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ABSTRACT

Persistent coughs are a major symptom of respiratory-related
diseases. Increasing research attention has been paid to
detecting coughs using wearables, especially during the
COVID-19 pandemic. Microphone is most widely used sen-
sor to detect coughs. However, the intense power consump-
tion needed to process audio hinders continuous audio-based
cough detection on battery-limited commercial wearables,
such as earbuds. We present CoughTrigger, which utilizes a
lower-power sensor, inertial measurement unit (IMU), in ear-
buds as a cough detection activator to trigger a higher-power
sensor for audio processing and classification. It runs all-the-
time as a standby service with minimal battery consumption
and triggers the audio-based cough detection when a candi-
date cough is detected from IMU. Besides, the use of IMU
brings the benefit of improved specificity of cough detection.
Experiments are conducted on 45 subjects and CoughTrigger
achieved 0.77 AUC score. We also validated its effectiveness
on free-living data and through on-device implementation.

Index Terms— Cough Detection Activation, Sensitivity-
prioritized Classification, M u lti-Center C 1 assifier, Template
Matching, Earbuds

1. INTRODUCTION

Persistent coughs can be a sign of serious lung diseases, such
as Chronic Obstructive Pulmonary Disease (COPD), asthma,
lung cancer, and COVID-19. Reliable automated detection of
coughs using everyday wearable devices is especially desir-
able. In recent years, wearable devices such as smartphones
and earbuds are becoming prevalent in our daily life. A body
of work has emerged, with wearable sensors showing promise
in detecting coughs and classifying different types of coughs
[1-9], including earbuds-based devices [7-9]. Audio-based
sensing has shown promise in detecting coughs on device, but
requires higher battery consumption and introduces privacy
concerns [1-3,5, 6, 8]. Battery consumption is a major con-
cern among commercial wearables, such as earbuds, where
power is a limited resource. For example, Samsung Galaxy
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Fig. 1: Samsung Galaxy Buds2 hardware architecture

Buds2, as shown in Fig. 1, has a 61 mAh battery supporting
up to 7.5 hours of play time per charge [10], and adding extra
features will cause a drop in battery life, and ultimately utility
and user interests. Some explored the use of an inertial mea-
surement unit (IMU), due to its low battery usage and com-
putational load, to detect coughs [7,9]. It was soon realized
that using a traditional classifier (XGBoost) to detect coughs
could only yield a 47% sensitivity and 54% F1-Score [7]. The
large number of confounding head movements made it chal-
lenging to distinguish between a cough and a non-cough.

Audio and IMU sensing have complementary characteris-
tics: audio can better distinguish between coughs and non-
coughs, while IMU enables battery-efficiency. Given that
the majority of the time is often spent by people not cough-
ing, the low-power IMU can be used to trigger the audio
sensing pipeline when a candidate cough is detected. To do
this, the IMU must yield high sensitivity, to ensure all coughs
are ultimately passed onto the audio sensing. Since tradi-
tional classification methods yield low sensitivity, we propose
a novel multi-center template matching algorithm to achieve
high sensitivity in the IMU data. This algorithm is then used
in a two-stage pipeline, where an always-on IMU triggers au-
dio processing, only when needed, to reliably confirm the de-
tection of a cough. It can further alleviate the privacy issue
because it does not require constant collection of audio.

We summarize the contributions of this work: (1) A
battery-efficient dual IMU-audio cough detection frame-
work using earbuds; we define the requirements for the first
IMU stage of the pipeline and formalize it as a sensitivity-
prioritized classification problem. (2) We propose CoughTrig-
ger, an IMU-based cough detection activator based on a novel
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Fig. 2: Tllustration of sensitivity-prioritized classification and
3-axis accelerometer cough data (x-axis, y-axis, z-axis).

template matching method — Multi-Nearest Center Classifier,
to trigger audio processing and cough detection. We present
superior experimental results compared with baselines. (3)
We implement our method on a commercial device and prove
the effectiveness of CoughTrigger with on-device result. In
the future, towards all-day round continuous cough monitor-
ing, an opportunistic sensing network composed of multiple
devices is promising and feasible. Earbuds platform is a key
component due to its consistent location and in-ear audio
sensing enabling robust cough detection.

