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ABSTRACT

Graphs are widely used to represent complex information and sig-
nal domains with irregular support. Typically, the underlying graph
topology is unknown and must be estimated from the available data.
Common approaches assume pairwise node interactions and infer
the graph topology based on this premise. In contrast, our novel
method not only unveils the graph topology but also identifies three-
node interactions, referred to in the literature as second-order simpli-
cial complexes (SCs). We model signals using a graph autoregres-
sive Volterra framework, enhancing it with structured graph Volterra
kernels to learn SCs. We propose a mathematical formulation for
graph and SC inference, solving it through convex optimization in-
volving group norms and mask matrices. Experimental results on
synthetic and real-world data showcase a superior performance for
our approach compared to existing methods.

Index Terms— Graph learning, simplicial complexes, higher-
order networks, graph signal processing, Volterra graph models.

1. INTRODUCTION

Estimating the topology of complex data is a crucial step in the
downstream signal processing and machine learning tasks |[1}2].
To estimate this structure, it is essential to model the coupling be-
tween the topology and the data and how they influence each other.
For example, graph topology inference methods assume that pair-
wise node-to-node interactions could explain the data behavior or
their dynamics. These approaches rely on algebraic and statistical
methods to infer the graph topology from the observed data. Classic
examples include correlation-based methods [3, Ch. 7.3.1], graph-
ical lasso (GL) [4], and GSP based models, which exploit signal
properties such as smoothness or graph stationarity [SH8].
Although pairwise interactions reveal some of the intricate de-
pendencies and dynamics inherent in networked data, many inter-
actions within groups comprise more than two nodes [9}/10]]. For
example, research collaborations often involve teams of authors and
molecules tend to interact in small groups rather than pairs. To
model such group interactions, common approaches resort to hy-
pergraphs [[11}/12] or simplicial complexes [[13H16]. The latter are
typically either considered as given or estimated via simple domain-
specific heuristics. The work in [[17] estimates hypergraphs from
data by assuming a smoothness behavior on node and edge signals.
It first infers a graph topology and then constructs on it a line graph
to retrieve the higher-order interactions (hyperedges) but does not di-
rectly reveal the latter. This underscores the need for a model that is
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capable of learning jointly the graph structure and capturing higher-
order relationships between nodes. To account for the latter, we re-
sort to Volterra models on networks, which model node dynamics in
a nonlinear manner involving both pair-wise and higher-order inter-
actions [[18-20].

Specifically, we consider a networked autoregressive Volterra
model and pose an inverse problem to jointly estimate the graph
and the higher-order connectivity only from node signal realizations.
Higher-order connectivities are embedded in the Volterra kernels of
such a model. To limit the degrees of freedom (DoFs), we impose
an SC structure between node-to-tuple interactions, ultimately, es-
tablishing a relationship between SCs and Volterra kernels. For the
particular case of an SC of order two (representing connectivities up
to triplets), this relationship simplifies to relating the Volterra kernel
of order one to graph edges (simplex of order one) and the Volterra
kernel or order two to filled triangles (simplex of order two). Sub-
sequently, we develop a convex formulation that incorporates group
sparsity to solve the proposed problem. The group sparsity allows us
to group edges and node-to-tuple interactions related to each triplet
of nodes and to control the number of triplet interactions. The pro-
posed approach is corroborated via numerical experiments on syn-
thetic and real data showing a competitive performance compared
with alternatives that estimate either the graph topology or rely on it
to infer higher-order interactions.

