.76 0.91 14.68 0.89
SSB0668 _ 13.13 0.93 13.49 0.91
SSB0671 _ 13.54 0.87 14.02 0.84

Average 10.41 13.65 0.91 14.16 0.88

Table 3. The EER of the speech before and after postprocess-
ing

Before After

EER 24.7% 74.0%

Fig. 4. The spectrograms of the before (top) and after audio
(bottom) post-processing

using Fastspeech-VC framework and the post-processing is
performed directly on the time-domain of converting audios by
the RGN, which is implemented by adversarial training against
the ASV-TS. The experimental results show that our system
can generate audios with both high quality and adversarial abil-
ity against spoofing detectors. Our system has also achieved
the highest performance, a DSR of 0.938, among all partic-
ipants of the Track 3.1 of Audio Deep Synthesis Detection
Challenge 2022.
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