2. METHODOLOGY

2.1. Sensitivity-prioritized Classification

Unlike a traditional binary classification problem where the
positive and negative samples are distinguishable either by
human perception or machine learning techniques in a trans-
formed feature space, the IMU cough data and non-cough
ones are not fully separable due to an overlapping region in
feature space, as illustrated in Figure 2. To guarantee the pos-
itive samples (coughs) can be detected to trigger audio-based
cough detection in the next stage, we formalize the problem
as a sensitivity-prioritized classification task, which means
higher sensitivity is prioritized over specificity, and approach
this problem with a novel template matching algorithm.

2.2. Multi-Nearest Center Classifier

Zhang et al. proposed a template matching algorithm [9],
called Multi-Centroid Classifier, which aims at iteratively
creating an increasing number of clusters, each of which has
its own centroid and radius and all together cover all the
positive samples while include as few negative samples as
possible. When a satisfying accuracy is achieved, the derived
centroids and radii will be used in the test set as templates and
thresholds to classify positive samples from negative ones.
The method has shown merits in accuracy, inference speed,
and model size. In this work, we make substantial modifi-
cations and propose a new algorithm, Multi-Nearest Center
(MNC) Classifier, on which we build CoughTrigger. The
original algorithm is composed of three parts: discrepancy
cost, discrepancy-based clustering, and cluster averaging, of
which we have modified two parts significantly. Not only
we change the manner of discrepancy-based clustering for
increased robustness to regional density in feature space, but

Algorithm 1: Training a Multi-Nearest Center Clas-
sifier
input : Positive and negative training samples and
stop criterion H
output: K templates Cy, (k =1,2,... K)and K
thresholds
Initialize number of clusters K = 1;
Assign all the positive samples to cluster R;;
Randomly select seed center C; from positive
samples of cluster Ry;
Do discrepancy-based clustering with C; to obtain
total cost L, updated center C'y and threshold;

while rotal cost L > stop criterion H do
Select R, with the highest cost ¢ = arg max; L;;

From the positive samples of R;, select the
sample which brings the largest cost increase as
the new seed centroid;

Do discrepancy-based clustering using K + 1
centers C1, ..., Ck 1 to obtain total cost L,
updated K + 1 centers, and K + 1 thresholds;

Calculate cost L, for each of the K + 1 clusters;

L=y Li;

K=K-+1,;

end

we totally replace the cluster averaging step with a center
sample selection procedure for better convergence. Further,
we show its superior classification capability in Section 4.1.

Training Phase We present the training procedure in Algo-
rithm 1. It comprises three major parts: discrepancy cost,
discrepancy-based clustering, and center selection. The dis-
crepancy cost is used to measure and compare the purity of
each cluster. Discrepancy-based clustering assigns positive
samples into clusters. Center selection selects one center
template and one threshold for each cluster. As the origi-
nal method [9] is sensitive to regional density in the feature
space, which prevents the derivation of a pseudo-optimal
clustering result, we substantially modify the discrepancy-
based clustering and cluster averaging. We also change the
way of selecting new seeds for better convergence. Below are
the three modifications introduced:

(1) We update the averaging step, making it easier to con-
verge on noisy datasets. When deriving the centroid for each
cluster, instead of averaging operation, we select as center the
positive sample which has the minimum Dist,, g, (DiStqq
is the max distance between the current sample and any other
positive sample).

(2) When clustering, we require each sample to be assigned
to only one cluster instead of allowing samples assigned to
multiple clusters. By modifying the clustering step, we make
the algorithm less sensitive to regional density in the feature
space. We will showcase the effect in Section 4.1.



(3) When increasing the number of clusters, instead of adding
one random centroid seed, we select the sample that brings
the greatest increase to the cost function.

Inference Phase The inference steps are unchanged [9]. The
distance between a test sample and each template is calcu-
lated and compared against the threshold. If the distance is
smaller than the threshold, then the test sample is predicted
as positive, otherwise it is negative.

3. EXPERIMENT

3.1. Data Collection

We generated an earbud-based cough dataset from 45 partici-
pants (15 with lung disease, 22 male, 41.4 & 10.7 years old).
In the experiments, one earbud was worn by each participant
to collect IMU data at 50 Hz and audio at 16 KHz.