2. PROBLEM FORMULATION

Consider R observations of a vector x € R grouped in matrix
X := [x1,...,xgr] € RV*®  The data entries in x have a hid-
den underlying structure, which is typically represented through a
graph G = {V, £} comprising a set of nodes V = {1,..., N} and
a set of edges & = {(4,)|¢,j € V}. Here, the ith entry z; is seen
as a datum associated with node 7, hence, set £ represents pairwise
dependencies between the data of nodes ¢ and j. In this context, we
also refer to vector x as the graph signal. Estimating the graph topol-
ogy from the data X boils down to leveraging a model that expresses
this data coupling and the role of the topology in it; i.e., solving an
inverse problem of the form G = f~*(X) where f(-) is a function
acting upon the graph G and modeling how it is coupled with the
signal realizations in X. Typically, we will estimate an algebraic
representation of graph G that is represented by its adjacency ma-
trix A € RVXN graph Laplacian L := diag(A1) — A, or more
generally a graph shift operator (GSO) matrix S € R™V*Y | where
Si; # 0if and only if ¢ = j or (j,4) € £ [21]. The existing liter-
ature provides different approaches to estimating the graph from the
data, with different assumptions on the function f(-) and topological
assumptions such as directed, weighted or undirected edges on the
sought graph. Moreover, since their goal is to recover a graph they
focus on pairwise interactions.

We consider that the graph signal is influenced by the signal
values in the other nodes both via pairwise and higher-order interac-



tions. Specifically, we model the dependencies via an autoregressive
graph Volterra model of second order of the form

X =H;X + H,Y + V +E, (1a)
withY = X © X. (1b)

Here, H; € RV *¥ represents the pairwise interactions and the
term H1X captures the part of the graph signal that can be repre-
sented as a linear combination of the signals in the other nodes. In-
stead, matrix Hy € RNXN ? is a node-to-tuple interaction matrix
representing higher-order interactions between a node k and a tuple
(i, ) in its entry Ha[k, (i, /)][] Matrix Y = X © X € RN"*7 i
obtained by performing the Khatri-Rao product (column-wise Kro-
necker product) on the graph signals. The r-th column of Y collects
all the monomials of degree two involving variables {«%},. These
product signals can be seen now as values associated with tuples of
nodes. Hence, the r-th column of H>Y captures the part of a graph
signal (x,) that can be represented by X, ® x, via node-to-pair in-
teractions (Hz). Finally, V € R™*® is an exogenous variable and
E € RY* js white zero-mean noise. For didactical purposes, we
focus on a single node k and model (I allows writing its signal ad)

N N N
T = ZH1[k,j]l‘j + Z Z Hg[k, (Z — 1)N +]]m1mj
j=1,j#k i=1,i7k j=1,j7i,k
+ vk + ek,

where the first and second summations are reminiscent of H; X
and HoY, respectively. The latter are linearly combined by the
node-to-tuple weights Ha[k, (i, 7)] here expressed as matrix entries
H;k, (i — 1)N + j]. Finally, vj, and ey, are the exogenous variable
and noise at node k, respectively. The following example makes this
discussion more tangible.

Example. Fig. [I]illustrates pairwise and higher-order interactions
among five nodes (1, ...,5). The pairwise interactions (e.g., (1,2),
(2,4), etc.) are shown by black solid lines. Matrix H; collects them.
The node signals z1,...,x5 could be seen as values over the re-
spective nodes. There are three tuples in this figure highlighted by
ellipsoids; i.e., (1,2) in yellow, (1,4) in red, and (2,4) in green.
The node-to-pair interactions are shown by solid lines connecting
the node to the respective tuple with the same color; i.e., [1, (2,4)],
[2,(1,4)] and [4,(1,2)]. Matrix H> collects all these interactions. The
product node signals 122, £1x4, and zax4 could be seen as values
associated with tuples captured by matrix Y in (I). Following the
model @, the signal at node k = 2, can be written as

To = H1[27 1]331 + H1 [2,4]x4 —|— H2[2, (1,4)}1‘1.%4
+ H- [2, (4, 1)]ZE1$4 + v2 + ea.