In-lab Experiment We collected eight cough sessions, in-
cluding five stationary and three non-stationary periods. Each
participant coughed continuously with a short pause between
every two coughs. Stationary periods comprised: coughing
while seated (30s), coughing while lying down (30s), cough-
ing while listening to music from an earbud (30s), coughing
with background fan noise (30s), and coughing with back-
ground music/TV noise (30s). Non-stationary periods com-
prised: coughing while performing yoga in quiet environ-
ment (45s), coughing while performing yoga in noisy envi-
ronment (45s), and coughing while walking (1 min). To eval-
uate the specificity, non-cough activities that involve signals
that could resemble cough motion were collected including:
eating (30s), drinking (30s), laughing (30s), scripted speech
(1 min), throat clearing (30s), free head motion while talking
(30s), and one bystander coughing session (30s). On average,
10.5 coughs are captured in each cough session. We aim at
detecting each single cough while preventing false alarms.

Free-living Experiment Enrolled participants also took part
in a free-living experiment, where they were asked to cough
naturally in the morning and in the afternoon for one week. At
each time, data were collected for coughs while seated for 30s
and while walking for 30s. Due to limitation of data logging
app, there is an up-to-400ms random drift between audio and
IMU data. We resolved the asynchronization by identifying
peaks in accelerometer x-axis, which corresponds to the most
probable motion of wearer while coughing. Using audio, we
annotated every single cough from 45 in-lab participants and
15 free-living participants in lung disease cohort.

3.2. Model Development

Data Preprocessing The 3-axis accelerometer data are pre-
processed using a moving average filter with a window size
as 10 samples and a Butterworth high-pass filter (w, = 3m).
Positive samples are extracted from seated and lying down
cough sessions using a 0.4s window centered around the
annotated IMU cough.To increase the variety of cough data
during training, we applied three time series augmentation

methods, namely jittering, scaling, and magnitude warp-
ing [11] on cough data enlarging the positive sample size by
its threefold. For negative samples, we segmented the non-
cough session accelerometer data using a 0.4s sliding window
with 0.1s stride. Then we randomly subsampled four times
the positive samples from non-cough sessions as negative
samples, in order to balance class ratio.

Model Training To expedite the training process, we trained
one MNC model with stop precision criterion as 0.8 for
each participant in the training set using multi-variate DTW
distance measure, then aggregated the templates from each
training participant and ran all the templates on the train-
ing participants. Afterwards, we used a greedy algorithm to
rank the templates and select the top K templates based on
template importance measured by how many new positive
samples are hit by each template.

Model Testing We applied MNC with K templates on the
accelerometer data of the test participant’s cough and non-
cough sessions, with 0.4s window size and 0.02s stride size.
Then, we aggregated and merged all the predicted cough
windows to determine the final cough event prediction. In
our case, the capability of manually adjusting the trade-off
between sensitivity and specificity is desirable. One benefit
of MNC is that we have two ways to adjust it: to choose the
number of top K templates used and to adjust the thresholds
of templates. When more (less) templates are used, or when
we increase (decrease) the thresholds of templates, it leans
towards a higher sensitivity (specificity).

Evaluation Method In the in-lab experiment, we adopted
Leave-One-Subject-Out Cross Validation (LOSOCV), a mod-
ified k-fold cross-validation method in human-centered stud-
ies [12, 13], where the number of folds k is equal to the
number of participants, to evaluate the generalizability of a
participant-independent model. During training, we excluded
the in-lab non-stationary cough sessions due to a high volume
of noise caused by a wide range of body movements. In
the free-living experiment, we used the model trained on the
in-lab stationary cough sessions and non-cough sessions and
tested on the free-living dataset. In total, we utilized 10.25
hours of data. The summary of experiments is shown in Table
1. For cough sessions, we compared the predicted cough
segments against the ground truth coughs. True positives are
defined as predicted cough segments intersected by ground
truth coughs. We calculated the sensitivity of cough ses-
sions as a ratio of true positives to ground truth coughs. We
used sample-level specificity to test how well it can specify
non-cough events.