Model () has two particular aspects worth discussing. First, it
relates the graph signals to both the pairwise and higher-order con-
nectivities in a nonlinear manner in X but still linear in the topo-
logical variables H; and H>. This is reminiscent of how classical
time-series Volterra models [22] have been extended to graph signals
and proven relevant in applications such as power distribution grids,
social networks, and recommender systems [[18L{19]], to name a few.
The Volterra models have been found to provide both expressibility
for higher-order interactions, as well as interpretability for further
understanding of the underlying network dynamics. Second, () is a
rather flexible backbone model that can be further enriched via more
expressive kernels. For example, we could consider a higher-order

@

'With a slight abuse of notation, we will alternate between Ha [k, (4, j)]
and Ha [k, (¢ — 1) N + 7] to denote the value of the k-th row and ((¢ —1) N +
4)-th column of an N x N2 matrix.

2To ease exposition, we assume R = 1 and drop the realization index.
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Fig. 1: The visual representation of a graph with 5 nodes and 6
edges. The node-to-pair interactions between nodes [1,2,4] and
edges [(2,4),(1,4),(1,2)] are represented by green, red, and yellow
lines, respectively. A filled triangle between nodes 1, 2 and 4 is rep-
resented in blue.

Volterra model (as opposed to a second-order here) to capture node-
to-triple interactions. Also, we considered monomials of order two
as signals over tuples in y but non-multiplicative higher-order inter-
actions between node signals might also be of interest. From this
perspective, we could define Y = [y1,...yr] as yr = ¢(Xr,Xr),
where g(-) is a general function for which the following equality
holds g(a, b) = g(b, a).

Another advantage of the model in () is that it allows imposing
straightforwardly a desired structure on both H; and Ho. This is
particularly important if we want to estimate these matrices by a
limited number of signal realizations. Particular structures include:

a) Positive weights: This could be achieved by imposing the
element-wise constraints H; > 0 and Hy > 0.

b) No self-loops: This is particularly important to avoid trivial
solutions, such as H; =1 @]) We could define two binary
masking matrices B1 €{0,1}V*" and B2 € {0, 1}NXN2
and impose the elementwise constraints B; o H; = 0 and
B> o Hy = 0, where o denotes the entry-wise (Hadamard)
multiplication. For example, B1=I implies that diag(H;) =
0 and, as a result, removes pairwise self-loops.

¢) Symmetry: This could be guaranteed by forcing H; = H .

However, this structure is mild and can still have prohibitive
DoFs or lead to learned structures H; and Ho that are too discon-
nected from each other. Therefore, our goal is to leverage model (I))
and use nodal realizations X to jointly estimate the pairwise graph
structure Hy and the higher-order connectivities Ha by imposing an
SC structure in Hy that reduces the DoF's and couples the learned
H with Ho.

3. GRAPH AND SIMPLICIAL COMPLEX LEARNING

Since our goal is to learn an SC of order 2 (which can be understood
as learning a graph and filled triangles), we provide a brief overview
of the SC concept directly from a geometric perspective. A graph
G ={V,&}, with & C ¥V x V, is an SC of order 1. An SC of
order 2 can be represented by {V, &, T}, where T C V x V x V
and a triplet (¢, 7, k) can belong to 7 only if all pairs (¢, j), (4, k)
and (7, k) belong to £. This readily implies that an SC of order
2 can be represented by graph G = {V, £} together with a list of
filled triangles. Similarly, for an n-th order SC (n-simplex) to exist,
the presence of all (n — 1)-th order SCs (also known as (n — 1)-
simplices) is required. This implies that higher-order interactions
rely directly on the connectivity between the nodes in the graph.

To identify 2-simplices using Volterra kernels, it is essential to
represent interactions among three interconnected nodes. To achieve
this representation, we use the matrix Hz, which captures the influ-
ence of the product of the signals at two nodes on a third node. It



can be seen that, indeed, the entry [k, (¢,7)] of Hy involves three
nodes. Conversely, the relation between nodes k, ¢, and j appears in
six elements of H. In the context of SCs, our modeling assumption
is that the six entries of H2 associated with the triplet (k, 7, j) can
be different from zero only if the triangle (k, 4, 7) is filled.
Example. (cont.) Fig. [I]illustrates the correspondence between
a filled triangle and node-to-pair interactions among three nodes.
Nodes (3,4, 5) do not form a triangle (not all edges are present),
and hence, the filled-triangle relation cannot exist. Differently, for
the triplets (1, 3,4) and (1, 2, 4) the triangle exists. Our assumption
is that the triangle is filled if the node-to-edge interactions involving
the three nodes (denoted as an ellipse and a straight line) exist. This
is the case for nodes (1,2, 4) and therefore the filled triangle exists.
Conversely, this condition does not hold for the triangle (1, 3, 4), so
it remains unfilled.

Based on the previous discussion, with X[¢,r] denoting the
(i, 7)-th entry of matrix X, and recalling that Y = X ® X [cf.
(TB)]1, our approach to identifying an SC of order 2 by using an au-
toregressive Volterra model can be formulated as

(H,Hy) = [X-H;X-H,Y-V|%

argmin
Hj;eH, ,HoEH
+ o Hull1 + B|Hz|lx (3a)
s. t. Ha(k, (i,7)] < 01(Ha[k, i|Ha [k, j]H1[i, 5]);  (3b)

where the second and third terms in (Ga) (with @ > O and 8 > 0
being hyperparameters) regulate the desired sparsity level in H; and
H,, respectively. By employing #1 = {H; > 0,B; o H; =
0} and Ho = {H2 > 0,B;, o Hy = 0} we adopt the structural
requirements outlined at the end of Sec. 2] which impose that both
H, and H> must possess positive weights and no self-loops. The
indicator function from the constraint is defined as 1(z) = 1if z #
0and 1(z) = 0if z = 0. By setting z = H; [k, :]H1 [k, j]H1[Z, 5],
we have that if nodes k, i and j form a triangle (z # 0) then the
nonlinear relation captured by the Volterra kernel Ho could exist
(Hz[k, (2,7)] < 61(2)). If needed, the parameter 6 can be selected
to limit the maximum value attributed to each node-pair interaction.
Note that having one entry of Hy different from zero implies that the
associated triangle is filled.

Remark 1 Consider that when a triangle exists and is filled (say
triangle (k,1,j)), the formulation in does not impose that the
values of all node-pair interactions between the nodes present in a
filled triangle are the same. If this is required, it can be accomplished
by adding the set of constraints Ha[k, (i,7)] = Halk, (5,1)] =
HQ[iv (k'vj)] = H2[7:7 (.77 k)] = HQ[jv (kvl)} = HQ[jv (iv k)] Jor
all (k,i, 7).

Problem (3) is non-convex due to the constraint (3b). To deal
with it, we apply a group sparsity term that groups all the entries
in H; and H that participate in (3b). To that end, we build the
N x (N 4+ N?) matrix [H;, Hz] and, since each constraint in
@B) involves 3 nodes, we construct the N x (N + N?) binary
mask matrix Q(i’j 'k) This matrix identifies the entries of [H1, Hy]
associated with i) edges between the three nodes Q) [; j] =
1,QE9 04, k]=1,Q("9*)[j k]=1, and ii) node-pair interactions be-
tween the three nodes Q%) [i, Nj+k] = 1, Q"M [j, Ni+k] =
1, Q3™ [k, Ni + j] = 1, with all other entries being zero. Lever-
aging Q(“7"*) we propose the following convex formulation

(Hi,Hy) = argmin | X —H,X — HoY — V|7 + a|[Hi|x
HieHi,HoeHo

N
B+ S 11QU o [Hy Holllr, ()

i,7,k=1

with v > 0. In {@), we kept the least square term and the sparsity-
promoting terms in (3a) but replaced (Bb) with a group sparsity term.
The group-sparsity regularizer links the penalty of activating an en-
try of H; with that of activating an entry of Hs provided that those
entries can participate in a potential triangle. When all the interac-
tions (entries) inside the group sparsity norm hold non-zero values,
it signifies the presence of a filled triangle.