4. RESULT

4.1. Improvement of MNC classifier

We used a synthetic dataset generated from Gaussian distri-
bution to validate the MNC classifier, as in Fig. 3. The origi-
nal MCC achieved 0.57 test accuracy with 10 centroids. Us-



Table 1: Summary of experiments. A: In-lab stationary cough
sessions (112.5 min); B: In-lab non-stationary cough sessions
(112.5 min); C: In-lab non-cough sessions (180 min); D:
Free-living sessions (210 min).
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Fig. 3: Multi-Nearest Center Classifier improvement.

ing MNC, 0.99 test accuracy was obtained with 8 centers.
The first reason is that the original method allows one sam-
ple to belong to multiple clusters, increasing the possibility of
highly overlapped clusters. Instead, the new method can sep-
arate clusters towards different directions. Second, the new
clustering averaging method makes MNC less sensitive to re-
gional density.

4.2. CoughTrigger Results

Choice of Input Data We compared all the combinations
of the 3-axis accelerometer data, including three using one
axis, three using two axes, and one using three axes. The best
result is achieved with both the x- and y-axis. That aligns
with the IMU direction in Fig. 1 as z-axis only contributes
to sensing motion in the left/right direction, which is not as
useful in detecting coughs. We tried with only 3-axis gyro-
scope and combining both accelerometer and gyroscope data
but observed lower accuracy.

In-lab Experiment Result Under LOSOCYV, when training
MNC, on average 14.2 templates were generated for each
participant in each fold. When using top five templates,
we achieved 90% average sensitivity for stationary cough
sessions, and an average sensitivity of 86% on all cough ses-
sions. The average specificity is 53% across all non-cough
sessions. When the number of adopted templates ranges from
1 to 30, the Receiver Operating Characteristic (ROC) curve is
shown in Fig. 4 Left. We achieved 0.77 Area Under the ROC
Curve (ROC AUC) with all the 15 sessions. We achieved
0.59 Precision-Recall AUC in the in-lab experiment, which is
as expected since we would receive a higher precision after
the next audio-based detection pipeline. Our specificity eval-
uation was designed for the worst case scenario with a variety
of activities. In real life, as for most of the time the wearer is
stationary, the specificity is expected to be higher.

Fig. 4: Left: In-lab experiment ROC curve; Right: Battery
life comparison.

Free-living Experiment Result When we applied top 10
templates, we received an average sensitivity of 87% during
the stationary periods, and an average sensitivity of 82% on
both seated and walking cough periods. Although we only
have cough sessions in the free-living setting, we found a
55% average specificity across both sessions for all the par-
ticipants. When we adjusted the thresholds of each templates,
we received 0.80 ROC AUC for stationary coughs and 0.73
ROC AUC for both stationary and walking sessions.
Baseline Methods Since there is no out-of-box sensitivity-
prioritized classification method, we investigated ways that
may apply, including one-class classifier and adjusting the
decision boundary of a traditional classifier. As one-class
classifier only models the distribution of positive samples,
the overlapping of two classes should not interfere with
the modeling of positive class. We tested OC-SVM which
identifies the smallest hypersphere consisting of all posi-
tive samples [14, 15]. We used the same preprocessing and
concatenated x- and y-axis into one vector as input. After
adjusting the hyperparameters in a large range with different
kernels (linear, RBF, and Sigmoid), we received 0.51 AUC,
which is no better than random guess. For a traditional classi-
fier, we implemented a 3-layer NN with 20, 10, and 5 neurons
in each layer and observed the same result as OC-SVM.

On-device Implementation We implemented CoughTrigger
on Samsung Galaxy Buds2. Fig. 4 Right shows the battery
life of base firmware without cough detection, CoughTrigger
using 10 and 20 templates integrated in the base firmware,
and an integrated audio-based cough detection method [8].
The base firmware without cough detection has around 18
hours battery life, and integrating CoughTrigger makes no
significant change, which shows the feasibility of leveraging
CoughTrigger to reduce battery consumption.

5. CONCLUSION

We introduce a battery-efficient earbuds-based two-stage
IMU-audio cough detection framework and formalize the
first stage as a sensitivity-prioritized classification problem.
We propose using a novel multi-nearest center classifier as a
first-stage cough detection activator and demonstrate its ef-
fectiveness via in-lab, free-living, and on-device experiments.
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