Although convexity guarantees that problem (4) can be solved in
polynomial time, the required computational complexity is not negli-
gible, especially for medium/large size graphs. The number of terms
in the group sparsity constraint scales as O(N?), and the number of
variables and constraints scales as O(N®). While this multiplicative
growth in the number of variables to optimize is somehow unavoid-
able when dealing with the design of nontrivial schemes to estimate
high-order interactions, it emphasizes the importance of developing
tailored optimization algorithms that, by exploiting the structure in
(@), lead to a reduced complexity. We leave this task as future work.

4. NUMERICAL EXPERIMENTS

We conduct numerical experiments on both synthetic and real data
and compare the following methods.

e GL: Graphical Lasso [4]], which learns the edges of a graph by
estimating a sparse precision matrix from Gaussian graph signals.

¢ GSR: Approach in [7], which estimates the graph topology by as-
suming the signals are graph stationary in the sought graph.

e HGSL: Approach in [17]], which estimates the graph by assuming
smoothness on node (0-simplex) and edge (1-simplex) signals.

* RC: Rips complex [23]], which estimates SCs (edges and filled
triangles) from the correlation of the data.

* MTV-SC: Approach in [|14], which estimates SCs from edge sig-
nals assuming the topology of the underlying graph is given.

* VGR: Our approach in (@) for estimating the graph and SC (edges
and filled triangles) from data using a Volterra signal model.

The exact implementation details of the previous schemes and
ensuing setups can be found in the online code repositoryﬂ

Number of samples. For this experiment, we assess the perfor-
mance of VGR by using the following synthetic data generation
setup. We generate M graph signals following the autoregressive
Volterra model in (Ta). The entries of H; are set as the adjacency
matrix of an Erdés Rényi graph with N = 20 nodes and edge prob-
ability p = 0.15 [24]. The entries of Hy are set so that all triangles
are filled, which is a favorable setup for the RC algorithm. Fig. P]a
shows the estimation error for H; (y-axis) averaged over 50 graph
realizations while increasing the number of observed signals R (x-
axis). The metric used to compute the estimation error is the nor-
malized squared Frobenius norm:

err(Hy) = |HY — Hu |7/ Hi||7 (5)

where H} and I:L stand for the ground truth and estimated H; re-
spectively. Solid lines in Fig. 2}a consider V in known, whereas
dashed lines consider V unknown and set to zero.

Starting first with the solid lines, we observe that: i) our algo-
rithm yields the best performance and ii) as R increases, err(H;)
decreases. The only exception to ii) is GL, probably because its
modeling assumptions are too simple for the signal structure pos-
tulated in (Ta). When the exogenous variable is unknown (dashed
lines), the performance of all algorithms deteriorates. Our approach

3https://github.com/andreibuciulea/Graph-SCs-topolD
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Fig. 2: (a) Evaluating the estimation performance of different algorithms in terms of normalized squared Frobenius norm [err(Hy), cf. (3)]
averaged over 50 graph realizations as the number of samples R increases. (b) Evaluating the estimation performance of different algorithms
in terms of F-score averaged over 20 graph realizations. (c) Visual representation of the ground-truth support of Ho (upper) and the estimation
obtained by RC (middle) and VGR (bottom) for a real-data graph realization with N = 15 nodes.

Table 1: Normalized error when estimating 2-simplices err(Hs) for
different algorithms and number of samples R.

Alg. \R 50 100 200 300 400 500

MTV-SC1.505 1.496 1.497 1.493 1.494 1.490
RC 0.790 0.767 0.761 0.753 0.748 0.751
VGR 0.559 0428 0.294 0.214 0.165 0.133

outperforms the alternatives, due to the consideration of a more com-
prehensive model that accounts for signal nonlinearities and higher-
order interactions. Results for RC were not shown because, in all
tested cases, the normalized error was slightly above 1.0.

We now move our analysis to assess the performance when es-
timating Ho>. Since GL and GSR do not consider high-order inter-
actions explicitly, a direct comparison with these methods is infea-
sible. Thus, we compare the proposed algorithm with MTV-SC and
RC. The results in Table|T]reveal err(Hy) is larger than err(H,) as
illustrated in Fig. |Zla. This behaviour aligns with expectations, since
the task of estimating higher-order interactions is inherently more
difficult than estimating links between nodes. This difficulty is due
to the large number of potential interactions to estimate compared to
the number of available signals. Nevertheless, our approach not only
achieves lower errors than considered alternatives but also exhibits
a faster error reduction as the number of samples R increases. We
attribute this enhanced Ho estimate to the ability of our approach
to simultaneously compute both SCs and the underlying edges in the
graph instead of the two-step estimation process implemented by RC
and MTV-SC.

Co-authorship datasets. We now evaluate the performance of VGR
using a real dataset, following the setup in [17]. The dataset com-
prises papers from the ACM conference, featuring 17,431 authors,
122,499 papers, and 1,903 keywords. The nodes (0-simplices) are a
subset of the authors. To establish the ground truth H;, we exam-
ined author-paper relationships and considered a link between two
authors if they collaborated on a paper. For ground truth Ha, we
considered a filled triangle whenever three authors collaborated on
a paper. To generate the input signals, we set R = 1,903 (the total
number of different keywords). As a result, the value of each input
signal (columns of X)) is related to the frequency at which a partic-
ular author uses a particular keyword across papers. We constructed
20 difterent graphs from the dataset, varying the set of authors (with
cardinalities between 15 and 25), keeping the number of signals as
R = 1,903. These generated signals were employed to estimate the
graph topology using the different algorithms. Fig. 2]b displays the
average results across 20 graph realizations, represented in terms of
F-score (y-axis), with the number of nodes (authors) ranging from 15

Table 2: F-score and err(H;) when estimating 2-simplices from
real-data for different algorithms and number of nodes V.

F-score Error
Alg. \ N[ 15 20 25 15 20 25
MTV-SC| 0.093 0.058 0.056| 7.418 7.536 7.530
RC 0.667 0.650 0.585| 1.350 2.101 2.837
VGR 0.718 0.676 0.625| 0.548 0.558 0.649

to 25 (x-axis). The results indicate that approaches that do not con-
sider higher-order interactions, such as GL and GSR, yield poorer
graph estimations compared to other alternatives. VGR consistently
outperforms all other schemes, achieving the highest averaged F-
score across all considered graph sizes.

Regarding the estimation of the higher-order connectivities
shown in Fig. |Zlc, RC achieves an F-score of 0.77, whereas VGR
achieves an F-score of 0.88 (recall that these are the only algo-
rithms that explicitly account for 2-simplices/triplets). Fig[PJc. fur-
ther shows the support of H> for both the RC and VGR alongside
the ground truth. The recovered H> exhibits a similar structure
compared to the ground truth. This implies that both RC and our
algorithm effectively estimate the presence of filled triangles, rep-
resenting interactions between three or more authors collaborating
on the same paper. The proposed method also provides better esti-
mations of the associated weights. In the specific realization shown
in Fig. c, our method achieves an err(H) of 0.054, whereas RC
yields an error of 1.334. Additional results showing the average
F-score and err(Hz) results for VGR and RC at different numbers
of nodes are provided in Table 2] These results reinforce the con-
clusions drawn from Fig. @c. Lastly, we incorporated the results
of SC estimation obtained by the MVT-SC approach. For the SC
estimation, we used Y as edge signals and the graph estimated by
the approach presented in [25]. From the results shown in Table [2]
we can conclude that relying solely on the node signals results in an
inadequate estimation of SCs for MVT-SC, requiring having access
to the actual edge signals.

5. CONCLUSIONS

This paper proposed a method to jointly estimate the graph topology
(pairwise interactions) and higher-order dependencies (triples) from
nodal data by assuming the latter follows a second-order autoregres-
sive graph Volterra model. We incorporated simplicial complex con-
straints in the said model to estimate sparse-filled triangles as a proxy
for triplet interactions. To assess the estimation performance of the
proposed algorithm, we conducted experiments on both synthetic
and real datasets, revealing consistently superior results compared
to those achieved by alternative methods.
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